diff options
author | Matthew Heon <matthew.heon@gmail.com> | 2017-11-01 11:24:59 -0400 |
---|---|---|
committer | Matthew Heon <matthew.heon@gmail.com> | 2017-11-01 11:24:59 -0400 |
commit | a031b83a09a8628435317a03f199cdc18b78262f (patch) | |
tree | bc017a96769ce6de33745b8b0b1304ccf38e9df0 /vendor/github.com/docker/libtrust/ec_key.go | |
parent | 2b74391cd5281f6fdf391ff8ad50fd1490f6bf89 (diff) | |
download | podman-a031b83a09a8628435317a03f199cdc18b78262f.tar.gz podman-a031b83a09a8628435317a03f199cdc18b78262f.tar.bz2 podman-a031b83a09a8628435317a03f199cdc18b78262f.zip |
Initial checkin from CRI-O repo
Signed-off-by: Matthew Heon <matthew.heon@gmail.com>
Diffstat (limited to 'vendor/github.com/docker/libtrust/ec_key.go')
-rw-r--r-- | vendor/github.com/docker/libtrust/ec_key.go | 428 |
1 files changed, 428 insertions, 0 deletions
diff --git a/vendor/github.com/docker/libtrust/ec_key.go b/vendor/github.com/docker/libtrust/ec_key.go new file mode 100644 index 000000000..00bbe4b3c --- /dev/null +++ b/vendor/github.com/docker/libtrust/ec_key.go @@ -0,0 +1,428 @@ +package libtrust + +import ( + "crypto" + "crypto/ecdsa" + "crypto/elliptic" + "crypto/rand" + "crypto/x509" + "encoding/json" + "encoding/pem" + "errors" + "fmt" + "io" + "math/big" +) + +/* + * EC DSA PUBLIC KEY + */ + +// ecPublicKey implements a libtrust.PublicKey using elliptic curve digital +// signature algorithms. +type ecPublicKey struct { + *ecdsa.PublicKey + curveName string + signatureAlgorithm *signatureAlgorithm + extended map[string]interface{} +} + +func fromECPublicKey(cryptoPublicKey *ecdsa.PublicKey) (*ecPublicKey, error) { + curve := cryptoPublicKey.Curve + + switch { + case curve == elliptic.P256(): + return &ecPublicKey{cryptoPublicKey, "P-256", es256, map[string]interface{}{}}, nil + case curve == elliptic.P384(): + return &ecPublicKey{cryptoPublicKey, "P-384", es384, map[string]interface{}{}}, nil + case curve == elliptic.P521(): + return &ecPublicKey{cryptoPublicKey, "P-521", es512, map[string]interface{}{}}, nil + default: + return nil, errors.New("unsupported elliptic curve") + } +} + +// KeyType returns the key type for elliptic curve keys, i.e., "EC". +func (k *ecPublicKey) KeyType() string { + return "EC" +} + +// CurveName returns the elliptic curve identifier. +// Possible values are "P-256", "P-384", and "P-521". +func (k *ecPublicKey) CurveName() string { + return k.curveName +} + +// KeyID returns a distinct identifier which is unique to this Public Key. +func (k *ecPublicKey) KeyID() string { + return keyIDFromCryptoKey(k) +} + +func (k *ecPublicKey) String() string { + return fmt.Sprintf("EC Public Key <%s>", k.KeyID()) +} + +// Verify verifyies the signature of the data in the io.Reader using this +// PublicKey. The alg parameter should identify the digital signature +// algorithm which was used to produce the signature and should be supported +// by this public key. Returns a nil error if the signature is valid. +func (k *ecPublicKey) Verify(data io.Reader, alg string, signature []byte) error { + // For EC keys there is only one supported signature algorithm depending + // on the curve parameters. + if k.signatureAlgorithm.HeaderParam() != alg { + return fmt.Errorf("unable to verify signature: EC Public Key with curve %q does not support signature algorithm %q", k.curveName, alg) + } + + // signature is the concatenation of (r, s), base64Url encoded. + sigLength := len(signature) + expectedOctetLength := 2 * ((k.Params().BitSize + 7) >> 3) + if sigLength != expectedOctetLength { + return fmt.Errorf("signature length is %d octets long, should be %d", sigLength, expectedOctetLength) + } + + rBytes, sBytes := signature[:sigLength/2], signature[sigLength/2:] + r := new(big.Int).SetBytes(rBytes) + s := new(big.Int).SetBytes(sBytes) + + hasher := k.signatureAlgorithm.HashID().New() + _, err := io.Copy(hasher, data) + if err != nil { + return fmt.Errorf("error reading data to sign: %s", err) + } + hash := hasher.Sum(nil) + + if !ecdsa.Verify(k.PublicKey, hash, r, s) { + return errors.New("invalid signature") + } + + return nil +} + +// CryptoPublicKey returns the internal object which can be used as a +// crypto.PublicKey for use with other standard library operations. The type +// is either *rsa.PublicKey or *ecdsa.PublicKey +func (k *ecPublicKey) CryptoPublicKey() crypto.PublicKey { + return k.PublicKey +} + +func (k *ecPublicKey) toMap() map[string]interface{} { + jwk := make(map[string]interface{}) + for k, v := range k.extended { + jwk[k] = v + } + jwk["kty"] = k.KeyType() + jwk["kid"] = k.KeyID() + jwk["crv"] = k.CurveName() + + xBytes := k.X.Bytes() + yBytes := k.Y.Bytes() + octetLength := (k.Params().BitSize + 7) >> 3 + // MUST include leading zeros in the output so that x, y are each + // *octetLength* bytes long. + xBuf := make([]byte, octetLength-len(xBytes), octetLength) + yBuf := make([]byte, octetLength-len(yBytes), octetLength) + xBuf = append(xBuf, xBytes...) + yBuf = append(yBuf, yBytes...) + + jwk["x"] = joseBase64UrlEncode(xBuf) + jwk["y"] = joseBase64UrlEncode(yBuf) + + return jwk +} + +// MarshalJSON serializes this Public Key using the JWK JSON serialization format for +// elliptic curve keys. +func (k *ecPublicKey) MarshalJSON() (data []byte, err error) { + return json.Marshal(k.toMap()) +} + +// PEMBlock serializes this Public Key to DER-encoded PKIX format. +func (k *ecPublicKey) PEMBlock() (*pem.Block, error) { + derBytes, err := x509.MarshalPKIXPublicKey(k.PublicKey) + if err != nil { + return nil, fmt.Errorf("unable to serialize EC PublicKey to DER-encoded PKIX format: %s", err) + } + k.extended["kid"] = k.KeyID() // For display purposes. + return createPemBlock("PUBLIC KEY", derBytes, k.extended) +} + +func (k *ecPublicKey) AddExtendedField(field string, value interface{}) { + k.extended[field] = value +} + +func (k *ecPublicKey) GetExtendedField(field string) interface{} { + v, ok := k.extended[field] + if !ok { + return nil + } + return v +} + +func ecPublicKeyFromMap(jwk map[string]interface{}) (*ecPublicKey, error) { + // JWK key type (kty) has already been determined to be "EC". + // Need to extract 'crv', 'x', 'y', and 'kid' and check for + // consistency. + + // Get the curve identifier value. + crv, err := stringFromMap(jwk, "crv") + if err != nil { + return nil, fmt.Errorf("JWK EC Public Key curve identifier: %s", err) + } + + var ( + curve elliptic.Curve + sigAlg *signatureAlgorithm + ) + + switch { + case crv == "P-256": + curve = elliptic.P256() + sigAlg = es256 + case crv == "P-384": + curve = elliptic.P384() + sigAlg = es384 + case crv == "P-521": + curve = elliptic.P521() + sigAlg = es512 + default: + return nil, fmt.Errorf("JWK EC Public Key curve identifier not supported: %q\n", crv) + } + + // Get the X and Y coordinates for the public key point. + xB64Url, err := stringFromMap(jwk, "x") + if err != nil { + return nil, fmt.Errorf("JWK EC Public Key x-coordinate: %s", err) + } + x, err := parseECCoordinate(xB64Url, curve) + if err != nil { + return nil, fmt.Errorf("JWK EC Public Key x-coordinate: %s", err) + } + + yB64Url, err := stringFromMap(jwk, "y") + if err != nil { + return nil, fmt.Errorf("JWK EC Public Key y-coordinate: %s", err) + } + y, err := parseECCoordinate(yB64Url, curve) + if err != nil { + return nil, fmt.Errorf("JWK EC Public Key y-coordinate: %s", err) + } + + key := &ecPublicKey{ + PublicKey: &ecdsa.PublicKey{Curve: curve, X: x, Y: y}, + curveName: crv, signatureAlgorithm: sigAlg, + } + + // Key ID is optional too, but if it exists, it should match the key. + _, ok := jwk["kid"] + if ok { + kid, err := stringFromMap(jwk, "kid") + if err != nil { + return nil, fmt.Errorf("JWK EC Public Key ID: %s", err) + } + if kid != key.KeyID() { + return nil, fmt.Errorf("JWK EC Public Key ID does not match: %s", kid) + } + } + + key.extended = jwk + + return key, nil +} + +/* + * EC DSA PRIVATE KEY + */ + +// ecPrivateKey implements a JWK Private Key using elliptic curve digital signature +// algorithms. +type ecPrivateKey struct { + ecPublicKey + *ecdsa.PrivateKey +} + +func fromECPrivateKey(cryptoPrivateKey *ecdsa.PrivateKey) (*ecPrivateKey, error) { + publicKey, err := fromECPublicKey(&cryptoPrivateKey.PublicKey) + if err != nil { + return nil, err + } + + return &ecPrivateKey{*publicKey, cryptoPrivateKey}, nil +} + +// PublicKey returns the Public Key data associated with this Private Key. +func (k *ecPrivateKey) PublicKey() PublicKey { + return &k.ecPublicKey +} + +func (k *ecPrivateKey) String() string { + return fmt.Sprintf("EC Private Key <%s>", k.KeyID()) +} + +// Sign signs the data read from the io.Reader using a signature algorithm supported +// by the elliptic curve private key. If the specified hashing algorithm is +// supported by this key, that hash function is used to generate the signature +// otherwise the the default hashing algorithm for this key is used. Returns +// the signature and the name of the JWK signature algorithm used, e.g., +// "ES256", "ES384", "ES512". +func (k *ecPrivateKey) Sign(data io.Reader, hashID crypto.Hash) (signature []byte, alg string, err error) { + // Generate a signature of the data using the internal alg. + // The given hashId is only a suggestion, and since EC keys only support + // on signature/hash algorithm given the curve name, we disregard it for + // the elliptic curve JWK signature implementation. + hasher := k.signatureAlgorithm.HashID().New() + _, err = io.Copy(hasher, data) + if err != nil { + return nil, "", fmt.Errorf("error reading data to sign: %s", err) + } + hash := hasher.Sum(nil) + + r, s, err := ecdsa.Sign(rand.Reader, k.PrivateKey, hash) + if err != nil { + return nil, "", fmt.Errorf("error producing signature: %s", err) + } + rBytes, sBytes := r.Bytes(), s.Bytes() + octetLength := (k.ecPublicKey.Params().BitSize + 7) >> 3 + // MUST include leading zeros in the output + rBuf := make([]byte, octetLength-len(rBytes), octetLength) + sBuf := make([]byte, octetLength-len(sBytes), octetLength) + + rBuf = append(rBuf, rBytes...) + sBuf = append(sBuf, sBytes...) + + signature = append(rBuf, sBuf...) + alg = k.signatureAlgorithm.HeaderParam() + + return +} + +// CryptoPrivateKey returns the internal object which can be used as a +// crypto.PublicKey for use with other standard library operations. The type +// is either *rsa.PublicKey or *ecdsa.PublicKey +func (k *ecPrivateKey) CryptoPrivateKey() crypto.PrivateKey { + return k.PrivateKey +} + +func (k *ecPrivateKey) toMap() map[string]interface{} { + jwk := k.ecPublicKey.toMap() + + dBytes := k.D.Bytes() + // The length of this octet string MUST be ceiling(log-base-2(n)/8) + // octets (where n is the order of the curve). This is because the private + // key d must be in the interval [1, n-1] so the bitlength of d should be + // no larger than the bitlength of n-1. The easiest way to find the octet + // length is to take bitlength(n-1), add 7 to force a carry, and shift this + // bit sequence right by 3, which is essentially dividing by 8 and adding + // 1 if there is any remainder. Thus, the private key value d should be + // output to (bitlength(n-1)+7)>>3 octets. + n := k.ecPublicKey.Params().N + octetLength := (new(big.Int).Sub(n, big.NewInt(1)).BitLen() + 7) >> 3 + // Create a buffer with the necessary zero-padding. + dBuf := make([]byte, octetLength-len(dBytes), octetLength) + dBuf = append(dBuf, dBytes...) + + jwk["d"] = joseBase64UrlEncode(dBuf) + + return jwk +} + +// MarshalJSON serializes this Private Key using the JWK JSON serialization format for +// elliptic curve keys. +func (k *ecPrivateKey) MarshalJSON() (data []byte, err error) { + return json.Marshal(k.toMap()) +} + +// PEMBlock serializes this Private Key to DER-encoded PKIX format. +func (k *ecPrivateKey) PEMBlock() (*pem.Block, error) { + derBytes, err := x509.MarshalECPrivateKey(k.PrivateKey) + if err != nil { + return nil, fmt.Errorf("unable to serialize EC PrivateKey to DER-encoded PKIX format: %s", err) + } + k.extended["keyID"] = k.KeyID() // For display purposes. + return createPemBlock("EC PRIVATE KEY", derBytes, k.extended) +} + +func ecPrivateKeyFromMap(jwk map[string]interface{}) (*ecPrivateKey, error) { + dB64Url, err := stringFromMap(jwk, "d") + if err != nil { + return nil, fmt.Errorf("JWK EC Private Key: %s", err) + } + + // JWK key type (kty) has already been determined to be "EC". + // Need to extract the public key information, then extract the private + // key value 'd'. + publicKey, err := ecPublicKeyFromMap(jwk) + if err != nil { + return nil, err + } + + d, err := parseECPrivateParam(dB64Url, publicKey.Curve) + if err != nil { + return nil, fmt.Errorf("JWK EC Private Key d-param: %s", err) + } + + key := &ecPrivateKey{ + ecPublicKey: *publicKey, + PrivateKey: &ecdsa.PrivateKey{ + PublicKey: *publicKey.PublicKey, + D: d, + }, + } + + return key, nil +} + +/* + * Key Generation Functions. + */ + +func generateECPrivateKey(curve elliptic.Curve) (k *ecPrivateKey, err error) { + k = new(ecPrivateKey) + k.PrivateKey, err = ecdsa.GenerateKey(curve, rand.Reader) + if err != nil { + return nil, err + } + + k.ecPublicKey.PublicKey = &k.PrivateKey.PublicKey + k.extended = make(map[string]interface{}) + + return +} + +// GenerateECP256PrivateKey generates a key pair using elliptic curve P-256. +func GenerateECP256PrivateKey() (PrivateKey, error) { + k, err := generateECPrivateKey(elliptic.P256()) + if err != nil { + return nil, fmt.Errorf("error generating EC P-256 key: %s", err) + } + + k.curveName = "P-256" + k.signatureAlgorithm = es256 + + return k, nil +} + +// GenerateECP384PrivateKey generates a key pair using elliptic curve P-384. +func GenerateECP384PrivateKey() (PrivateKey, error) { + k, err := generateECPrivateKey(elliptic.P384()) + if err != nil { + return nil, fmt.Errorf("error generating EC P-384 key: %s", err) + } + + k.curveName = "P-384" + k.signatureAlgorithm = es384 + + return k, nil +} + +// GenerateECP521PrivateKey generates aß key pair using elliptic curve P-521. +func GenerateECP521PrivateKey() (PrivateKey, error) { + k, err := generateECPrivateKey(elliptic.P521()) + if err != nil { + return nil, fmt.Errorf("error generating EC P-521 key: %s", err) + } + + k.curveName = "P-521" + k.signatureAlgorithm = es512 + + return k, nil +} |