summaryrefslogtreecommitdiff
path: root/vendor/github.com/BurntSushi/toml
diff options
context:
space:
mode:
authorMatthew Heon <matthew.heon@gmail.com>2017-11-01 11:24:59 -0400
committerMatthew Heon <matthew.heon@gmail.com>2017-11-01 11:24:59 -0400
commita031b83a09a8628435317a03f199cdc18b78262f (patch)
treebc017a96769ce6de33745b8b0b1304ccf38e9df0 /vendor/github.com/BurntSushi/toml
parent2b74391cd5281f6fdf391ff8ad50fd1490f6bf89 (diff)
downloadpodman-a031b83a09a8628435317a03f199cdc18b78262f.tar.gz
podman-a031b83a09a8628435317a03f199cdc18b78262f.tar.bz2
podman-a031b83a09a8628435317a03f199cdc18b78262f.zip
Initial checkin from CRI-O repo
Signed-off-by: Matthew Heon <matthew.heon@gmail.com>
Diffstat (limited to 'vendor/github.com/BurntSushi/toml')
-rw-r--r--vendor/github.com/BurntSushi/toml/COPYING14
-rw-r--r--vendor/github.com/BurntSushi/toml/README.md220
-rw-r--r--vendor/github.com/BurntSushi/toml/decode.go505
-rw-r--r--vendor/github.com/BurntSushi/toml/decode_meta.go122
-rw-r--r--vendor/github.com/BurntSushi/toml/doc.go27
-rw-r--r--vendor/github.com/BurntSushi/toml/encode.go549
-rw-r--r--vendor/github.com/BurntSushi/toml/encoding_types.go19
-rw-r--r--vendor/github.com/BurntSushi/toml/encoding_types_1.1.go18
-rw-r--r--vendor/github.com/BurntSushi/toml/lex.go871
-rw-r--r--vendor/github.com/BurntSushi/toml/parse.go493
-rw-r--r--vendor/github.com/BurntSushi/toml/type_check.go91
-rw-r--r--vendor/github.com/BurntSushi/toml/type_fields.go241
12 files changed, 3170 insertions, 0 deletions
diff --git a/vendor/github.com/BurntSushi/toml/COPYING b/vendor/github.com/BurntSushi/toml/COPYING
new file mode 100644
index 000000000..5a8e33254
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/COPYING
@@ -0,0 +1,14 @@
+ DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
+ Version 2, December 2004
+
+ Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
+
+ Everyone is permitted to copy and distribute verbatim or modified
+ copies of this license document, and changing it is allowed as long
+ as the name is changed.
+
+ DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
+ TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
+
+ 0. You just DO WHAT THE FUCK YOU WANT TO.
+
diff --git a/vendor/github.com/BurntSushi/toml/README.md b/vendor/github.com/BurntSushi/toml/README.md
new file mode 100644
index 000000000..5a5df6370
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/README.md
@@ -0,0 +1,220 @@
+## TOML parser and encoder for Go with reflection
+
+TOML stands for Tom's Obvious, Minimal Language. This Go package provides a
+reflection interface similar to Go's standard library `json` and `xml`
+packages. This package also supports the `encoding.TextUnmarshaler` and
+`encoding.TextMarshaler` interfaces so that you can define custom data
+representations. (There is an example of this below.)
+
+Spec: https://github.com/mojombo/toml
+
+Compatible with TOML version
+[v0.2.0](https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.2.0.md)
+
+Documentation: http://godoc.org/github.com/BurntSushi/toml
+
+Installation:
+
+```bash
+go get github.com/BurntSushi/toml
+```
+
+Try the toml validator:
+
+```bash
+go get github.com/BurntSushi/toml/cmd/tomlv
+tomlv some-toml-file.toml
+```
+
+[![Build status](https://api.travis-ci.org/BurntSushi/toml.png)](https://travis-ci.org/BurntSushi/toml)
+
+
+### Testing
+
+This package passes all tests in
+[toml-test](https://github.com/BurntSushi/toml-test) for both the decoder
+and the encoder.
+
+### Examples
+
+This package works similarly to how the Go standard library handles `XML`
+and `JSON`. Namely, data is loaded into Go values via reflection.
+
+For the simplest example, consider some TOML file as just a list of keys
+and values:
+
+```toml
+Age = 25
+Cats = [ "Cauchy", "Plato" ]
+Pi = 3.14
+Perfection = [ 6, 28, 496, 8128 ]
+DOB = 1987-07-05T05:45:00Z
+```
+
+Which could be defined in Go as:
+
+```go
+type Config struct {
+ Age int
+ Cats []string
+ Pi float64
+ Perfection []int
+ DOB time.Time // requires `import time`
+}
+```
+
+And then decoded with:
+
+```go
+var conf Config
+if _, err := toml.Decode(tomlData, &conf); err != nil {
+ // handle error
+}
+```
+
+You can also use struct tags if your struct field name doesn't map to a TOML
+key value directly:
+
+```toml
+some_key_NAME = "wat"
+```
+
+```go
+type TOML struct {
+ ObscureKey string `toml:"some_key_NAME"`
+}
+```
+
+### Using the `encoding.TextUnmarshaler` interface
+
+Here's an example that automatically parses duration strings into
+`time.Duration` values:
+
+```toml
+[[song]]
+name = "Thunder Road"
+duration = "4m49s"
+
+[[song]]
+name = "Stairway to Heaven"
+duration = "8m03s"
+```
+
+Which can be decoded with:
+
+```go
+type song struct {
+ Name string
+ Duration duration
+}
+type songs struct {
+ Song []song
+}
+var favorites songs
+if _, err := toml.Decode(blob, &favorites); err != nil {
+ log.Fatal(err)
+}
+
+for _, s := range favorites.Song {
+ fmt.Printf("%s (%s)\n", s.Name, s.Duration)
+}
+```
+
+And you'll also need a `duration` type that satisfies the
+`encoding.TextUnmarshaler` interface:
+
+```go
+type duration struct {
+ time.Duration
+}
+
+func (d *duration) UnmarshalText(text []byte) error {
+ var err error
+ d.Duration, err = time.ParseDuration(string(text))
+ return err
+}
+```
+
+### More complex usage
+
+Here's an example of how to load the example from the official spec page:
+
+```toml
+# This is a TOML document. Boom.
+
+title = "TOML Example"
+
+[owner]
+name = "Tom Preston-Werner"
+organization = "GitHub"
+bio = "GitHub Cofounder & CEO\nLikes tater tots and beer."
+dob = 1979-05-27T07:32:00Z # First class dates? Why not?
+
+[database]
+server = "192.168.1.1"
+ports = [ 8001, 8001, 8002 ]
+connection_max = 5000
+enabled = true
+
+[servers]
+
+ # You can indent as you please. Tabs or spaces. TOML don't care.
+ [servers.alpha]
+ ip = "10.0.0.1"
+ dc = "eqdc10"
+
+ [servers.beta]
+ ip = "10.0.0.2"
+ dc = "eqdc10"
+
+[clients]
+data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it
+
+# Line breaks are OK when inside arrays
+hosts = [
+ "alpha",
+ "omega"
+]
+```
+
+And the corresponding Go types are:
+
+```go
+type tomlConfig struct {
+ Title string
+ Owner ownerInfo
+ DB database `toml:"database"`
+ Servers map[string]server
+ Clients clients
+}
+
+type ownerInfo struct {
+ Name string
+ Org string `toml:"organization"`
+ Bio string
+ DOB time.Time
+}
+
+type database struct {
+ Server string
+ Ports []int
+ ConnMax int `toml:"connection_max"`
+ Enabled bool
+}
+
+type server struct {
+ IP string
+ DC string
+}
+
+type clients struct {
+ Data [][]interface{}
+ Hosts []string
+}
+```
+
+Note that a case insensitive match will be tried if an exact match can't be
+found.
+
+A working example of the above can be found in `_examples/example.{go,toml}`.
+
diff --git a/vendor/github.com/BurntSushi/toml/decode.go b/vendor/github.com/BurntSushi/toml/decode.go
new file mode 100644
index 000000000..c26b00c01
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/decode.go
@@ -0,0 +1,505 @@
+package toml
+
+import (
+ "fmt"
+ "io"
+ "io/ioutil"
+ "math"
+ "reflect"
+ "strings"
+ "time"
+)
+
+var e = fmt.Errorf
+
+// Unmarshaler is the interface implemented by objects that can unmarshal a
+// TOML description of themselves.
+type Unmarshaler interface {
+ UnmarshalTOML(interface{}) error
+}
+
+// Unmarshal decodes the contents of `p` in TOML format into a pointer `v`.
+func Unmarshal(p []byte, v interface{}) error {
+ _, err := Decode(string(p), v)
+ return err
+}
+
+// Primitive is a TOML value that hasn't been decoded into a Go value.
+// When using the various `Decode*` functions, the type `Primitive` may
+// be given to any value, and its decoding will be delayed.
+//
+// A `Primitive` value can be decoded using the `PrimitiveDecode` function.
+//
+// The underlying representation of a `Primitive` value is subject to change.
+// Do not rely on it.
+//
+// N.B. Primitive values are still parsed, so using them will only avoid
+// the overhead of reflection. They can be useful when you don't know the
+// exact type of TOML data until run time.
+type Primitive struct {
+ undecoded interface{}
+ context Key
+}
+
+// DEPRECATED!
+//
+// Use MetaData.PrimitiveDecode instead.
+func PrimitiveDecode(primValue Primitive, v interface{}) error {
+ md := MetaData{decoded: make(map[string]bool)}
+ return md.unify(primValue.undecoded, rvalue(v))
+}
+
+// PrimitiveDecode is just like the other `Decode*` functions, except it
+// decodes a TOML value that has already been parsed. Valid primitive values
+// can *only* be obtained from values filled by the decoder functions,
+// including this method. (i.e., `v` may contain more `Primitive`
+// values.)
+//
+// Meta data for primitive values is included in the meta data returned by
+// the `Decode*` functions with one exception: keys returned by the Undecoded
+// method will only reflect keys that were decoded. Namely, any keys hidden
+// behind a Primitive will be considered undecoded. Executing this method will
+// update the undecoded keys in the meta data. (See the example.)
+func (md *MetaData) PrimitiveDecode(primValue Primitive, v interface{}) error {
+ md.context = primValue.context
+ defer func() { md.context = nil }()
+ return md.unify(primValue.undecoded, rvalue(v))
+}
+
+// Decode will decode the contents of `data` in TOML format into a pointer
+// `v`.
+//
+// TOML hashes correspond to Go structs or maps. (Dealer's choice. They can be
+// used interchangeably.)
+//
+// TOML arrays of tables correspond to either a slice of structs or a slice
+// of maps.
+//
+// TOML datetimes correspond to Go `time.Time` values.
+//
+// All other TOML types (float, string, int, bool and array) correspond
+// to the obvious Go types.
+//
+// An exception to the above rules is if a type implements the
+// encoding.TextUnmarshaler interface. In this case, any primitive TOML value
+// (floats, strings, integers, booleans and datetimes) will be converted to
+// a byte string and given to the value's UnmarshalText method. See the
+// Unmarshaler example for a demonstration with time duration strings.
+//
+// Key mapping
+//
+// TOML keys can map to either keys in a Go map or field names in a Go
+// struct. The special `toml` struct tag may be used to map TOML keys to
+// struct fields that don't match the key name exactly. (See the example.)
+// A case insensitive match to struct names will be tried if an exact match
+// can't be found.
+//
+// The mapping between TOML values and Go values is loose. That is, there
+// may exist TOML values that cannot be placed into your representation, and
+// there may be parts of your representation that do not correspond to
+// TOML values. This loose mapping can be made stricter by using the IsDefined
+// and/or Undecoded methods on the MetaData returned.
+//
+// This decoder will not handle cyclic types. If a cyclic type is passed,
+// `Decode` will not terminate.
+func Decode(data string, v interface{}) (MetaData, error) {
+ p, err := parse(data)
+ if err != nil {
+ return MetaData{}, err
+ }
+ md := MetaData{
+ p.mapping, p.types, p.ordered,
+ make(map[string]bool, len(p.ordered)), nil,
+ }
+ return md, md.unify(p.mapping, rvalue(v))
+}
+
+// DecodeFile is just like Decode, except it will automatically read the
+// contents of the file at `fpath` and decode it for you.
+func DecodeFile(fpath string, v interface{}) (MetaData, error) {
+ bs, err := ioutil.ReadFile(fpath)
+ if err != nil {
+ return MetaData{}, err
+ }
+ return Decode(string(bs), v)
+}
+
+// DecodeReader is just like Decode, except it will consume all bytes
+// from the reader and decode it for you.
+func DecodeReader(r io.Reader, v interface{}) (MetaData, error) {
+ bs, err := ioutil.ReadAll(r)
+ if err != nil {
+ return MetaData{}, err
+ }
+ return Decode(string(bs), v)
+}
+
+// unify performs a sort of type unification based on the structure of `rv`,
+// which is the client representation.
+//
+// Any type mismatch produces an error. Finding a type that we don't know
+// how to handle produces an unsupported type error.
+func (md *MetaData) unify(data interface{}, rv reflect.Value) error {
+
+ // Special case. Look for a `Primitive` value.
+ if rv.Type() == reflect.TypeOf((*Primitive)(nil)).Elem() {
+ // Save the undecoded data and the key context into the primitive
+ // value.
+ context := make(Key, len(md.context))
+ copy(context, md.context)
+ rv.Set(reflect.ValueOf(Primitive{
+ undecoded: data,
+ context: context,
+ }))
+ return nil
+ }
+
+ // Special case. Unmarshaler Interface support.
+ if rv.CanAddr() {
+ if v, ok := rv.Addr().Interface().(Unmarshaler); ok {
+ return v.UnmarshalTOML(data)
+ }
+ }
+
+ // Special case. Handle time.Time values specifically.
+ // TODO: Remove this code when we decide to drop support for Go 1.1.
+ // This isn't necessary in Go 1.2 because time.Time satisfies the encoding
+ // interfaces.
+ if rv.Type().AssignableTo(rvalue(time.Time{}).Type()) {
+ return md.unifyDatetime(data, rv)
+ }
+
+ // Special case. Look for a value satisfying the TextUnmarshaler interface.
+ if v, ok := rv.Interface().(TextUnmarshaler); ok {
+ return md.unifyText(data, v)
+ }
+ // BUG(burntsushi)
+ // The behavior here is incorrect whenever a Go type satisfies the
+ // encoding.TextUnmarshaler interface but also corresponds to a TOML
+ // hash or array. In particular, the unmarshaler should only be applied
+ // to primitive TOML values. But at this point, it will be applied to
+ // all kinds of values and produce an incorrect error whenever those values
+ // are hashes or arrays (including arrays of tables).
+
+ k := rv.Kind()
+
+ // laziness
+ if k >= reflect.Int && k <= reflect.Uint64 {
+ return md.unifyInt(data, rv)
+ }
+ switch k {
+ case reflect.Ptr:
+ elem := reflect.New(rv.Type().Elem())
+ err := md.unify(data, reflect.Indirect(elem))
+ if err != nil {
+ return err
+ }
+ rv.Set(elem)
+ return nil
+ case reflect.Struct:
+ return md.unifyStruct(data, rv)
+ case reflect.Map:
+ return md.unifyMap(data, rv)
+ case reflect.Array:
+ return md.unifyArray(data, rv)
+ case reflect.Slice:
+ return md.unifySlice(data, rv)
+ case reflect.String:
+ return md.unifyString(data, rv)
+ case reflect.Bool:
+ return md.unifyBool(data, rv)
+ case reflect.Interface:
+ // we only support empty interfaces.
+ if rv.NumMethod() > 0 {
+ return e("Unsupported type '%s'.", rv.Kind())
+ }
+ return md.unifyAnything(data, rv)
+ case reflect.Float32:
+ fallthrough
+ case reflect.Float64:
+ return md.unifyFloat64(data, rv)
+ }
+ return e("Unsupported type '%s'.", rv.Kind())
+}
+
+func (md *MetaData) unifyStruct(mapping interface{}, rv reflect.Value) error {
+ tmap, ok := mapping.(map[string]interface{})
+ if !ok {
+ if mapping == nil {
+ return nil
+ }
+ return mismatch(rv, "map", mapping)
+ }
+
+ for key, datum := range tmap {
+ var f *field
+ fields := cachedTypeFields(rv.Type())
+ for i := range fields {
+ ff := &fields[i]
+ if ff.name == key {
+ f = ff
+ break
+ }
+ if f == nil && strings.EqualFold(ff.name, key) {
+ f = ff
+ }
+ }
+ if f != nil {
+ subv := rv
+ for _, i := range f.index {
+ subv = indirect(subv.Field(i))
+ }
+ if isUnifiable(subv) {
+ md.decoded[md.context.add(key).String()] = true
+ md.context = append(md.context, key)
+ if err := md.unify(datum, subv); err != nil {
+ return e("Type mismatch for '%s.%s': %s",
+ rv.Type().String(), f.name, err)
+ }
+ md.context = md.context[0 : len(md.context)-1]
+ } else if f.name != "" {
+ // Bad user! No soup for you!
+ return e("Field '%s.%s' is unexported, and therefore cannot "+
+ "be loaded with reflection.", rv.Type().String(), f.name)
+ }
+ }
+ }
+ return nil
+}
+
+func (md *MetaData) unifyMap(mapping interface{}, rv reflect.Value) error {
+ tmap, ok := mapping.(map[string]interface{})
+ if !ok {
+ if tmap == nil {
+ return nil
+ }
+ return badtype("map", mapping)
+ }
+ if rv.IsNil() {
+ rv.Set(reflect.MakeMap(rv.Type()))
+ }
+ for k, v := range tmap {
+ md.decoded[md.context.add(k).String()] = true
+ md.context = append(md.context, k)
+
+ rvkey := indirect(reflect.New(rv.Type().Key()))
+ rvval := reflect.Indirect(reflect.New(rv.Type().Elem()))
+ if err := md.unify(v, rvval); err != nil {
+ return err
+ }
+ md.context = md.context[0 : len(md.context)-1]
+
+ rvkey.SetString(k)
+ rv.SetMapIndex(rvkey, rvval)
+ }
+ return nil
+}
+
+func (md *MetaData) unifyArray(data interface{}, rv reflect.Value) error {
+ datav := reflect.ValueOf(data)
+ if datav.Kind() != reflect.Slice {
+ if !datav.IsValid() {
+ return nil
+ }
+ return badtype("slice", data)
+ }
+ sliceLen := datav.Len()
+ if sliceLen != rv.Len() {
+ return e("expected array length %d; got TOML array of length %d",
+ rv.Len(), sliceLen)
+ }
+ return md.unifySliceArray(datav, rv)
+}
+
+func (md *MetaData) unifySlice(data interface{}, rv reflect.Value) error {
+ datav := reflect.ValueOf(data)
+ if datav.Kind() != reflect.Slice {
+ if !datav.IsValid() {
+ return nil
+ }
+ return badtype("slice", data)
+ }
+ n := datav.Len()
+ if rv.IsNil() || rv.Cap() < n {
+ rv.Set(reflect.MakeSlice(rv.Type(), n, n))
+ }
+ rv.SetLen(n)
+ return md.unifySliceArray(datav, rv)
+}
+
+func (md *MetaData) unifySliceArray(data, rv reflect.Value) error {
+ sliceLen := data.Len()
+ for i := 0; i < sliceLen; i++ {
+ v := data.Index(i).Interface()
+ sliceval := indirect(rv.Index(i))
+ if err := md.unify(v, sliceval); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func (md *MetaData) unifyDatetime(data interface{}, rv reflect.Value) error {
+ if _, ok := data.(time.Time); ok {
+ rv.Set(reflect.ValueOf(data))
+ return nil
+ }
+ return badtype("time.Time", data)
+}
+
+func (md *MetaData) unifyString(data interface{}, rv reflect.Value) error {
+ if s, ok := data.(string); ok {
+ rv.SetString(s)
+ return nil
+ }
+ return badtype("string", data)
+}
+
+func (md *MetaData) unifyFloat64(data interface{}, rv reflect.Value) error {
+ if num, ok := data.(float64); ok {
+ switch rv.Kind() {
+ case reflect.Float32:
+ fallthrough
+ case reflect.Float64:
+ rv.SetFloat(num)
+ default:
+ panic("bug")
+ }
+ return nil
+ }
+ return badtype("float", data)
+}
+
+func (md *MetaData) unifyInt(data interface{}, rv reflect.Value) error {
+ if num, ok := data.(int64); ok {
+ if rv.Kind() >= reflect.Int && rv.Kind() <= reflect.Int64 {
+ switch rv.Kind() {
+ case reflect.Int, reflect.Int64:
+ // No bounds checking necessary.
+ case reflect.Int8:
+ if num < math.MinInt8 || num > math.MaxInt8 {
+ return e("Value '%d' is out of range for int8.", num)
+ }
+ case reflect.Int16:
+ if num < math.MinInt16 || num > math.MaxInt16 {
+ return e("Value '%d' is out of range for int16.", num)
+ }
+ case reflect.Int32:
+ if num < math.MinInt32 || num > math.MaxInt32 {
+ return e("Value '%d' is out of range for int32.", num)
+ }
+ }
+ rv.SetInt(num)
+ } else if rv.Kind() >= reflect.Uint && rv.Kind() <= reflect.Uint64 {
+ unum := uint64(num)
+ switch rv.Kind() {
+ case reflect.Uint, reflect.Uint64:
+ // No bounds checking necessary.
+ case reflect.Uint8:
+ if num < 0 || unum > math.MaxUint8 {
+ return e("Value '%d' is out of range for uint8.", num)
+ }
+ case reflect.Uint16:
+ if num < 0 || unum > math.MaxUint16 {
+ return e("Value '%d' is out of range for uint16.", num)
+ }
+ case reflect.Uint32:
+ if num < 0 || unum > math.MaxUint32 {
+ return e("Value '%d' is out of range for uint32.", num)
+ }
+ }
+ rv.SetUint(unum)
+ } else {
+ panic("unreachable")
+ }
+ return nil
+ }
+ return badtype("integer", data)
+}
+
+func (md *MetaData) unifyBool(data interface{}, rv reflect.Value) error {
+ if b, ok := data.(bool); ok {
+ rv.SetBool(b)
+ return nil
+ }
+ return badtype("boolean", data)
+}
+
+func (md *MetaData) unifyAnything(data interface{}, rv reflect.Value) error {
+ rv.Set(reflect.ValueOf(data))
+ return nil
+}
+
+func (md *MetaData) unifyText(data interface{}, v TextUnmarshaler) error {
+ var s string
+ switch sdata := data.(type) {
+ case TextMarshaler:
+ text, err := sdata.MarshalText()
+ if err != nil {
+ return err
+ }
+ s = string(text)
+ case fmt.Stringer:
+ s = sdata.String()
+ case string:
+ s = sdata
+ case bool:
+ s = fmt.Sprintf("%v", sdata)
+ case int64:
+ s = fmt.Sprintf("%d", sdata)
+ case float64:
+ s = fmt.Sprintf("%f", sdata)
+ default:
+ return badtype("primitive (string-like)", data)
+ }
+ if err := v.UnmarshalText([]byte(s)); err != nil {
+ return err
+ }
+ return nil
+}
+
+// rvalue returns a reflect.Value of `v`. All pointers are resolved.
+func rvalue(v interface{}) reflect.Value {
+ return indirect(reflect.ValueOf(v))
+}
+
+// indirect returns the value pointed to by a pointer.
+// Pointers are followed until the value is not a pointer.
+// New values are allocated for each nil pointer.
+//
+// An exception to this rule is if the value satisfies an interface of
+// interest to us (like encoding.TextUnmarshaler).
+func indirect(v reflect.Value) reflect.Value {
+ if v.Kind() != reflect.Ptr {
+ if v.CanAddr() {
+ pv := v.Addr()
+ if _, ok := pv.Interface().(TextUnmarshaler); ok {
+ return pv
+ }
+ }
+ return v
+ }
+ if v.IsNil() {
+ v.Set(reflect.New(v.Type().Elem()))
+ }
+ return indirect(reflect.Indirect(v))
+}
+
+func isUnifiable(rv reflect.Value) bool {
+ if rv.CanSet() {
+ return true
+ }
+ if _, ok := rv.Interface().(TextUnmarshaler); ok {
+ return true
+ }
+ return false
+}
+
+func badtype(expected string, data interface{}) error {
+ return e("Expected %s but found '%T'.", expected, data)
+}
+
+func mismatch(user reflect.Value, expected string, data interface{}) error {
+ return e("Type mismatch for %s. Expected %s but found '%T'.",
+ user.Type().String(), expected, data)
+}
diff --git a/vendor/github.com/BurntSushi/toml/decode_meta.go b/vendor/github.com/BurntSushi/toml/decode_meta.go
new file mode 100644
index 000000000..ef6f545fa
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/decode_meta.go
@@ -0,0 +1,122 @@
+package toml
+
+import "strings"
+
+// MetaData allows access to meta information about TOML data that may not
+// be inferrable via reflection. In particular, whether a key has been defined
+// and the TOML type of a key.
+type MetaData struct {
+ mapping map[string]interface{}
+ types map[string]tomlType
+ keys []Key
+ decoded map[string]bool
+ context Key // Used only during decoding.
+}
+
+// IsDefined returns true if the key given exists in the TOML data. The key
+// should be specified hierarchially. e.g.,
+//
+// // access the TOML key 'a.b.c'
+// IsDefined("a", "b", "c")
+//
+// IsDefined will return false if an empty key given. Keys are case sensitive.
+func (md *MetaData) IsDefined(key ...string) bool {
+ if len(key) == 0 {
+ return false
+ }
+
+ var hash map[string]interface{}
+ var ok bool
+ var hashOrVal interface{} = md.mapping
+ for _, k := range key {
+ if hash, ok = hashOrVal.(map[string]interface{}); !ok {
+ return false
+ }
+ if hashOrVal, ok = hash[k]; !ok {
+ return false
+ }
+ }
+ return true
+}
+
+// Type returns a string representation of the type of the key specified.
+//
+// Type will return the empty string if given an empty key or a key that
+// does not exist. Keys are case sensitive.
+func (md *MetaData) Type(key ...string) string {
+ fullkey := strings.Join(key, ".")
+ if typ, ok := md.types[fullkey]; ok {
+ return typ.typeString()
+ }
+ return ""
+}
+
+// Key is the type of any TOML key, including key groups. Use (MetaData).Keys
+// to get values of this type.
+type Key []string
+
+func (k Key) String() string {
+ return strings.Join(k, ".")
+}
+
+func (k Key) maybeQuotedAll() string {
+ var ss []string
+ for i := range k {
+ ss = append(ss, k.maybeQuoted(i))
+ }
+ return strings.Join(ss, ".")
+}
+
+func (k Key) maybeQuoted(i int) string {
+ quote := false
+ for _, c := range k[i] {
+ if !isBareKeyChar(c) {
+ quote = true
+ break
+ }
+ }
+ if quote {
+ return "\"" + strings.Replace(k[i], "\"", "\\\"", -1) + "\""
+ } else {
+ return k[i]
+ }
+}
+
+func (k Key) add(piece string) Key {
+ newKey := make(Key, len(k)+1)
+ copy(newKey, k)
+ newKey[len(k)] = piece
+ return newKey
+}
+
+// Keys returns a slice of every key in the TOML data, including key groups.
+// Each key is itself a slice, where the first element is the top of the
+// hierarchy and the last is the most specific.
+//
+// The list will have the same order as the keys appeared in the TOML data.
+//
+// All keys returned are non-empty.
+func (md *MetaData) Keys() []Key {
+ return md.keys
+}
+
+// Undecoded returns all keys that have not been decoded in the order in which
+// they appear in the original TOML document.
+//
+// This includes keys that haven't been decoded because of a Primitive value.
+// Once the Primitive value is decoded, the keys will be considered decoded.
+//
+// Also note that decoding into an empty interface will result in no decoding,
+// and so no keys will be considered decoded.
+//
+// In this sense, the Undecoded keys correspond to keys in the TOML document
+// that do not have a concrete type in your representation.
+func (md *MetaData) Undecoded() []Key {
+ undecoded := make([]Key, 0, len(md.keys))
+ for _, key := range md.keys {
+ if !md.decoded[key.String()] {
+ undecoded = append(undecoded, key)
+ }
+ }
+ return undecoded
+}
diff --git a/vendor/github.com/BurntSushi/toml/doc.go b/vendor/github.com/BurntSushi/toml/doc.go
new file mode 100644
index 000000000..fe2680004
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/doc.go
@@ -0,0 +1,27 @@
+/*
+Package toml provides facilities for decoding and encoding TOML configuration
+files via reflection. There is also support for delaying decoding with
+the Primitive type, and querying the set of keys in a TOML document with the
+MetaData type.
+
+The specification implemented: https://github.com/mojombo/toml
+
+The sub-command github.com/BurntSushi/toml/cmd/tomlv can be used to verify
+whether a file is a valid TOML document. It can also be used to print the
+type of each key in a TOML document.
+
+Testing
+
+There are two important types of tests used for this package. The first is
+contained inside '*_test.go' files and uses the standard Go unit testing
+framework. These tests are primarily devoted to holistically testing the
+decoder and encoder.
+
+The second type of testing is used to verify the implementation's adherence
+to the TOML specification. These tests have been factored into their own
+project: https://github.com/BurntSushi/toml-test
+
+The reason the tests are in a separate project is so that they can be used by
+any implementation of TOML. Namely, it is language agnostic.
+*/
+package toml
diff --git a/vendor/github.com/BurntSushi/toml/encode.go b/vendor/github.com/BurntSushi/toml/encode.go
new file mode 100644
index 000000000..4e4c97aed
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/encode.go
@@ -0,0 +1,549 @@
+package toml
+
+import (
+ "bufio"
+ "errors"
+ "fmt"
+ "io"
+ "reflect"
+ "sort"
+ "strconv"
+ "strings"
+ "time"
+)
+
+type tomlEncodeError struct{ error }
+
+var (
+ errArrayMixedElementTypes = errors.New(
+ "can't encode array with mixed element types")
+ errArrayNilElement = errors.New(
+ "can't encode array with nil element")
+ errNonString = errors.New(
+ "can't encode a map with non-string key type")
+ errAnonNonStruct = errors.New(
+ "can't encode an anonymous field that is not a struct")
+ errArrayNoTable = errors.New(
+ "TOML array element can't contain a table")
+ errNoKey = errors.New(
+ "top-level values must be a Go map or struct")
+ errAnything = errors.New("") // used in testing
+)
+
+var quotedReplacer = strings.NewReplacer(
+ "\t", "\\t",
+ "\n", "\\n",
+ "\r", "\\r",
+ "\"", "\\\"",
+ "\\", "\\\\",
+)
+
+// Encoder controls the encoding of Go values to a TOML document to some
+// io.Writer.
+//
+// The indentation level can be controlled with the Indent field.
+type Encoder struct {
+ // A single indentation level. By default it is two spaces.
+ Indent string
+
+ // hasWritten is whether we have written any output to w yet.
+ hasWritten bool
+ w *bufio.Writer
+}
+
+// NewEncoder returns a TOML encoder that encodes Go values to the io.Writer
+// given. By default, a single indentation level is 2 spaces.
+func NewEncoder(w io.Writer) *Encoder {
+ return &Encoder{
+ w: bufio.NewWriter(w),
+ Indent: " ",
+ }
+}
+
+// Encode writes a TOML representation of the Go value to the underlying
+// io.Writer. If the value given cannot be encoded to a valid TOML document,
+// then an error is returned.
+//
+// The mapping between Go values and TOML values should be precisely the same
+// as for the Decode* functions. Similarly, the TextMarshaler interface is
+// supported by encoding the resulting bytes as strings. (If you want to write
+// arbitrary binary data then you will need to use something like base64 since
+// TOML does not have any binary types.)
+//
+// When encoding TOML hashes (i.e., Go maps or structs), keys without any
+// sub-hashes are encoded first.
+//
+// If a Go map is encoded, then its keys are sorted alphabetically for
+// deterministic output. More control over this behavior may be provided if
+// there is demand for it.
+//
+// Encoding Go values without a corresponding TOML representation---like map
+// types with non-string keys---will cause an error to be returned. Similarly
+// for mixed arrays/slices, arrays/slices with nil elements, embedded
+// non-struct types and nested slices containing maps or structs.
+// (e.g., [][]map[string]string is not allowed but []map[string]string is OK
+// and so is []map[string][]string.)
+func (enc *Encoder) Encode(v interface{}) error {
+ rv := eindirect(reflect.ValueOf(v))
+ if err := enc.safeEncode(Key([]string{}), rv); err != nil {
+ return err
+ }
+ return enc.w.Flush()
+}
+
+func (enc *Encoder) safeEncode(key Key, rv reflect.Value) (err error) {
+ defer func() {
+ if r := recover(); r != nil {
+ if terr, ok := r.(tomlEncodeError); ok {
+ err = terr.error
+ return
+ }
+ panic(r)
+ }
+ }()
+ enc.encode(key, rv)
+ return nil
+}
+
+func (enc *Encoder) encode(key Key, rv reflect.Value) {
+ // Special case. Time needs to be in ISO8601 format.
+ // Special case. If we can marshal the type to text, then we used that.
+ // Basically, this prevents the encoder for handling these types as
+ // generic structs (or whatever the underlying type of a TextMarshaler is).
+ switch rv.Interface().(type) {
+ case time.Time, TextMarshaler:
+ enc.keyEqElement(key, rv)
+ return
+ }
+
+ k := rv.Kind()
+ switch k {
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
+ reflect.Int64,
+ reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
+ reflect.Uint64,
+ reflect.Float32, reflect.Float64, reflect.String, reflect.Bool:
+ enc.keyEqElement(key, rv)
+ case reflect.Array, reflect.Slice:
+ if typeEqual(tomlArrayHash, tomlTypeOfGo(rv)) {
+ enc.eArrayOfTables(key, rv)
+ } else {
+ enc.keyEqElement(key, rv)
+ }
+ case reflect.Interface:
+ if rv.IsNil() {
+ return
+ }
+ enc.encode(key, rv.Elem())
+ case reflect.Map:
+ if rv.IsNil() {
+ return
+ }
+ enc.eTable(key, rv)
+ case reflect.Ptr:
+ if rv.IsNil() {
+ return
+ }
+ enc.encode(key, rv.Elem())
+ case reflect.Struct:
+ enc.eTable(key, rv)
+ default:
+ panic(e("Unsupported type for key '%s': %s", key, k))
+ }
+}
+
+// eElement encodes any value that can be an array element (primitives and
+// arrays).
+func (enc *Encoder) eElement(rv reflect.Value) {
+ switch v := rv.Interface().(type) {
+ case time.Time:
+ // Special case time.Time as a primitive. Has to come before
+ // TextMarshaler below because time.Time implements
+ // encoding.TextMarshaler, but we need to always use UTC.
+ enc.wf(v.In(time.FixedZone("UTC", 0)).Format("2006-01-02T15:04:05Z"))
+ return
+ case TextMarshaler:
+ // Special case. Use text marshaler if it's available for this value.
+ if s, err := v.MarshalText(); err != nil {
+ encPanic(err)
+ } else {
+ enc.writeQuoted(string(s))
+ }
+ return
+ }
+ switch rv.Kind() {
+ case reflect.Bool:
+ enc.wf(strconv.FormatBool(rv.Bool()))
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
+ reflect.Int64:
+ enc.wf(strconv.FormatInt(rv.Int(), 10))
+ case reflect.Uint, reflect.Uint8, reflect.Uint16,
+ reflect.Uint32, reflect.Uint64:
+ enc.wf(strconv.FormatUint(rv.Uint(), 10))
+ case reflect.Float32:
+ enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 32)))
+ case reflect.Float64:
+ enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 64)))
+ case reflect.Array, reflect.Slice:
+ enc.eArrayOrSliceElement(rv)
+ case reflect.Interface:
+ enc.eElement(rv.Elem())
+ case reflect.String:
+ enc.writeQuoted(rv.String())
+ default:
+ panic(e("Unexpected primitive type: %s", rv.Kind()))
+ }
+}
+
+// By the TOML spec, all floats must have a decimal with at least one
+// number on either side.
+func floatAddDecimal(fstr string) string {
+ if !strings.Contains(fstr, ".") {
+ return fstr + ".0"
+ }
+ return fstr
+}
+
+func (enc *Encoder) writeQuoted(s string) {
+ enc.wf("\"%s\"", quotedReplacer.Replace(s))
+}
+
+func (enc *Encoder) eArrayOrSliceElement(rv reflect.Value) {
+ length := rv.Len()
+ enc.wf("[")
+ for i := 0; i < length; i++ {
+ elem := rv.Index(i)
+ enc.eElement(elem)
+ if i != length-1 {
+ enc.wf(", ")
+ }
+ }
+ enc.wf("]")
+}
+
+func (enc *Encoder) eArrayOfTables(key Key, rv reflect.Value) {
+ if len(key) == 0 {
+ encPanic(errNoKey)
+ }
+ for i := 0; i < rv.Len(); i++ {
+ trv := rv.Index(i)
+ if isNil(trv) {
+ continue
+ }
+ panicIfInvalidKey(key)
+ enc.newline()
+ enc.wf("%s[[%s]]", enc.indentStr(key), key.maybeQuotedAll())
+ enc.newline()
+ enc.eMapOrStruct(key, trv)
+ }
+}
+
+func (enc *Encoder) eTable(key Key, rv reflect.Value) {
+ panicIfInvalidKey(key)
+ if len(key) == 1 {
+ // Output an extra new line between top-level tables.
+ // (The newline isn't written if nothing else has been written though.)
+ enc.newline()
+ }
+ if len(key) > 0 {
+ enc.wf("%s[%s]", enc.indentStr(key), key.maybeQuotedAll())
+ enc.newline()
+ }
+ enc.eMapOrStruct(key, rv)
+}
+
+func (enc *Encoder) eMapOrStruct(key Key, rv reflect.Value) {
+ switch rv := eindirect(rv); rv.Kind() {
+ case reflect.Map:
+ enc.eMap(key, rv)
+ case reflect.Struct:
+ enc.eStruct(key, rv)
+ default:
+ panic("eTable: unhandled reflect.Value Kind: " + rv.Kind().String())
+ }
+}
+
+func (enc *Encoder) eMap(key Key, rv reflect.Value) {
+ rt := rv.Type()
+ if rt.Key().Kind() != reflect.String {
+ encPanic(errNonString)
+ }
+
+ // Sort keys so that we have deterministic output. And write keys directly
+ // underneath this key first, before writing sub-structs or sub-maps.
+ var mapKeysDirect, mapKeysSub []string
+ for _, mapKey := range rv.MapKeys() {
+ k := mapKey.String()
+ if typeIsHash(tomlTypeOfGo(rv.MapIndex(mapKey))) {
+ mapKeysSub = append(mapKeysSub, k)
+ } else {
+ mapKeysDirect = append(mapKeysDirect, k)
+ }
+ }
+
+ var writeMapKeys = func(mapKeys []string) {
+ sort.Strings(mapKeys)
+ for _, mapKey := range mapKeys {
+ mrv := rv.MapIndex(reflect.ValueOf(mapKey))
+ if isNil(mrv) {
+ // Don't write anything for nil fields.
+ continue
+ }
+ enc.encode(key.add(mapKey), mrv)
+ }
+ }
+ writeMapKeys(mapKeysDirect)
+ writeMapKeys(mapKeysSub)
+}
+
+func (enc *Encoder) eStruct(key Key, rv reflect.Value) {
+ // Write keys for fields directly under this key first, because if we write
+ // a field that creates a new table, then all keys under it will be in that
+ // table (not the one we're writing here).
+ rt := rv.Type()
+ var fieldsDirect, fieldsSub [][]int
+ var addFields func(rt reflect.Type, rv reflect.Value, start []int)
+ addFields = func(rt reflect.Type, rv reflect.Value, start []int) {
+ for i := 0; i < rt.NumField(); i++ {
+ f := rt.Field(i)
+ // skip unexported fields
+ if f.PkgPath != "" && !f.Anonymous {
+ continue
+ }
+ frv := rv.Field(i)
+ if f.Anonymous {
+ t := f.Type
+ switch t.Kind() {
+ case reflect.Struct:
+ addFields(t, frv, f.Index)
+ continue
+ case reflect.Ptr:
+ if t.Elem().Kind() == reflect.Struct {
+ if !frv.IsNil() {
+ addFields(t.Elem(), frv.Elem(), f.Index)
+ }
+ continue
+ }
+ // Fall through to the normal field encoding logic below
+ // for non-struct anonymous fields.
+ }
+ }
+
+ if typeIsHash(tomlTypeOfGo(frv)) {
+ fieldsSub = append(fieldsSub, append(start, f.Index...))
+ } else {
+ fieldsDirect = append(fieldsDirect, append(start, f.Index...))
+ }
+ }
+ }
+ addFields(rt, rv, nil)
+
+ var writeFields = func(fields [][]int) {
+ for _, fieldIndex := range fields {
+ sft := rt.FieldByIndex(fieldIndex)
+ sf := rv.FieldByIndex(fieldIndex)
+ if isNil(sf) {
+ // Don't write anything for nil fields.
+ continue
+ }
+
+ tag := sft.Tag.Get("toml")
+ if tag == "-" {
+ continue
+ }
+ keyName, opts := getOptions(tag)
+ if keyName == "" {
+ keyName = sft.Name
+ }
+ if _, ok := opts["omitempty"]; ok && isEmpty(sf) {
+ continue
+ } else if _, ok := opts["omitzero"]; ok && isZero(sf) {
+ continue
+ }
+
+ enc.encode(key.add(keyName), sf)
+ }
+ }
+ writeFields(fieldsDirect)
+ writeFields(fieldsSub)
+}
+
+// tomlTypeName returns the TOML type name of the Go value's type. It is
+// used to determine whether the types of array elements are mixed (which is
+// forbidden). If the Go value is nil, then it is illegal for it to be an array
+// element, and valueIsNil is returned as true.
+
+// Returns the TOML type of a Go value. The type may be `nil`, which means
+// no concrete TOML type could be found.
+func tomlTypeOfGo(rv reflect.Value) tomlType {
+ if isNil(rv) || !rv.IsValid() {
+ return nil
+ }
+ switch rv.Kind() {
+ case reflect.Bool:
+ return tomlBool
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
+ reflect.Int64,
+ reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
+ reflect.Uint64:
+ return tomlInteger
+ case reflect.Float32, reflect.Float64:
+ return tomlFloat
+ case reflect.Array, reflect.Slice:
+ if typeEqual(tomlHash, tomlArrayType(rv)) {
+ return tomlArrayHash
+ } else {
+ return tomlArray
+ }
+ case reflect.Ptr, reflect.Interface:
+ return tomlTypeOfGo(rv.Elem())
+ case reflect.String:
+ return tomlString
+ case reflect.Map:
+ return tomlHash
+ case reflect.Struct:
+ switch rv.Interface().(type) {
+ case time.Time:
+ return tomlDatetime
+ case TextMarshaler:
+ return tomlString
+ default:
+ return tomlHash
+ }
+ default:
+ panic("unexpected reflect.Kind: " + rv.Kind().String())
+ }
+}
+
+// tomlArrayType returns the element type of a TOML array. The type returned
+// may be nil if it cannot be determined (e.g., a nil slice or a zero length
+// slize). This function may also panic if it finds a type that cannot be
+// expressed in TOML (such as nil elements, heterogeneous arrays or directly
+// nested arrays of tables).
+func tomlArrayType(rv reflect.Value) tomlType {
+ if isNil(rv) || !rv.IsValid() || rv.Len() == 0 {
+ return nil
+ }
+ firstType := tomlTypeOfGo(rv.Index(0))
+ if firstType == nil {
+ encPanic(errArrayNilElement)
+ }
+
+ rvlen := rv.Len()
+ for i := 1; i < rvlen; i++ {
+ elem := rv.Index(i)
+ switch elemType := tomlTypeOfGo(elem); {
+ case elemType == nil:
+ encPanic(errArrayNilElement)
+ case !typeEqual(firstType, elemType):
+ encPanic(errArrayMixedElementTypes)
+ }
+ }
+ // If we have a nested array, then we must make sure that the nested
+ // array contains ONLY primitives.
+ // This checks arbitrarily nested arrays.
+ if typeEqual(firstType, tomlArray) || typeEqual(firstType, tomlArrayHash) {
+ nest := tomlArrayType(eindirect(rv.Index(0)))
+ if typeEqual(nest, tomlHash) || typeEqual(nest, tomlArrayHash) {
+ encPanic(errArrayNoTable)
+ }
+ }
+ return firstType
+}
+
+func getOptions(keyName string) (string, map[string]struct{}) {
+ opts := make(map[string]struct{})
+ ss := strings.Split(keyName, ",")
+ name := ss[0]
+ if len(ss) > 1 {
+ for _, opt := range ss {
+ opts[opt] = struct{}{}
+ }
+ }
+
+ return name, opts
+}
+
+func isZero(rv reflect.Value) bool {
+ switch rv.Kind() {
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+ return rv.Int() == 0
+ case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
+ return rv.Uint() == 0
+ case reflect.Float32, reflect.Float64:
+ return rv.Float() == 0.0
+ }
+ return false
+}
+
+func isEmpty(rv reflect.Value) bool {
+ switch rv.Kind() {
+ case reflect.Array, reflect.Slice, reflect.Map, reflect.String:
+ return rv.Len() == 0
+ case reflect.Bool:
+ return !rv.Bool()
+ }
+ return false
+}
+
+func (enc *Encoder) newline() {
+ if enc.hasWritten {
+ enc.wf("\n")
+ }
+}
+
+func (enc *Encoder) keyEqElement(key Key, val reflect.Value) {
+ if len(key) == 0 {
+ encPanic(errNoKey)
+ }
+ panicIfInvalidKey(key)
+ enc.wf("%s%s = ", enc.indentStr(key), key.maybeQuoted(len(key)-1))
+ enc.eElement(val)
+ enc.newline()
+}
+
+func (enc *Encoder) wf(format string, v ...interface{}) {
+ if _, err := fmt.Fprintf(enc.w, format, v...); err != nil {
+ encPanic(err)
+ }
+ enc.hasWritten = true
+}
+
+func (enc *Encoder) indentStr(key Key) string {
+ return strings.Repeat(enc.Indent, len(key)-1)
+}
+
+func encPanic(err error) {
+ panic(tomlEncodeError{err})
+}
+
+func eindirect(v reflect.Value) reflect.Value {
+ switch v.Kind() {
+ case reflect.Ptr, reflect.Interface:
+ return eindirect(v.Elem())
+ default:
+ return v
+ }
+}
+
+func isNil(rv reflect.Value) bool {
+ switch rv.Kind() {
+ case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
+ return rv.IsNil()
+ default:
+ return false
+ }
+}
+
+func panicIfInvalidKey(key Key) {
+ for _, k := range key {
+ if len(k) == 0 {
+ encPanic(e("Key '%s' is not a valid table name. Key names "+
+ "cannot be empty.", key.maybeQuotedAll()))
+ }
+ }
+}
+
+func isValidKeyName(s string) bool {
+ return len(s) != 0
+}
diff --git a/vendor/github.com/BurntSushi/toml/encoding_types.go b/vendor/github.com/BurntSushi/toml/encoding_types.go
new file mode 100644
index 000000000..d36e1dd60
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/encoding_types.go
@@ -0,0 +1,19 @@
+// +build go1.2
+
+package toml
+
+// In order to support Go 1.1, we define our own TextMarshaler and
+// TextUnmarshaler types. For Go 1.2+, we just alias them with the
+// standard library interfaces.
+
+import (
+ "encoding"
+)
+
+// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
+// so that Go 1.1 can be supported.
+type TextMarshaler encoding.TextMarshaler
+
+// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
+// here so that Go 1.1 can be supported.
+type TextUnmarshaler encoding.TextUnmarshaler
diff --git a/vendor/github.com/BurntSushi/toml/encoding_types_1.1.go b/vendor/github.com/BurntSushi/toml/encoding_types_1.1.go
new file mode 100644
index 000000000..e8d503d04
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/encoding_types_1.1.go
@@ -0,0 +1,18 @@
+// +build !go1.2
+
+package toml
+
+// These interfaces were introduced in Go 1.2, so we add them manually when
+// compiling for Go 1.1.
+
+// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
+// so that Go 1.1 can be supported.
+type TextMarshaler interface {
+ MarshalText() (text []byte, err error)
+}
+
+// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
+// here so that Go 1.1 can be supported.
+type TextUnmarshaler interface {
+ UnmarshalText(text []byte) error
+}
diff --git a/vendor/github.com/BurntSushi/toml/lex.go b/vendor/github.com/BurntSushi/toml/lex.go
new file mode 100644
index 000000000..9b20b3a81
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/lex.go
@@ -0,0 +1,871 @@
+package toml
+
+import (
+ "fmt"
+ "strings"
+ "unicode/utf8"
+)
+
+type itemType int
+
+const (
+ itemError itemType = iota
+ itemNIL // used in the parser to indicate no type
+ itemEOF
+ itemText
+ itemString
+ itemRawString
+ itemMultilineString
+ itemRawMultilineString
+ itemBool
+ itemInteger
+ itemFloat
+ itemDatetime
+ itemArray // the start of an array
+ itemArrayEnd
+ itemTableStart
+ itemTableEnd
+ itemArrayTableStart
+ itemArrayTableEnd
+ itemKeyStart
+ itemCommentStart
+)
+
+const (
+ eof = 0
+ tableStart = '['
+ tableEnd = ']'
+ arrayTableStart = '['
+ arrayTableEnd = ']'
+ tableSep = '.'
+ keySep = '='
+ arrayStart = '['
+ arrayEnd = ']'
+ arrayValTerm = ','
+ commentStart = '#'
+ stringStart = '"'
+ stringEnd = '"'
+ rawStringStart = '\''
+ rawStringEnd = '\''
+)
+
+type stateFn func(lx *lexer) stateFn
+
+type lexer struct {
+ input string
+ start int
+ pos int
+ width int
+ line int
+ state stateFn
+ items chan item
+
+ // A stack of state functions used to maintain context.
+ // The idea is to reuse parts of the state machine in various places.
+ // For example, values can appear at the top level or within arbitrarily
+ // nested arrays. The last state on the stack is used after a value has
+ // been lexed. Similarly for comments.
+ stack []stateFn
+}
+
+type item struct {
+ typ itemType
+ val string
+ line int
+}
+
+func (lx *lexer) nextItem() item {
+ for {
+ select {
+ case item := <-lx.items:
+ return item
+ default:
+ lx.state = lx.state(lx)
+ }
+ }
+}
+
+func lex(input string) *lexer {
+ lx := &lexer{
+ input: input + "\n",
+ state: lexTop,
+ line: 1,
+ items: make(chan item, 10),
+ stack: make([]stateFn, 0, 10),
+ }
+ return lx
+}
+
+func (lx *lexer) push(state stateFn) {
+ lx.stack = append(lx.stack, state)
+}
+
+func (lx *lexer) pop() stateFn {
+ if len(lx.stack) == 0 {
+ return lx.errorf("BUG in lexer: no states to pop.")
+ }
+ last := lx.stack[len(lx.stack)-1]
+ lx.stack = lx.stack[0 : len(lx.stack)-1]
+ return last
+}
+
+func (lx *lexer) current() string {
+ return lx.input[lx.start:lx.pos]
+}
+
+func (lx *lexer) emit(typ itemType) {
+ lx.items <- item{typ, lx.current(), lx.line}
+ lx.start = lx.pos
+}
+
+func (lx *lexer) emitTrim(typ itemType) {
+ lx.items <- item{typ, strings.TrimSpace(lx.current()), lx.line}
+ lx.start = lx.pos
+}
+
+func (lx *lexer) next() (r rune) {
+ if lx.pos >= len(lx.input) {
+ lx.width = 0
+ return eof
+ }
+
+ if lx.input[lx.pos] == '\n' {
+ lx.line++
+ }
+ r, lx.width = utf8.DecodeRuneInString(lx.input[lx.pos:])
+ lx.pos += lx.width
+ return r
+}
+
+// ignore skips over the pending input before this point.
+func (lx *lexer) ignore() {
+ lx.start = lx.pos
+}
+
+// backup steps back one rune. Can be called only once per call of next.
+func (lx *lexer) backup() {
+ lx.pos -= lx.width
+ if lx.pos < len(lx.input) && lx.input[lx.pos] == '\n' {
+ lx.line--
+ }
+}
+
+// accept consumes the next rune if it's equal to `valid`.
+func (lx *lexer) accept(valid rune) bool {
+ if lx.next() == valid {
+ return true
+ }
+ lx.backup()
+ return false
+}
+
+// peek returns but does not consume the next rune in the input.
+func (lx *lexer) peek() rune {
+ r := lx.next()
+ lx.backup()
+ return r
+}
+
+// errorf stops all lexing by emitting an error and returning `nil`.
+// Note that any value that is a character is escaped if it's a special
+// character (new lines, tabs, etc.).
+func (lx *lexer) errorf(format string, values ...interface{}) stateFn {
+ lx.items <- item{
+ itemError,
+ fmt.Sprintf(format, values...),
+ lx.line,
+ }
+ return nil
+}
+
+// lexTop consumes elements at the top level of TOML data.
+func lexTop(lx *lexer) stateFn {
+ r := lx.next()
+ if isWhitespace(r) || isNL(r) {
+ return lexSkip(lx, lexTop)
+ }
+
+ switch r {
+ case commentStart:
+ lx.push(lexTop)
+ return lexCommentStart
+ case tableStart:
+ return lexTableStart
+ case eof:
+ if lx.pos > lx.start {
+ return lx.errorf("Unexpected EOF.")
+ }
+ lx.emit(itemEOF)
+ return nil
+ }
+
+ // At this point, the only valid item can be a key, so we back up
+ // and let the key lexer do the rest.
+ lx.backup()
+ lx.push(lexTopEnd)
+ return lexKeyStart
+}
+
+// lexTopEnd is entered whenever a top-level item has been consumed. (A value
+// or a table.) It must see only whitespace, and will turn back to lexTop
+// upon a new line. If it sees EOF, it will quit the lexer successfully.
+func lexTopEnd(lx *lexer) stateFn {
+ r := lx.next()
+ switch {
+ case r == commentStart:
+ // a comment will read to a new line for us.
+ lx.push(lexTop)
+ return lexCommentStart
+ case isWhitespace(r):
+ return lexTopEnd
+ case isNL(r):
+ lx.ignore()
+ return lexTop
+ case r == eof:
+ lx.ignore()
+ return lexTop
+ }
+ return lx.errorf("Expected a top-level item to end with a new line, "+
+ "comment or EOF, but got %q instead.", r)
+}
+
+// lexTable lexes the beginning of a table. Namely, it makes sure that
+// it starts with a character other than '.' and ']'.
+// It assumes that '[' has already been consumed.
+// It also handles the case that this is an item in an array of tables.
+// e.g., '[[name]]'.
+func lexTableStart(lx *lexer) stateFn {
+ if lx.peek() == arrayTableStart {
+ lx.next()
+ lx.emit(itemArrayTableStart)
+ lx.push(lexArrayTableEnd)
+ } else {
+ lx.emit(itemTableStart)
+ lx.push(lexTableEnd)
+ }
+ return lexTableNameStart
+}
+
+func lexTableEnd(lx *lexer) stateFn {
+ lx.emit(itemTableEnd)
+ return lexTopEnd
+}
+
+func lexArrayTableEnd(lx *lexer) stateFn {
+ if r := lx.next(); r != arrayTableEnd {
+ return lx.errorf("Expected end of table array name delimiter %q, "+
+ "but got %q instead.", arrayTableEnd, r)
+ }
+ lx.emit(itemArrayTableEnd)
+ return lexTopEnd
+}
+
+func lexTableNameStart(lx *lexer) stateFn {
+ switch r := lx.peek(); {
+ case r == tableEnd || r == eof:
+ return lx.errorf("Unexpected end of table name. (Table names cannot " +
+ "be empty.)")
+ case r == tableSep:
+ return lx.errorf("Unexpected table separator. (Table names cannot " +
+ "be empty.)")
+ case r == stringStart || r == rawStringStart:
+ lx.ignore()
+ lx.push(lexTableNameEnd)
+ return lexValue // reuse string lexing
+ default:
+ return lexBareTableName
+ }
+}
+
+// lexTableName lexes the name of a table. It assumes that at least one
+// valid character for the table has already been read.
+func lexBareTableName(lx *lexer) stateFn {
+ switch r := lx.next(); {
+ case isBareKeyChar(r):
+ return lexBareTableName
+ case r == tableSep || r == tableEnd:
+ lx.backup()
+ lx.emitTrim(itemText)
+ return lexTableNameEnd
+ default:
+ return lx.errorf("Bare keys cannot contain %q.", r)
+ }
+}
+
+// lexTableNameEnd reads the end of a piece of a table name, optionally
+// consuming whitespace.
+func lexTableNameEnd(lx *lexer) stateFn {
+ switch r := lx.next(); {
+ case isWhitespace(r):
+ return lexTableNameEnd
+ case r == tableSep:
+ lx.ignore()
+ return lexTableNameStart
+ case r == tableEnd:
+ return lx.pop()
+ default:
+ return lx.errorf("Expected '.' or ']' to end table name, but got %q "+
+ "instead.", r)
+ }
+}
+
+// lexKeyStart consumes a key name up until the first non-whitespace character.
+// lexKeyStart will ignore whitespace.
+func lexKeyStart(lx *lexer) stateFn {
+ r := lx.peek()
+ switch {
+ case r == keySep:
+ return lx.errorf("Unexpected key separator %q.", keySep)
+ case isWhitespace(r) || isNL(r):
+ lx.next()
+ return lexSkip(lx, lexKeyStart)
+ case r == stringStart || r == rawStringStart:
+ lx.ignore()
+ lx.emit(itemKeyStart)
+ lx.push(lexKeyEnd)
+ return lexValue // reuse string lexing
+ default:
+ lx.ignore()
+ lx.emit(itemKeyStart)
+ return lexBareKey
+ }
+}
+
+// lexBareKey consumes the text of a bare key. Assumes that the first character
+// (which is not whitespace) has not yet been consumed.
+func lexBareKey(lx *lexer) stateFn {
+ switch r := lx.next(); {
+ case isBareKeyChar(r):
+ return lexBareKey
+ case isWhitespace(r):
+ lx.emitTrim(itemText)
+ return lexKeyEnd
+ case r == keySep:
+ lx.backup()
+ lx.emitTrim(itemText)
+ return lexKeyEnd
+ default:
+ return lx.errorf("Bare keys cannot contain %q.", r)
+ }
+}
+
+// lexKeyEnd consumes the end of a key and trims whitespace (up to the key
+// separator).
+func lexKeyEnd(lx *lexer) stateFn {
+ switch r := lx.next(); {
+ case r == keySep:
+ return lexSkip(lx, lexValue)
+ case isWhitespace(r):
+ return lexSkip(lx, lexKeyEnd)
+ default:
+ return lx.errorf("Expected key separator %q, but got %q instead.",
+ keySep, r)
+ }
+}
+
+// lexValue starts the consumption of a value anywhere a value is expected.
+// lexValue will ignore whitespace.
+// After a value is lexed, the last state on the next is popped and returned.
+func lexValue(lx *lexer) stateFn {
+ // We allow whitespace to precede a value, but NOT new lines.
+ // In array syntax, the array states are responsible for ignoring new
+ // lines.
+ r := lx.next()
+ if isWhitespace(r) {
+ return lexSkip(lx, lexValue)
+ }
+
+ switch {
+ case r == arrayStart:
+ lx.ignore()
+ lx.emit(itemArray)
+ return lexArrayValue
+ case r == stringStart:
+ if lx.accept(stringStart) {
+ if lx.accept(stringStart) {
+ lx.ignore() // Ignore """
+ return lexMultilineString
+ }
+ lx.backup()
+ }
+ lx.ignore() // ignore the '"'
+ return lexString
+ case r == rawStringStart:
+ if lx.accept(rawStringStart) {
+ if lx.accept(rawStringStart) {
+ lx.ignore() // Ignore """
+ return lexMultilineRawString
+ }
+ lx.backup()
+ }
+ lx.ignore() // ignore the "'"
+ return lexRawString
+ case r == 't':
+ return lexTrue
+ case r == 'f':
+ return lexFalse
+ case r == '-':
+ return lexNumberStart
+ case isDigit(r):
+ lx.backup() // avoid an extra state and use the same as above
+ return lexNumberOrDateStart
+ case r == '.': // special error case, be kind to users
+ return lx.errorf("Floats must start with a digit, not '.'.")
+ }
+ return lx.errorf("Expected value but found %q instead.", r)
+}
+
+// lexArrayValue consumes one value in an array. It assumes that '[' or ','
+// have already been consumed. All whitespace and new lines are ignored.
+func lexArrayValue(lx *lexer) stateFn {
+ r := lx.next()
+ switch {
+ case isWhitespace(r) || isNL(r):
+ return lexSkip(lx, lexArrayValue)
+ case r == commentStart:
+ lx.push(lexArrayValue)
+ return lexCommentStart
+ case r == arrayValTerm:
+ return lx.errorf("Unexpected array value terminator %q.",
+ arrayValTerm)
+ case r == arrayEnd:
+ return lexArrayEnd
+ }
+
+ lx.backup()
+ lx.push(lexArrayValueEnd)
+ return lexValue
+}
+
+// lexArrayValueEnd consumes the cruft between values of an array. Namely,
+// it ignores whitespace and expects either a ',' or a ']'.
+func lexArrayValueEnd(lx *lexer) stateFn {
+ r := lx.next()
+ switch {
+ case isWhitespace(r) || isNL(r):
+ return lexSkip(lx, lexArrayValueEnd)
+ case r == commentStart:
+ lx.push(lexArrayValueEnd)
+ return lexCommentStart
+ case r == arrayValTerm:
+ lx.ignore()
+ return lexArrayValue // move on to the next value
+ case r == arrayEnd:
+ return lexArrayEnd
+ }
+ return lx.errorf("Expected an array value terminator %q or an array "+
+ "terminator %q, but got %q instead.", arrayValTerm, arrayEnd, r)
+}
+
+// lexArrayEnd finishes the lexing of an array. It assumes that a ']' has
+// just been consumed.
+func lexArrayEnd(lx *lexer) stateFn {
+ lx.ignore()
+ lx.emit(itemArrayEnd)
+ return lx.pop()
+}
+
+// lexString consumes the inner contents of a string. It assumes that the
+// beginning '"' has already been consumed and ignored.
+func lexString(lx *lexer) stateFn {
+ r := lx.next()
+ switch {
+ case isNL(r):
+ return lx.errorf("Strings cannot contain new lines.")
+ case r == '\\':
+ lx.push(lexString)
+ return lexStringEscape
+ case r == stringEnd:
+ lx.backup()
+ lx.emit(itemString)
+ lx.next()
+ lx.ignore()
+ return lx.pop()
+ }
+ return lexString
+}
+
+// lexMultilineString consumes the inner contents of a string. It assumes that
+// the beginning '"""' has already been consumed and ignored.
+func lexMultilineString(lx *lexer) stateFn {
+ r := lx.next()
+ switch {
+ case r == '\\':
+ return lexMultilineStringEscape
+ case r == stringEnd:
+ if lx.accept(stringEnd) {
+ if lx.accept(stringEnd) {
+ lx.backup()
+ lx.backup()
+ lx.backup()
+ lx.emit(itemMultilineString)
+ lx.next()
+ lx.next()
+ lx.next()
+ lx.ignore()
+ return lx.pop()
+ }
+ lx.backup()
+ }
+ }
+ return lexMultilineString
+}
+
+// lexRawString consumes a raw string. Nothing can be escaped in such a string.
+// It assumes that the beginning "'" has already been consumed and ignored.
+func lexRawString(lx *lexer) stateFn {
+ r := lx.next()
+ switch {
+ case isNL(r):
+ return lx.errorf("Strings cannot contain new lines.")
+ case r == rawStringEnd:
+ lx.backup()
+ lx.emit(itemRawString)
+ lx.next()
+ lx.ignore()
+ return lx.pop()
+ }
+ return lexRawString
+}
+
+// lexMultilineRawString consumes a raw string. Nothing can be escaped in such
+// a string. It assumes that the beginning "'" has already been consumed and
+// ignored.
+func lexMultilineRawString(lx *lexer) stateFn {
+ r := lx.next()
+ switch {
+ case r == rawStringEnd:
+ if lx.accept(rawStringEnd) {
+ if lx.accept(rawStringEnd) {
+ lx.backup()
+ lx.backup()
+ lx.backup()
+ lx.emit(itemRawMultilineString)
+ lx.next()
+ lx.next()
+ lx.next()
+ lx.ignore()
+ return lx.pop()
+ }
+ lx.backup()
+ }
+ }
+ return lexMultilineRawString
+}
+
+// lexMultilineStringEscape consumes an escaped character. It assumes that the
+// preceding '\\' has already been consumed.
+func lexMultilineStringEscape(lx *lexer) stateFn {
+ // Handle the special case first:
+ if isNL(lx.next()) {
+ return lexMultilineString
+ } else {
+ lx.backup()
+ lx.push(lexMultilineString)
+ return lexStringEscape(lx)
+ }
+}
+
+func lexStringEscape(lx *lexer) stateFn {
+ r := lx.next()
+ switch r {
+ case 'b':
+ fallthrough
+ case 't':
+ fallthrough
+ case 'n':
+ fallthrough
+ case 'f':
+ fallthrough
+ case 'r':
+ fallthrough
+ case '"':
+ fallthrough
+ case '\\':
+ return lx.pop()
+ case 'u':
+ return lexShortUnicodeEscape
+ case 'U':
+ return lexLongUnicodeEscape
+ }
+ return lx.errorf("Invalid escape character %q. Only the following "+
+ "escape characters are allowed: "+
+ "\\b, \\t, \\n, \\f, \\r, \\\", \\/, \\\\, "+
+ "\\uXXXX and \\UXXXXXXXX.", r)
+}
+
+func lexShortUnicodeEscape(lx *lexer) stateFn {
+ var r rune
+ for i := 0; i < 4; i++ {
+ r = lx.next()
+ if !isHexadecimal(r) {
+ return lx.errorf("Expected four hexadecimal digits after '\\u', "+
+ "but got '%s' instead.", lx.current())
+ }
+ }
+ return lx.pop()
+}
+
+func lexLongUnicodeEscape(lx *lexer) stateFn {
+ var r rune
+ for i := 0; i < 8; i++ {
+ r = lx.next()
+ if !isHexadecimal(r) {
+ return lx.errorf("Expected eight hexadecimal digits after '\\U', "+
+ "but got '%s' instead.", lx.current())
+ }
+ }
+ return lx.pop()
+}
+
+// lexNumberOrDateStart consumes either a (positive) integer, float or
+// datetime. It assumes that NO negative sign has been consumed.
+func lexNumberOrDateStart(lx *lexer) stateFn {
+ r := lx.next()
+ if !isDigit(r) {
+ if r == '.' {
+ return lx.errorf("Floats must start with a digit, not '.'.")
+ } else {
+ return lx.errorf("Expected a digit but got %q.", r)
+ }
+ }
+ return lexNumberOrDate
+}
+
+// lexNumberOrDate consumes either a (positive) integer, float or datetime.
+func lexNumberOrDate(lx *lexer) stateFn {
+ r := lx.next()
+ switch {
+ case r == '-':
+ if lx.pos-lx.start != 5 {
+ return lx.errorf("All ISO8601 dates must be in full Zulu form.")
+ }
+ return lexDateAfterYear
+ case isDigit(r):
+ return lexNumberOrDate
+ case r == '.':
+ return lexFloatStart
+ }
+
+ lx.backup()
+ lx.emit(itemInteger)
+ return lx.pop()
+}
+
+// lexDateAfterYear consumes a full Zulu Datetime in ISO8601 format.
+// It assumes that "YYYY-" has already been consumed.
+func lexDateAfterYear(lx *lexer) stateFn {
+ formats := []rune{
+ // digits are '0'.
+ // everything else is direct equality.
+ '0', '0', '-', '0', '0',
+ 'T',
+ '0', '0', ':', '0', '0', ':', '0', '0',
+ 'Z',
+ }
+ for _, f := range formats {
+ r := lx.next()
+ if f == '0' {
+ if !isDigit(r) {
+ return lx.errorf("Expected digit in ISO8601 datetime, "+
+ "but found %q instead.", r)
+ }
+ } else if f != r {
+ return lx.errorf("Expected %q in ISO8601 datetime, "+
+ "but found %q instead.", f, r)
+ }
+ }
+ lx.emit(itemDatetime)
+ return lx.pop()
+}
+
+// lexNumberStart consumes either an integer or a float. It assumes that
+// a negative sign has already been read, but that *no* digits have been
+// consumed. lexNumberStart will move to the appropriate integer or float
+// states.
+func lexNumberStart(lx *lexer) stateFn {
+ // we MUST see a digit. Even floats have to start with a digit.
+ r := lx.next()
+ if !isDigit(r) {
+ if r == '.' {
+ return lx.errorf("Floats must start with a digit, not '.'.")
+ } else {
+ return lx.errorf("Expected a digit but got %q.", r)
+ }
+ }
+ return lexNumber
+}
+
+// lexNumber consumes an integer or a float after seeing the first digit.
+func lexNumber(lx *lexer) stateFn {
+ r := lx.next()
+ switch {
+ case isDigit(r):
+ return lexNumber
+ case r == '.':
+ return lexFloatStart
+ }
+
+ lx.backup()
+ lx.emit(itemInteger)
+ return lx.pop()
+}
+
+// lexFloatStart starts the consumption of digits of a float after a '.'.
+// Namely, at least one digit is required.
+func lexFloatStart(lx *lexer) stateFn {
+ r := lx.next()
+ if !isDigit(r) {
+ return lx.errorf("Floats must have a digit after the '.', but got "+
+ "%q instead.", r)
+ }
+ return lexFloat
+}
+
+// lexFloat consumes the digits of a float after a '.'.
+// Assumes that one digit has been consumed after a '.' already.
+func lexFloat(lx *lexer) stateFn {
+ r := lx.next()
+ if isDigit(r) {
+ return lexFloat
+ }
+
+ lx.backup()
+ lx.emit(itemFloat)
+ return lx.pop()
+}
+
+// lexConst consumes the s[1:] in s. It assumes that s[0] has already been
+// consumed.
+func lexConst(lx *lexer, s string) stateFn {
+ for i := range s[1:] {
+ if r := lx.next(); r != rune(s[i+1]) {
+ return lx.errorf("Expected %q, but found %q instead.", s[:i+1],
+ s[:i]+string(r))
+ }
+ }
+ return nil
+}
+
+// lexTrue consumes the "rue" in "true". It assumes that 't' has already
+// been consumed.
+func lexTrue(lx *lexer) stateFn {
+ if fn := lexConst(lx, "true"); fn != nil {
+ return fn
+ }
+ lx.emit(itemBool)
+ return lx.pop()
+}
+
+// lexFalse consumes the "alse" in "false". It assumes that 'f' has already
+// been consumed.
+func lexFalse(lx *lexer) stateFn {
+ if fn := lexConst(lx, "false"); fn != nil {
+ return fn
+ }
+ lx.emit(itemBool)
+ return lx.pop()
+}
+
+// lexCommentStart begins the lexing of a comment. It will emit
+// itemCommentStart and consume no characters, passing control to lexComment.
+func lexCommentStart(lx *lexer) stateFn {
+ lx.ignore()
+ lx.emit(itemCommentStart)
+ return lexComment
+}
+
+// lexComment lexes an entire comment. It assumes that '#' has been consumed.
+// It will consume *up to* the first new line character, and pass control
+// back to the last state on the stack.
+func lexComment(lx *lexer) stateFn {
+ r := lx.peek()
+ if isNL(r) || r == eof {
+ lx.emit(itemText)
+ return lx.pop()
+ }
+ lx.next()
+ return lexComment
+}
+
+// lexSkip ignores all slurped input and moves on to the next state.
+func lexSkip(lx *lexer, nextState stateFn) stateFn {
+ return func(lx *lexer) stateFn {
+ lx.ignore()
+ return nextState
+ }
+}
+
+// isWhitespace returns true if `r` is a whitespace character according
+// to the spec.
+func isWhitespace(r rune) bool {
+ return r == '\t' || r == ' '
+}
+
+func isNL(r rune) bool {
+ return r == '\n' || r == '\r'
+}
+
+func isDigit(r rune) bool {
+ return r >= '0' && r <= '9'
+}
+
+func isHexadecimal(r rune) bool {
+ return (r >= '0' && r <= '9') ||
+ (r >= 'a' && r <= 'f') ||
+ (r >= 'A' && r <= 'F')
+}
+
+func isBareKeyChar(r rune) bool {
+ return (r >= 'A' && r <= 'Z') ||
+ (r >= 'a' && r <= 'z') ||
+ (r >= '0' && r <= '9') ||
+ r == '_' ||
+ r == '-'
+}
+
+func (itype itemType) String() string {
+ switch itype {
+ case itemError:
+ return "Error"
+ case itemNIL:
+ return "NIL"
+ case itemEOF:
+ return "EOF"
+ case itemText:
+ return "Text"
+ case itemString:
+ return "String"
+ case itemRawString:
+ return "String"
+ case itemMultilineString:
+ return "String"
+ case itemRawMultilineString:
+ return "String"
+ case itemBool:
+ return "Bool"
+ case itemInteger:
+ return "Integer"
+ case itemFloat:
+ return "Float"
+ case itemDatetime:
+ return "DateTime"
+ case itemTableStart:
+ return "TableStart"
+ case itemTableEnd:
+ return "TableEnd"
+ case itemKeyStart:
+ return "KeyStart"
+ case itemArray:
+ return "Array"
+ case itemArrayEnd:
+ return "ArrayEnd"
+ case itemCommentStart:
+ return "CommentStart"
+ }
+ panic(fmt.Sprintf("BUG: Unknown type '%d'.", int(itype)))
+}
+
+func (item item) String() string {
+ return fmt.Sprintf("(%s, %s)", item.typ.String(), item.val)
+}
diff --git a/vendor/github.com/BurntSushi/toml/parse.go b/vendor/github.com/BurntSushi/toml/parse.go
new file mode 100644
index 000000000..6a82e84f6
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/parse.go
@@ -0,0 +1,493 @@
+package toml
+
+import (
+ "fmt"
+ "log"
+ "strconv"
+ "strings"
+ "time"
+ "unicode"
+ "unicode/utf8"
+)
+
+type parser struct {
+ mapping map[string]interface{}
+ types map[string]tomlType
+ lx *lexer
+
+ // A list of keys in the order that they appear in the TOML data.
+ ordered []Key
+
+ // the full key for the current hash in scope
+ context Key
+
+ // the base key name for everything except hashes
+ currentKey string
+
+ // rough approximation of line number
+ approxLine int
+
+ // A map of 'key.group.names' to whether they were created implicitly.
+ implicits map[string]bool
+}
+
+type parseError string
+
+func (pe parseError) Error() string {
+ return string(pe)
+}
+
+func parse(data string) (p *parser, err error) {
+ defer func() {
+ if r := recover(); r != nil {
+ var ok bool
+ if err, ok = r.(parseError); ok {
+ return
+ }
+ panic(r)
+ }
+ }()
+
+ p = &parser{
+ mapping: make(map[string]interface{}),
+ types: make(map[string]tomlType),
+ lx: lex(data),
+ ordered: make([]Key, 0),
+ implicits: make(map[string]bool),
+ }
+ for {
+ item := p.next()
+ if item.typ == itemEOF {
+ break
+ }
+ p.topLevel(item)
+ }
+
+ return p, nil
+}
+
+func (p *parser) panicf(format string, v ...interface{}) {
+ msg := fmt.Sprintf("Near line %d (last key parsed '%s'): %s",
+ p.approxLine, p.current(), fmt.Sprintf(format, v...))
+ panic(parseError(msg))
+}
+
+func (p *parser) next() item {
+ it := p.lx.nextItem()
+ if it.typ == itemError {
+ p.panicf("%s", it.val)
+ }
+ return it
+}
+
+func (p *parser) bug(format string, v ...interface{}) {
+ log.Panicf("BUG: %s\n\n", fmt.Sprintf(format, v...))
+}
+
+func (p *parser) expect(typ itemType) item {
+ it := p.next()
+ p.assertEqual(typ, it.typ)
+ return it
+}
+
+func (p *parser) assertEqual(expected, got itemType) {
+ if expected != got {
+ p.bug("Expected '%s' but got '%s'.", expected, got)
+ }
+}
+
+func (p *parser) topLevel(item item) {
+ switch item.typ {
+ case itemCommentStart:
+ p.approxLine = item.line
+ p.expect(itemText)
+ case itemTableStart:
+ kg := p.next()
+ p.approxLine = kg.line
+
+ var key Key
+ for ; kg.typ != itemTableEnd && kg.typ != itemEOF; kg = p.next() {
+ key = append(key, p.keyString(kg))
+ }
+ p.assertEqual(itemTableEnd, kg.typ)
+
+ p.establishContext(key, false)
+ p.setType("", tomlHash)
+ p.ordered = append(p.ordered, key)
+ case itemArrayTableStart:
+ kg := p.next()
+ p.approxLine = kg.line
+
+ var key Key
+ for ; kg.typ != itemArrayTableEnd && kg.typ != itemEOF; kg = p.next() {
+ key = append(key, p.keyString(kg))
+ }
+ p.assertEqual(itemArrayTableEnd, kg.typ)
+
+ p.establishContext(key, true)
+ p.setType("", tomlArrayHash)
+ p.ordered = append(p.ordered, key)
+ case itemKeyStart:
+ kname := p.next()
+ p.approxLine = kname.line
+ p.currentKey = p.keyString(kname)
+
+ val, typ := p.value(p.next())
+ p.setValue(p.currentKey, val)
+ p.setType(p.currentKey, typ)
+ p.ordered = append(p.ordered, p.context.add(p.currentKey))
+ p.currentKey = ""
+ default:
+ p.bug("Unexpected type at top level: %s", item.typ)
+ }
+}
+
+// Gets a string for a key (or part of a key in a table name).
+func (p *parser) keyString(it item) string {
+ switch it.typ {
+ case itemText:
+ return it.val
+ case itemString, itemMultilineString,
+ itemRawString, itemRawMultilineString:
+ s, _ := p.value(it)
+ return s.(string)
+ default:
+ p.bug("Unexpected key type: %s", it.typ)
+ panic("unreachable")
+ }
+}
+
+// value translates an expected value from the lexer into a Go value wrapped
+// as an empty interface.
+func (p *parser) value(it item) (interface{}, tomlType) {
+ switch it.typ {
+ case itemString:
+ return p.replaceEscapes(it.val), p.typeOfPrimitive(it)
+ case itemMultilineString:
+ trimmed := stripFirstNewline(stripEscapedWhitespace(it.val))
+ return p.replaceEscapes(trimmed), p.typeOfPrimitive(it)
+ case itemRawString:
+ return it.val, p.typeOfPrimitive(it)
+ case itemRawMultilineString:
+ return stripFirstNewline(it.val), p.typeOfPrimitive(it)
+ case itemBool:
+ switch it.val {
+ case "true":
+ return true, p.typeOfPrimitive(it)
+ case "false":
+ return false, p.typeOfPrimitive(it)
+ }
+ p.bug("Expected boolean value, but got '%s'.", it.val)
+ case itemInteger:
+ num, err := strconv.ParseInt(it.val, 10, 64)
+ if err != nil {
+ // See comment below for floats describing why we make a
+ // distinction between a bug and a user error.
+ if e, ok := err.(*strconv.NumError); ok &&
+ e.Err == strconv.ErrRange {
+
+ p.panicf("Integer '%s' is out of the range of 64-bit "+
+ "signed integers.", it.val)
+ } else {
+ p.bug("Expected integer value, but got '%s'.", it.val)
+ }
+ }
+ return num, p.typeOfPrimitive(it)
+ case itemFloat:
+ num, err := strconv.ParseFloat(it.val, 64)
+ if err != nil {
+ // Distinguish float values. Normally, it'd be a bug if the lexer
+ // provides an invalid float, but it's possible that the float is
+ // out of range of valid values (which the lexer cannot determine).
+ // So mark the former as a bug but the latter as a legitimate user
+ // error.
+ //
+ // This is also true for integers.
+ if e, ok := err.(*strconv.NumError); ok &&
+ e.Err == strconv.ErrRange {
+
+ p.panicf("Float '%s' is out of the range of 64-bit "+
+ "IEEE-754 floating-point numbers.", it.val)
+ } else {
+ p.bug("Expected float value, but got '%s'.", it.val)
+ }
+ }
+ return num, p.typeOfPrimitive(it)
+ case itemDatetime:
+ t, err := time.Parse("2006-01-02T15:04:05Z", it.val)
+ if err != nil {
+ p.panicf("Invalid RFC3339 Zulu DateTime: '%s'.", it.val)
+ }
+ return t, p.typeOfPrimitive(it)
+ case itemArray:
+ array := make([]interface{}, 0)
+ types := make([]tomlType, 0)
+
+ for it = p.next(); it.typ != itemArrayEnd; it = p.next() {
+ if it.typ == itemCommentStart {
+ p.expect(itemText)
+ continue
+ }
+
+ val, typ := p.value(it)
+ array = append(array, val)
+ types = append(types, typ)
+ }
+ return array, p.typeOfArray(types)
+ }
+ p.bug("Unexpected value type: %s", it.typ)
+ panic("unreachable")
+}
+
+// establishContext sets the current context of the parser,
+// where the context is either a hash or an array of hashes. Which one is
+// set depends on the value of the `array` parameter.
+//
+// Establishing the context also makes sure that the key isn't a duplicate, and
+// will create implicit hashes automatically.
+func (p *parser) establishContext(key Key, array bool) {
+ var ok bool
+
+ // Always start at the top level and drill down for our context.
+ hashContext := p.mapping
+ keyContext := make(Key, 0)
+
+ // We only need implicit hashes for key[0:-1]
+ for _, k := range key[0 : len(key)-1] {
+ _, ok = hashContext[k]
+ keyContext = append(keyContext, k)
+
+ // No key? Make an implicit hash and move on.
+ if !ok {
+ p.addImplicit(keyContext)
+ hashContext[k] = make(map[string]interface{})
+ }
+
+ // If the hash context is actually an array of tables, then set
+ // the hash context to the last element in that array.
+ //
+ // Otherwise, it better be a table, since this MUST be a key group (by
+ // virtue of it not being the last element in a key).
+ switch t := hashContext[k].(type) {
+ case []map[string]interface{}:
+ hashContext = t[len(t)-1]
+ case map[string]interface{}:
+ hashContext = t
+ default:
+ p.panicf("Key '%s' was already created as a hash.", keyContext)
+ }
+ }
+
+ p.context = keyContext
+ if array {
+ // If this is the first element for this array, then allocate a new
+ // list of tables for it.
+ k := key[len(key)-1]
+ if _, ok := hashContext[k]; !ok {
+ hashContext[k] = make([]map[string]interface{}, 0, 5)
+ }
+
+ // Add a new table. But make sure the key hasn't already been used
+ // for something else.
+ if hash, ok := hashContext[k].([]map[string]interface{}); ok {
+ hashContext[k] = append(hash, make(map[string]interface{}))
+ } else {
+ p.panicf("Key '%s' was already created and cannot be used as "+
+ "an array.", keyContext)
+ }
+ } else {
+ p.setValue(key[len(key)-1], make(map[string]interface{}))
+ }
+ p.context = append(p.context, key[len(key)-1])
+}
+
+// setValue sets the given key to the given value in the current context.
+// It will make sure that the key hasn't already been defined, account for
+// implicit key groups.
+func (p *parser) setValue(key string, value interface{}) {
+ var tmpHash interface{}
+ var ok bool
+
+ hash := p.mapping
+ keyContext := make(Key, 0)
+ for _, k := range p.context {
+ keyContext = append(keyContext, k)
+ if tmpHash, ok = hash[k]; !ok {
+ p.bug("Context for key '%s' has not been established.", keyContext)
+ }
+ switch t := tmpHash.(type) {
+ case []map[string]interface{}:
+ // The context is a table of hashes. Pick the most recent table
+ // defined as the current hash.
+ hash = t[len(t)-1]
+ case map[string]interface{}:
+ hash = t
+ default:
+ p.bug("Expected hash to have type 'map[string]interface{}', but "+
+ "it has '%T' instead.", tmpHash)
+ }
+ }
+ keyContext = append(keyContext, key)
+
+ if _, ok := hash[key]; ok {
+ // Typically, if the given key has already been set, then we have
+ // to raise an error since duplicate keys are disallowed. However,
+ // it's possible that a key was previously defined implicitly. In this
+ // case, it is allowed to be redefined concretely. (See the
+ // `tests/valid/implicit-and-explicit-after.toml` test in `toml-test`.)
+ //
+ // But we have to make sure to stop marking it as an implicit. (So that
+ // another redefinition provokes an error.)
+ //
+ // Note that since it has already been defined (as a hash), we don't
+ // want to overwrite it. So our business is done.
+ if p.isImplicit(keyContext) {
+ p.removeImplicit(keyContext)
+ return
+ }
+
+ // Otherwise, we have a concrete key trying to override a previous
+ // key, which is *always* wrong.
+ p.panicf("Key '%s' has already been defined.", keyContext)
+ }
+ hash[key] = value
+}
+
+// setType sets the type of a particular value at a given key.
+// It should be called immediately AFTER setValue.
+//
+// Note that if `key` is empty, then the type given will be applied to the
+// current context (which is either a table or an array of tables).
+func (p *parser) setType(key string, typ tomlType) {
+ keyContext := make(Key, 0, len(p.context)+1)
+ for _, k := range p.context {
+ keyContext = append(keyContext, k)
+ }
+ if len(key) > 0 { // allow type setting for hashes
+ keyContext = append(keyContext, key)
+ }
+ p.types[keyContext.String()] = typ
+}
+
+// addImplicit sets the given Key as having been created implicitly.
+func (p *parser) addImplicit(key Key) {
+ p.implicits[key.String()] = true
+}
+
+// removeImplicit stops tagging the given key as having been implicitly
+// created.
+func (p *parser) removeImplicit(key Key) {
+ p.implicits[key.String()] = false
+}
+
+// isImplicit returns true if the key group pointed to by the key was created
+// implicitly.
+func (p *parser) isImplicit(key Key) bool {
+ return p.implicits[key.String()]
+}
+
+// current returns the full key name of the current context.
+func (p *parser) current() string {
+ if len(p.currentKey) == 0 {
+ return p.context.String()
+ }
+ if len(p.context) == 0 {
+ return p.currentKey
+ }
+ return fmt.Sprintf("%s.%s", p.context, p.currentKey)
+}
+
+func stripFirstNewline(s string) string {
+ if len(s) == 0 || s[0] != '\n' {
+ return s
+ }
+ return s[1:]
+}
+
+func stripEscapedWhitespace(s string) string {
+ esc := strings.Split(s, "\\\n")
+ if len(esc) > 1 {
+ for i := 1; i < len(esc); i++ {
+ esc[i] = strings.TrimLeftFunc(esc[i], unicode.IsSpace)
+ }
+ }
+ return strings.Join(esc, "")
+}
+
+func (p *parser) replaceEscapes(str string) string {
+ var replaced []rune
+ s := []byte(str)
+ r := 0
+ for r < len(s) {
+ if s[r] != '\\' {
+ c, size := utf8.DecodeRune(s[r:])
+ r += size
+ replaced = append(replaced, c)
+ continue
+ }
+ r += 1
+ if r >= len(s) {
+ p.bug("Escape sequence at end of string.")
+ return ""
+ }
+ switch s[r] {
+ default:
+ p.bug("Expected valid escape code after \\, but got %q.", s[r])
+ return ""
+ case 'b':
+ replaced = append(replaced, rune(0x0008))
+ r += 1
+ case 't':
+ replaced = append(replaced, rune(0x0009))
+ r += 1
+ case 'n':
+ replaced = append(replaced, rune(0x000A))
+ r += 1
+ case 'f':
+ replaced = append(replaced, rune(0x000C))
+ r += 1
+ case 'r':
+ replaced = append(replaced, rune(0x000D))
+ r += 1
+ case '"':
+ replaced = append(replaced, rune(0x0022))
+ r += 1
+ case '\\':
+ replaced = append(replaced, rune(0x005C))
+ r += 1
+ case 'u':
+ // At this point, we know we have a Unicode escape of the form
+ // `uXXXX` at [r, r+5). (Because the lexer guarantees this
+ // for us.)
+ escaped := p.asciiEscapeToUnicode(s[r+1 : r+5])
+ replaced = append(replaced, escaped)
+ r += 5
+ case 'U':
+ // At this point, we know we have a Unicode escape of the form
+ // `uXXXX` at [r, r+9). (Because the lexer guarantees this
+ // for us.)
+ escaped := p.asciiEscapeToUnicode(s[r+1 : r+9])
+ replaced = append(replaced, escaped)
+ r += 9
+ }
+ }
+ return string(replaced)
+}
+
+func (p *parser) asciiEscapeToUnicode(bs []byte) rune {
+ s := string(bs)
+ hex, err := strconv.ParseUint(strings.ToLower(s), 16, 32)
+ if err != nil {
+ p.bug("Could not parse '%s' as a hexadecimal number, but the "+
+ "lexer claims it's OK: %s", s, err)
+ }
+ if !utf8.ValidRune(rune(hex)) {
+ p.panicf("Escaped character '\\u%s' is not valid UTF-8.", s)
+ }
+ return rune(hex)
+}
+
+func isStringType(ty itemType) bool {
+ return ty == itemString || ty == itemMultilineString ||
+ ty == itemRawString || ty == itemRawMultilineString
+}
diff --git a/vendor/github.com/BurntSushi/toml/type_check.go b/vendor/github.com/BurntSushi/toml/type_check.go
new file mode 100644
index 000000000..c73f8afc1
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/type_check.go
@@ -0,0 +1,91 @@
+package toml
+
+// tomlType represents any Go type that corresponds to a TOML type.
+// While the first draft of the TOML spec has a simplistic type system that
+// probably doesn't need this level of sophistication, we seem to be militating
+// toward adding real composite types.
+type tomlType interface {
+ typeString() string
+}
+
+// typeEqual accepts any two types and returns true if they are equal.
+func typeEqual(t1, t2 tomlType) bool {
+ if t1 == nil || t2 == nil {
+ return false
+ }
+ return t1.typeString() == t2.typeString()
+}
+
+func typeIsHash(t tomlType) bool {
+ return typeEqual(t, tomlHash) || typeEqual(t, tomlArrayHash)
+}
+
+type tomlBaseType string
+
+func (btype tomlBaseType) typeString() string {
+ return string(btype)
+}
+
+func (btype tomlBaseType) String() string {
+ return btype.typeString()
+}
+
+var (
+ tomlInteger tomlBaseType = "Integer"
+ tomlFloat tomlBaseType = "Float"
+ tomlDatetime tomlBaseType = "Datetime"
+ tomlString tomlBaseType = "String"
+ tomlBool tomlBaseType = "Bool"
+ tomlArray tomlBaseType = "Array"
+ tomlHash tomlBaseType = "Hash"
+ tomlArrayHash tomlBaseType = "ArrayHash"
+)
+
+// typeOfPrimitive returns a tomlType of any primitive value in TOML.
+// Primitive values are: Integer, Float, Datetime, String and Bool.
+//
+// Passing a lexer item other than the following will cause a BUG message
+// to occur: itemString, itemBool, itemInteger, itemFloat, itemDatetime.
+func (p *parser) typeOfPrimitive(lexItem item) tomlType {
+ switch lexItem.typ {
+ case itemInteger:
+ return tomlInteger
+ case itemFloat:
+ return tomlFloat
+ case itemDatetime:
+ return tomlDatetime
+ case itemString:
+ return tomlString
+ case itemMultilineString:
+ return tomlString
+ case itemRawString:
+ return tomlString
+ case itemRawMultilineString:
+ return tomlString
+ case itemBool:
+ return tomlBool
+ }
+ p.bug("Cannot infer primitive type of lex item '%s'.", lexItem)
+ panic("unreachable")
+}
+
+// typeOfArray returns a tomlType for an array given a list of types of its
+// values.
+//
+// In the current spec, if an array is homogeneous, then its type is always
+// "Array". If the array is not homogeneous, an error is generated.
+func (p *parser) typeOfArray(types []tomlType) tomlType {
+ // Empty arrays are cool.
+ if len(types) == 0 {
+ return tomlArray
+ }
+
+ theType := types[0]
+ for _, t := range types[1:] {
+ if !typeEqual(theType, t) {
+ p.panicf("Array contains values of type '%s' and '%s', but "+
+ "arrays must be homogeneous.", theType, t)
+ }
+ }
+ return tomlArray
+}
diff --git a/vendor/github.com/BurntSushi/toml/type_fields.go b/vendor/github.com/BurntSushi/toml/type_fields.go
new file mode 100644
index 000000000..6da608af4
--- /dev/null
+++ b/vendor/github.com/BurntSushi/toml/type_fields.go
@@ -0,0 +1,241 @@
+package toml
+
+// Struct field handling is adapted from code in encoding/json:
+//
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the Go distribution.
+
+import (
+ "reflect"
+ "sort"
+ "sync"
+)
+
+// A field represents a single field found in a struct.
+type field struct {
+ name string // the name of the field (`toml` tag included)
+ tag bool // whether field has a `toml` tag
+ index []int // represents the depth of an anonymous field
+ typ reflect.Type // the type of the field
+}
+
+// byName sorts field by name, breaking ties with depth,
+// then breaking ties with "name came from toml tag", then
+// breaking ties with index sequence.
+type byName []field
+
+func (x byName) Len() int { return len(x) }
+
+func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
+
+func (x byName) Less(i, j int) bool {
+ if x[i].name != x[j].name {
+ return x[i].name < x[j].name
+ }
+ if len(x[i].index) != len(x[j].index) {
+ return len(x[i].index) < len(x[j].index)
+ }
+ if x[i].tag != x[j].tag {
+ return x[i].tag
+ }
+ return byIndex(x).Less(i, j)
+}
+
+// byIndex sorts field by index sequence.
+type byIndex []field
+
+func (x byIndex) Len() int { return len(x) }
+
+func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
+
+func (x byIndex) Less(i, j int) bool {
+ for k, xik := range x[i].index {
+ if k >= len(x[j].index) {
+ return false
+ }
+ if xik != x[j].index[k] {
+ return xik < x[j].index[k]
+ }
+ }
+ return len(x[i].index) < len(x[j].index)
+}
+
+// typeFields returns a list of fields that TOML should recognize for the given
+// type. The algorithm is breadth-first search over the set of structs to
+// include - the top struct and then any reachable anonymous structs.
+func typeFields(t reflect.Type) []field {
+ // Anonymous fields to explore at the current level and the next.
+ current := []field{}
+ next := []field{{typ: t}}
+
+ // Count of queued names for current level and the next.
+ count := map[reflect.Type]int{}
+ nextCount := map[reflect.Type]int{}
+
+ // Types already visited at an earlier level.
+ visited := map[reflect.Type]bool{}
+
+ // Fields found.
+ var fields []field
+
+ for len(next) > 0 {
+ current, next = next, current[:0]
+ count, nextCount = nextCount, map[reflect.Type]int{}
+
+ for _, f := range current {
+ if visited[f.typ] {
+ continue
+ }
+ visited[f.typ] = true
+
+ // Scan f.typ for fields to include.
+ for i := 0; i < f.typ.NumField(); i++ {
+ sf := f.typ.Field(i)
+ if sf.PkgPath != "" && !sf.Anonymous { // unexported
+ continue
+ }
+ name, _ := getOptions(sf.Tag.Get("toml"))
+ if name == "-" {
+ continue
+ }
+ index := make([]int, len(f.index)+1)
+ copy(index, f.index)
+ index[len(f.index)] = i
+
+ ft := sf.Type
+ if ft.Name() == "" && ft.Kind() == reflect.Ptr {
+ // Follow pointer.
+ ft = ft.Elem()
+ }
+
+ // Record found field and index sequence.
+ if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
+ tagged := name != ""
+ if name == "" {
+ name = sf.Name
+ }
+ fields = append(fields, field{name, tagged, index, ft})
+ if count[f.typ] > 1 {
+ // If there were multiple instances, add a second,
+ // so that the annihilation code will see a duplicate.
+ // It only cares about the distinction between 1 or 2,
+ // so don't bother generating any more copies.
+ fields = append(fields, fields[len(fields)-1])
+ }
+ continue
+ }
+
+ // Record new anonymous struct to explore in next round.
+ nextCount[ft]++
+ if nextCount[ft] == 1 {
+ f := field{name: ft.Name(), index: index, typ: ft}
+ next = append(next, f)
+ }
+ }
+ }
+ }
+
+ sort.Sort(byName(fields))
+
+ // Delete all fields that are hidden by the Go rules for embedded fields,
+ // except that fields with TOML tags are promoted.
+
+ // The fields are sorted in primary order of name, secondary order
+ // of field index length. Loop over names; for each name, delete
+ // hidden fields by choosing the one dominant field that survives.
+ out := fields[:0]
+ for advance, i := 0, 0; i < len(fields); i += advance {
+ // One iteration per name.
+ // Find the sequence of fields with the name of this first field.
+ fi := fields[i]
+ name := fi.name
+ for advance = 1; i+advance < len(fields); advance++ {
+ fj := fields[i+advance]
+ if fj.name != name {
+ break
+ }
+ }
+ if advance == 1 { // Only one field with this name
+ out = append(out, fi)
+ continue
+ }
+ dominant, ok := dominantField(fields[i : i+advance])
+ if ok {
+ out = append(out, dominant)
+ }
+ }
+
+ fields = out
+ sort.Sort(byIndex(fields))
+
+ return fields
+}
+
+// dominantField looks through the fields, all of which are known to
+// have the same name, to find the single field that dominates the
+// others using Go's embedding rules, modified by the presence of
+// TOML tags. If there are multiple top-level fields, the boolean
+// will be false: This condition is an error in Go and we skip all
+// the fields.
+func dominantField(fields []field) (field, bool) {
+ // The fields are sorted in increasing index-length order. The winner
+ // must therefore be one with the shortest index length. Drop all
+ // longer entries, which is easy: just truncate the slice.
+ length := len(fields[0].index)
+ tagged := -1 // Index of first tagged field.
+ for i, f := range fields {
+ if len(f.index) > length {
+ fields = fields[:i]
+ break
+ }
+ if f.tag {
+ if tagged >= 0 {
+ // Multiple tagged fields at the same level: conflict.
+ // Return no field.
+ return field{}, false
+ }
+ tagged = i
+ }
+ }
+ if tagged >= 0 {
+ return fields[tagged], true
+ }
+ // All remaining fields have the same length. If there's more than one,
+ // we have a conflict (two fields named "X" at the same level) and we
+ // return no field.
+ if len(fields) > 1 {
+ return field{}, false
+ }
+ return fields[0], true
+}
+
+var fieldCache struct {
+ sync.RWMutex
+ m map[reflect.Type][]field
+}
+
+// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
+func cachedTypeFields(t reflect.Type) []field {
+ fieldCache.RLock()
+ f := fieldCache.m[t]
+ fieldCache.RUnlock()
+ if f != nil {
+ return f
+ }
+
+ // Compute fields without lock.
+ // Might duplicate effort but won't hold other computations back.
+ f = typeFields(t)
+ if f == nil {
+ f = []field{}
+ }
+
+ fieldCache.Lock()
+ if fieldCache.m == nil {
+ fieldCache.m = map[reflect.Type][]field{}
+ }
+ fieldCache.m[t] = f
+ fieldCache.Unlock()
+ return f
+}