summaryrefslogtreecommitdiff
path: root/vendor/github.com/docker/libtrust/ec_key.go
diff options
context:
space:
mode:
authorMatthew Heon <matthew.heon@gmail.com>2017-11-01 11:24:59 -0400
committerMatthew Heon <matthew.heon@gmail.com>2017-11-01 11:24:59 -0400
commita031b83a09a8628435317a03f199cdc18b78262f (patch)
treebc017a96769ce6de33745b8b0b1304ccf38e9df0 /vendor/github.com/docker/libtrust/ec_key.go
parent2b74391cd5281f6fdf391ff8ad50fd1490f6bf89 (diff)
downloadpodman-a031b83a09a8628435317a03f199cdc18b78262f.tar.gz
podman-a031b83a09a8628435317a03f199cdc18b78262f.tar.bz2
podman-a031b83a09a8628435317a03f199cdc18b78262f.zip
Initial checkin from CRI-O repo
Signed-off-by: Matthew Heon <matthew.heon@gmail.com>
Diffstat (limited to 'vendor/github.com/docker/libtrust/ec_key.go')
-rw-r--r--vendor/github.com/docker/libtrust/ec_key.go428
1 files changed, 428 insertions, 0 deletions
diff --git a/vendor/github.com/docker/libtrust/ec_key.go b/vendor/github.com/docker/libtrust/ec_key.go
new file mode 100644
index 000000000..00bbe4b3c
--- /dev/null
+++ b/vendor/github.com/docker/libtrust/ec_key.go
@@ -0,0 +1,428 @@
+package libtrust
+
+import (
+ "crypto"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/x509"
+ "encoding/json"
+ "encoding/pem"
+ "errors"
+ "fmt"
+ "io"
+ "math/big"
+)
+
+/*
+ * EC DSA PUBLIC KEY
+ */
+
+// ecPublicKey implements a libtrust.PublicKey using elliptic curve digital
+// signature algorithms.
+type ecPublicKey struct {
+ *ecdsa.PublicKey
+ curveName string
+ signatureAlgorithm *signatureAlgorithm
+ extended map[string]interface{}
+}
+
+func fromECPublicKey(cryptoPublicKey *ecdsa.PublicKey) (*ecPublicKey, error) {
+ curve := cryptoPublicKey.Curve
+
+ switch {
+ case curve == elliptic.P256():
+ return &ecPublicKey{cryptoPublicKey, "P-256", es256, map[string]interface{}{}}, nil
+ case curve == elliptic.P384():
+ return &ecPublicKey{cryptoPublicKey, "P-384", es384, map[string]interface{}{}}, nil
+ case curve == elliptic.P521():
+ return &ecPublicKey{cryptoPublicKey, "P-521", es512, map[string]interface{}{}}, nil
+ default:
+ return nil, errors.New("unsupported elliptic curve")
+ }
+}
+
+// KeyType returns the key type for elliptic curve keys, i.e., "EC".
+func (k *ecPublicKey) KeyType() string {
+ return "EC"
+}
+
+// CurveName returns the elliptic curve identifier.
+// Possible values are "P-256", "P-384", and "P-521".
+func (k *ecPublicKey) CurveName() string {
+ return k.curveName
+}
+
+// KeyID returns a distinct identifier which is unique to this Public Key.
+func (k *ecPublicKey) KeyID() string {
+ return keyIDFromCryptoKey(k)
+}
+
+func (k *ecPublicKey) String() string {
+ return fmt.Sprintf("EC Public Key <%s>", k.KeyID())
+}
+
+// Verify verifyies the signature of the data in the io.Reader using this
+// PublicKey. The alg parameter should identify the digital signature
+// algorithm which was used to produce the signature and should be supported
+// by this public key. Returns a nil error if the signature is valid.
+func (k *ecPublicKey) Verify(data io.Reader, alg string, signature []byte) error {
+ // For EC keys there is only one supported signature algorithm depending
+ // on the curve parameters.
+ if k.signatureAlgorithm.HeaderParam() != alg {
+ return fmt.Errorf("unable to verify signature: EC Public Key with curve %q does not support signature algorithm %q", k.curveName, alg)
+ }
+
+ // signature is the concatenation of (r, s), base64Url encoded.
+ sigLength := len(signature)
+ expectedOctetLength := 2 * ((k.Params().BitSize + 7) >> 3)
+ if sigLength != expectedOctetLength {
+ return fmt.Errorf("signature length is %d octets long, should be %d", sigLength, expectedOctetLength)
+ }
+
+ rBytes, sBytes := signature[:sigLength/2], signature[sigLength/2:]
+ r := new(big.Int).SetBytes(rBytes)
+ s := new(big.Int).SetBytes(sBytes)
+
+ hasher := k.signatureAlgorithm.HashID().New()
+ _, err := io.Copy(hasher, data)
+ if err != nil {
+ return fmt.Errorf("error reading data to sign: %s", err)
+ }
+ hash := hasher.Sum(nil)
+
+ if !ecdsa.Verify(k.PublicKey, hash, r, s) {
+ return errors.New("invalid signature")
+ }
+
+ return nil
+}
+
+// CryptoPublicKey returns the internal object which can be used as a
+// crypto.PublicKey for use with other standard library operations. The type
+// is either *rsa.PublicKey or *ecdsa.PublicKey
+func (k *ecPublicKey) CryptoPublicKey() crypto.PublicKey {
+ return k.PublicKey
+}
+
+func (k *ecPublicKey) toMap() map[string]interface{} {
+ jwk := make(map[string]interface{})
+ for k, v := range k.extended {
+ jwk[k] = v
+ }
+ jwk["kty"] = k.KeyType()
+ jwk["kid"] = k.KeyID()
+ jwk["crv"] = k.CurveName()
+
+ xBytes := k.X.Bytes()
+ yBytes := k.Y.Bytes()
+ octetLength := (k.Params().BitSize + 7) >> 3
+ // MUST include leading zeros in the output so that x, y are each
+ // *octetLength* bytes long.
+ xBuf := make([]byte, octetLength-len(xBytes), octetLength)
+ yBuf := make([]byte, octetLength-len(yBytes), octetLength)
+ xBuf = append(xBuf, xBytes...)
+ yBuf = append(yBuf, yBytes...)
+
+ jwk["x"] = joseBase64UrlEncode(xBuf)
+ jwk["y"] = joseBase64UrlEncode(yBuf)
+
+ return jwk
+}
+
+// MarshalJSON serializes this Public Key using the JWK JSON serialization format for
+// elliptic curve keys.
+func (k *ecPublicKey) MarshalJSON() (data []byte, err error) {
+ return json.Marshal(k.toMap())
+}
+
+// PEMBlock serializes this Public Key to DER-encoded PKIX format.
+func (k *ecPublicKey) PEMBlock() (*pem.Block, error) {
+ derBytes, err := x509.MarshalPKIXPublicKey(k.PublicKey)
+ if err != nil {
+ return nil, fmt.Errorf("unable to serialize EC PublicKey to DER-encoded PKIX format: %s", err)
+ }
+ k.extended["kid"] = k.KeyID() // For display purposes.
+ return createPemBlock("PUBLIC KEY", derBytes, k.extended)
+}
+
+func (k *ecPublicKey) AddExtendedField(field string, value interface{}) {
+ k.extended[field] = value
+}
+
+func (k *ecPublicKey) GetExtendedField(field string) interface{} {
+ v, ok := k.extended[field]
+ if !ok {
+ return nil
+ }
+ return v
+}
+
+func ecPublicKeyFromMap(jwk map[string]interface{}) (*ecPublicKey, error) {
+ // JWK key type (kty) has already been determined to be "EC".
+ // Need to extract 'crv', 'x', 'y', and 'kid' and check for
+ // consistency.
+
+ // Get the curve identifier value.
+ crv, err := stringFromMap(jwk, "crv")
+ if err != nil {
+ return nil, fmt.Errorf("JWK EC Public Key curve identifier: %s", err)
+ }
+
+ var (
+ curve elliptic.Curve
+ sigAlg *signatureAlgorithm
+ )
+
+ switch {
+ case crv == "P-256":
+ curve = elliptic.P256()
+ sigAlg = es256
+ case crv == "P-384":
+ curve = elliptic.P384()
+ sigAlg = es384
+ case crv == "P-521":
+ curve = elliptic.P521()
+ sigAlg = es512
+ default:
+ return nil, fmt.Errorf("JWK EC Public Key curve identifier not supported: %q\n", crv)
+ }
+
+ // Get the X and Y coordinates for the public key point.
+ xB64Url, err := stringFromMap(jwk, "x")
+ if err != nil {
+ return nil, fmt.Errorf("JWK EC Public Key x-coordinate: %s", err)
+ }
+ x, err := parseECCoordinate(xB64Url, curve)
+ if err != nil {
+ return nil, fmt.Errorf("JWK EC Public Key x-coordinate: %s", err)
+ }
+
+ yB64Url, err := stringFromMap(jwk, "y")
+ if err != nil {
+ return nil, fmt.Errorf("JWK EC Public Key y-coordinate: %s", err)
+ }
+ y, err := parseECCoordinate(yB64Url, curve)
+ if err != nil {
+ return nil, fmt.Errorf("JWK EC Public Key y-coordinate: %s", err)
+ }
+
+ key := &ecPublicKey{
+ PublicKey: &ecdsa.PublicKey{Curve: curve, X: x, Y: y},
+ curveName: crv, signatureAlgorithm: sigAlg,
+ }
+
+ // Key ID is optional too, but if it exists, it should match the key.
+ _, ok := jwk["kid"]
+ if ok {
+ kid, err := stringFromMap(jwk, "kid")
+ if err != nil {
+ return nil, fmt.Errorf("JWK EC Public Key ID: %s", err)
+ }
+ if kid != key.KeyID() {
+ return nil, fmt.Errorf("JWK EC Public Key ID does not match: %s", kid)
+ }
+ }
+
+ key.extended = jwk
+
+ return key, nil
+}
+
+/*
+ * EC DSA PRIVATE KEY
+ */
+
+// ecPrivateKey implements a JWK Private Key using elliptic curve digital signature
+// algorithms.
+type ecPrivateKey struct {
+ ecPublicKey
+ *ecdsa.PrivateKey
+}
+
+func fromECPrivateKey(cryptoPrivateKey *ecdsa.PrivateKey) (*ecPrivateKey, error) {
+ publicKey, err := fromECPublicKey(&cryptoPrivateKey.PublicKey)
+ if err != nil {
+ return nil, err
+ }
+
+ return &ecPrivateKey{*publicKey, cryptoPrivateKey}, nil
+}
+
+// PublicKey returns the Public Key data associated with this Private Key.
+func (k *ecPrivateKey) PublicKey() PublicKey {
+ return &k.ecPublicKey
+}
+
+func (k *ecPrivateKey) String() string {
+ return fmt.Sprintf("EC Private Key <%s>", k.KeyID())
+}
+
+// Sign signs the data read from the io.Reader using a signature algorithm supported
+// by the elliptic curve private key. If the specified hashing algorithm is
+// supported by this key, that hash function is used to generate the signature
+// otherwise the the default hashing algorithm for this key is used. Returns
+// the signature and the name of the JWK signature algorithm used, e.g.,
+// "ES256", "ES384", "ES512".
+func (k *ecPrivateKey) Sign(data io.Reader, hashID crypto.Hash) (signature []byte, alg string, err error) {
+ // Generate a signature of the data using the internal alg.
+ // The given hashId is only a suggestion, and since EC keys only support
+ // on signature/hash algorithm given the curve name, we disregard it for
+ // the elliptic curve JWK signature implementation.
+ hasher := k.signatureAlgorithm.HashID().New()
+ _, err = io.Copy(hasher, data)
+ if err != nil {
+ return nil, "", fmt.Errorf("error reading data to sign: %s", err)
+ }
+ hash := hasher.Sum(nil)
+
+ r, s, err := ecdsa.Sign(rand.Reader, k.PrivateKey, hash)
+ if err != nil {
+ return nil, "", fmt.Errorf("error producing signature: %s", err)
+ }
+ rBytes, sBytes := r.Bytes(), s.Bytes()
+ octetLength := (k.ecPublicKey.Params().BitSize + 7) >> 3
+ // MUST include leading zeros in the output
+ rBuf := make([]byte, octetLength-len(rBytes), octetLength)
+ sBuf := make([]byte, octetLength-len(sBytes), octetLength)
+
+ rBuf = append(rBuf, rBytes...)
+ sBuf = append(sBuf, sBytes...)
+
+ signature = append(rBuf, sBuf...)
+ alg = k.signatureAlgorithm.HeaderParam()
+
+ return
+}
+
+// CryptoPrivateKey returns the internal object which can be used as a
+// crypto.PublicKey for use with other standard library operations. The type
+// is either *rsa.PublicKey or *ecdsa.PublicKey
+func (k *ecPrivateKey) CryptoPrivateKey() crypto.PrivateKey {
+ return k.PrivateKey
+}
+
+func (k *ecPrivateKey) toMap() map[string]interface{} {
+ jwk := k.ecPublicKey.toMap()
+
+ dBytes := k.D.Bytes()
+ // The length of this octet string MUST be ceiling(log-base-2(n)/8)
+ // octets (where n is the order of the curve). This is because the private
+ // key d must be in the interval [1, n-1] so the bitlength of d should be
+ // no larger than the bitlength of n-1. The easiest way to find the octet
+ // length is to take bitlength(n-1), add 7 to force a carry, and shift this
+ // bit sequence right by 3, which is essentially dividing by 8 and adding
+ // 1 if there is any remainder. Thus, the private key value d should be
+ // output to (bitlength(n-1)+7)>>3 octets.
+ n := k.ecPublicKey.Params().N
+ octetLength := (new(big.Int).Sub(n, big.NewInt(1)).BitLen() + 7) >> 3
+ // Create a buffer with the necessary zero-padding.
+ dBuf := make([]byte, octetLength-len(dBytes), octetLength)
+ dBuf = append(dBuf, dBytes...)
+
+ jwk["d"] = joseBase64UrlEncode(dBuf)
+
+ return jwk
+}
+
+// MarshalJSON serializes this Private Key using the JWK JSON serialization format for
+// elliptic curve keys.
+func (k *ecPrivateKey) MarshalJSON() (data []byte, err error) {
+ return json.Marshal(k.toMap())
+}
+
+// PEMBlock serializes this Private Key to DER-encoded PKIX format.
+func (k *ecPrivateKey) PEMBlock() (*pem.Block, error) {
+ derBytes, err := x509.MarshalECPrivateKey(k.PrivateKey)
+ if err != nil {
+ return nil, fmt.Errorf("unable to serialize EC PrivateKey to DER-encoded PKIX format: %s", err)
+ }
+ k.extended["keyID"] = k.KeyID() // For display purposes.
+ return createPemBlock("EC PRIVATE KEY", derBytes, k.extended)
+}
+
+func ecPrivateKeyFromMap(jwk map[string]interface{}) (*ecPrivateKey, error) {
+ dB64Url, err := stringFromMap(jwk, "d")
+ if err != nil {
+ return nil, fmt.Errorf("JWK EC Private Key: %s", err)
+ }
+
+ // JWK key type (kty) has already been determined to be "EC".
+ // Need to extract the public key information, then extract the private
+ // key value 'd'.
+ publicKey, err := ecPublicKeyFromMap(jwk)
+ if err != nil {
+ return nil, err
+ }
+
+ d, err := parseECPrivateParam(dB64Url, publicKey.Curve)
+ if err != nil {
+ return nil, fmt.Errorf("JWK EC Private Key d-param: %s", err)
+ }
+
+ key := &ecPrivateKey{
+ ecPublicKey: *publicKey,
+ PrivateKey: &ecdsa.PrivateKey{
+ PublicKey: *publicKey.PublicKey,
+ D: d,
+ },
+ }
+
+ return key, nil
+}
+
+/*
+ * Key Generation Functions.
+ */
+
+func generateECPrivateKey(curve elliptic.Curve) (k *ecPrivateKey, err error) {
+ k = new(ecPrivateKey)
+ k.PrivateKey, err = ecdsa.GenerateKey(curve, rand.Reader)
+ if err != nil {
+ return nil, err
+ }
+
+ k.ecPublicKey.PublicKey = &k.PrivateKey.PublicKey
+ k.extended = make(map[string]interface{})
+
+ return
+}
+
+// GenerateECP256PrivateKey generates a key pair using elliptic curve P-256.
+func GenerateECP256PrivateKey() (PrivateKey, error) {
+ k, err := generateECPrivateKey(elliptic.P256())
+ if err != nil {
+ return nil, fmt.Errorf("error generating EC P-256 key: %s", err)
+ }
+
+ k.curveName = "P-256"
+ k.signatureAlgorithm = es256
+
+ return k, nil
+}
+
+// GenerateECP384PrivateKey generates a key pair using elliptic curve P-384.
+func GenerateECP384PrivateKey() (PrivateKey, error) {
+ k, err := generateECPrivateKey(elliptic.P384())
+ if err != nil {
+ return nil, fmt.Errorf("error generating EC P-384 key: %s", err)
+ }
+
+ k.curveName = "P-384"
+ k.signatureAlgorithm = es384
+
+ return k, nil
+}
+
+// GenerateECP521PrivateKey generates aß key pair using elliptic curve P-521.
+func GenerateECP521PrivateKey() (PrivateKey, error) {
+ k, err := generateECPrivateKey(elliptic.P521())
+ if err != nil {
+ return nil, fmt.Errorf("error generating EC P-521 key: %s", err)
+ }
+
+ k.curveName = "P-521"
+ k.signatureAlgorithm = es512
+
+ return k, nil
+}