summaryrefslogtreecommitdiff
path: root/vendor/github.com/klauspost/compress/flate
diff options
context:
space:
mode:
authorDaniel J Walsh <dwalsh@redhat.com>2020-02-03 09:27:58 -0500
committerGitHub <noreply@github.com>2020-02-03 09:27:58 -0500
commit5e7d6e52dd8ac8f7e213cde7b98f270c77608523 (patch)
treecfc80de469cb835c603339f8eb5f6ddd035e2958 /vendor/github.com/klauspost/compress/flate
parent227d8815806fe63d07433707a356eb2e8c011f1e (diff)
parent94453c85c78908096764f8c0cb4cf72a470c182b (diff)
downloadpodman-5e7d6e52dd8ac8f7e213cde7b98f270c77608523.tar.gz
podman-5e7d6e52dd8ac8f7e213cde7b98f270c77608523.tar.bz2
podman-5e7d6e52dd8ac8f7e213cde7b98f270c77608523.zip
Merge pull request #5053 from containers/dependabot/go_modules/github.com/containers/storage-1.15.8
build(deps): bump github.com/containers/storage from 1.15.7 to 1.15.8
Diffstat (limited to 'vendor/github.com/klauspost/compress/flate')
-rw-r--r--vendor/github.com/klauspost/compress/flate/deflate.go6
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go52
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_code.go76
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_sortByFreq.go178
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_sortByLiteral.go201
-rw-r--r--vendor/github.com/klauspost/compress/flate/token.go42
6 files changed, 470 insertions, 85 deletions
diff --git a/vendor/github.com/klauspost/compress/flate/deflate.go b/vendor/github.com/klauspost/compress/flate/deflate.go
index 20c94f596..d9948ab40 100644
--- a/vendor/github.com/klauspost/compress/flate/deflate.go
+++ b/vendor/github.com/klauspost/compress/flate/deflate.go
@@ -644,7 +644,7 @@ func (d *compressor) init(w io.Writer, level int) (err error) {
d.fill = (*compressor).fillBlock
d.step = (*compressor).store
case level == ConstantCompression:
- d.w.logReusePenalty = uint(4)
+ d.w.logNewTablePenalty = 4
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeHuff
@@ -652,13 +652,13 @@ func (d *compressor) init(w io.Writer, level int) (err error) {
level = 5
fallthrough
case level >= 1 && level <= 6:
- d.w.logReusePenalty = uint(level + 1)
+ d.w.logNewTablePenalty = 6
d.fast = newFastEnc(level)
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeFast
case 7 <= level && level <= 9:
- d.w.logReusePenalty = uint(level)
+ d.w.logNewTablePenalty = 10
d.state = &advancedState{}
d.compressionLevel = levels[level]
d.initDeflate()
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go b/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
index dd74ffb87..9feea87a3 100644
--- a/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
+++ b/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
@@ -93,12 +93,12 @@ type huffmanBitWriter struct {
err error
lastHeader int
// Set between 0 (reused block can be up to 2x the size)
- logReusePenalty uint
- lastHuffMan bool
- bytes [256]byte
- literalFreq [lengthCodesStart + 32]uint16
- offsetFreq [32]uint16
- codegenFreq [codegenCodeCount]uint16
+ logNewTablePenalty uint
+ lastHuffMan bool
+ bytes [256]byte
+ literalFreq [lengthCodesStart + 32]uint16
+ offsetFreq [32]uint16
+ codegenFreq [codegenCodeCount]uint16
// codegen must have an extra space for the final symbol.
codegen [literalCount + offsetCodeCount + 1]uint8
@@ -119,7 +119,7 @@ type huffmanBitWriter struct {
// If lastHuffMan is set, a table for outputting literals has been generated and offsets are invalid.
//
// An incoming block estimates the output size of a new table using a 'fresh' by calculating the
-// optimal size and adding a penalty in 'logReusePenalty'.
+// optimal size and adding a penalty in 'logNewTablePenalty'.
// A Huffman table is not optimal, which is why we add a penalty, and generating a new table
// is slower both for compression and decompression.
@@ -350,6 +350,13 @@ func (w *huffmanBitWriter) headerSize() (size, numCodegens int) {
}
// dynamicSize returns the size of dynamically encoded data in bits.
+func (w *huffmanBitWriter) dynamicReuseSize(litEnc, offEnc *huffmanEncoder) (size int) {
+ size = litEnc.bitLength(w.literalFreq[:]) +
+ offEnc.bitLength(w.offsetFreq[:])
+ return size
+}
+
+// dynamicSize returns the size of dynamically encoded data in bits.
func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
header, numCodegens := w.headerSize()
size = header +
@@ -451,12 +458,12 @@ func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, n
i := 0
for {
- var codeWord int = int(w.codegen[i])
+ var codeWord = uint32(w.codegen[i])
i++
if codeWord == badCode {
break
}
- w.writeCode(w.codegenEncoding.codes[uint32(codeWord)])
+ w.writeCode(w.codegenEncoding.codes[codeWord])
switch codeWord {
case 16:
@@ -602,14 +609,14 @@ func (w *huffmanBitWriter) writeBlockDynamic(tokens *tokens, eof bool, input []b
var size int
// Check if we should reuse.
if w.lastHeader > 0 {
- // Estimate size for using a new table
+ // Estimate size for using a new table.
+ // Use the previous header size as the best estimate.
newSize := w.lastHeader + tokens.EstimatedBits()
+ newSize += newSize >> w.logNewTablePenalty
// The estimated size is calculated as an optimal table.
// We add a penalty to make it more realistic and re-use a bit more.
- newSize += newSize >> (w.logReusePenalty & 31)
- extra := w.extraBitSize()
- reuseSize, _ := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extra)
+ reuseSize := w.dynamicReuseSize(w.literalEncoding, w.offsetEncoding) + w.extraBitSize()
// Check if a new table is better.
if newSize < reuseSize {
@@ -801,21 +808,30 @@ func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte, sync bool) {
}
// Add everything as literals
- estBits := histogramSize(input, w.literalFreq[:], !eof && !sync) + 15
+ // We have to estimate the header size.
+ // Assume header is around 70 bytes:
+ // https://stackoverflow.com/a/25454430
+ const guessHeaderSizeBits = 70 * 8
+ estBits, estExtra := histogramSize(input, w.literalFreq[:], !eof && !sync)
+ estBits += w.lastHeader + 15
+ if w.lastHeader == 0 {
+ estBits += guessHeaderSizeBits
+ }
+ estBits += estBits >> w.logNewTablePenalty
// Store bytes, if we don't get a reasonable improvement.
ssize, storable := w.storedSize(input)
- if storable && ssize < (estBits+estBits>>4) {
+ if storable && ssize < estBits {
w.writeStoredHeader(len(input), eof)
w.writeBytes(input)
return
}
if w.lastHeader > 0 {
- size, _ := w.dynamicSize(w.literalEncoding, huffOffset, w.lastHeader)
- estBits += estBits >> (w.logReusePenalty)
+ reuseSize := w.literalEncoding.bitLength(w.literalFreq[:256])
+ estBits += estExtra
- if estBits < size {
+ if estBits < reuseSize {
// We owe an EOB
w.writeCode(w.literalEncoding.codes[endBlockMarker])
w.lastHeader = 0
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_code.go b/vendor/github.com/klauspost/compress/flate/huffman_code.go
index 1810c6898..9d8e81ad6 100644
--- a/vendor/github.com/klauspost/compress/flate/huffman_code.go
+++ b/vendor/github.com/klauspost/compress/flate/huffman_code.go
@@ -7,7 +7,6 @@ package flate
import (
"math"
"math/bits"
- "sort"
)
const (
@@ -25,8 +24,6 @@ type huffmanEncoder struct {
codes []hcode
freqcache []literalNode
bitCount [17]int32
- lns byLiteral // stored to avoid repeated allocation in generate
- lfs byFreq // stored to avoid repeated allocation in generate
}
type literalNode struct {
@@ -270,7 +267,7 @@ func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalN
// assigned in literal order (not frequency order).
chunk := list[len(list)-int(bits):]
- h.lns.sort(chunk)
+ sortByLiteral(chunk)
for _, node := range chunk {
h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
code++
@@ -315,7 +312,7 @@ func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
}
return
}
- h.lfs.sort(list)
+ sortByFreq(list)
// Get the number of literals for each bit count
bitCount := h.bitCounts(list, maxBits)
@@ -323,59 +320,44 @@ func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
h.assignEncodingAndSize(bitCount, list)
}
-type byLiteral []literalNode
-
-func (s *byLiteral) sort(a []literalNode) {
- *s = byLiteral(a)
- sort.Sort(s)
-}
-
-func (s byLiteral) Len() int { return len(s) }
-
-func (s byLiteral) Less(i, j int) bool {
- return s[i].literal < s[j].literal
-}
-
-func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
-
-type byFreq []literalNode
-
-func (s *byFreq) sort(a []literalNode) {
- *s = byFreq(a)
- sort.Sort(s)
-}
-
-func (s byFreq) Len() int { return len(s) }
-
-func (s byFreq) Less(i, j int) bool {
- if s[i].freq == s[j].freq {
- return s[i].literal < s[j].literal
+func atLeastOne(v float32) float32 {
+ if v < 1 {
+ return 1
}
- return s[i].freq < s[j].freq
+ return v
}
-func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
-
// histogramSize accumulates a histogram of b in h.
// An estimated size in bits is returned.
// Unassigned values are assigned '1' in the histogram.
// len(h) must be >= 256, and h's elements must be all zeroes.
-func histogramSize(b []byte, h []uint16, fill bool) int {
+func histogramSize(b []byte, h []uint16, fill bool) (int, int) {
h = h[:256]
for _, t := range b {
h[t]++
}
- invTotal := 1.0 / float64(len(b))
- shannon := 0.0
- single := math.Ceil(-math.Log2(invTotal))
- for i, v := range h[:] {
- if v > 0 {
- n := float64(v)
- shannon += math.Ceil(-math.Log2(n*invTotal) * n)
- } else if fill {
- shannon += single
- h[i] = 1
+ invTotal := 1.0 / float32(len(b))
+ shannon := float32(0.0)
+ var extra float32
+ if fill {
+ oneBits := atLeastOne(-mFastLog2(invTotal))
+ for i, v := range h[:] {
+ if v > 0 {
+ n := float32(v)
+ shannon += atLeastOne(-mFastLog2(n*invTotal)) * n
+ } else {
+ h[i] = 1
+ extra += oneBits
+ }
+ }
+ } else {
+ for _, v := range h[:] {
+ if v > 0 {
+ n := float32(v)
+ shannon += atLeastOne(-mFastLog2(n*invTotal)) * n
+ }
}
}
- return int(shannon + 0.99)
+
+ return int(shannon + 0.99), int(extra + 0.99)
}
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_sortByFreq.go b/vendor/github.com/klauspost/compress/flate/huffman_sortByFreq.go
new file mode 100644
index 000000000..207780299
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/huffman_sortByFreq.go
@@ -0,0 +1,178 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+// Sort sorts data.
+// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
+// data.Less and data.Swap. The sort is not guaranteed to be stable.
+func sortByFreq(data []literalNode) {
+ n := len(data)
+ quickSortByFreq(data, 0, n, maxDepth(n))
+}
+
+func quickSortByFreq(data []literalNode, a, b, maxDepth int) {
+ for b-a > 12 { // Use ShellSort for slices <= 12 elements
+ if maxDepth == 0 {
+ heapSort(data, a, b)
+ return
+ }
+ maxDepth--
+ mlo, mhi := doPivotByFreq(data, a, b)
+ // Avoiding recursion on the larger subproblem guarantees
+ // a stack depth of at most lg(b-a).
+ if mlo-a < b-mhi {
+ quickSortByFreq(data, a, mlo, maxDepth)
+ a = mhi // i.e., quickSortByFreq(data, mhi, b)
+ } else {
+ quickSortByFreq(data, mhi, b, maxDepth)
+ b = mlo // i.e., quickSortByFreq(data, a, mlo)
+ }
+ }
+ if b-a > 1 {
+ // Do ShellSort pass with gap 6
+ // It could be written in this simplified form cause b-a <= 12
+ for i := a + 6; i < b; i++ {
+ if data[i].freq == data[i-6].freq && data[i].literal < data[i-6].literal || data[i].freq < data[i-6].freq {
+ data[i], data[i-6] = data[i-6], data[i]
+ }
+ }
+ insertionSortByFreq(data, a, b)
+ }
+}
+
+// siftDownByFreq implements the heap property on data[lo, hi).
+// first is an offset into the array where the root of the heap lies.
+func siftDownByFreq(data []literalNode, lo, hi, first int) {
+ root := lo
+ for {
+ child := 2*root + 1
+ if child >= hi {
+ break
+ }
+ if child+1 < hi && (data[first+child].freq == data[first+child+1].freq && data[first+child].literal < data[first+child+1].literal || data[first+child].freq < data[first+child+1].freq) {
+ child++
+ }
+ if data[first+root].freq == data[first+child].freq && data[first+root].literal > data[first+child].literal || data[first+root].freq > data[first+child].freq {
+ return
+ }
+ data[first+root], data[first+child] = data[first+child], data[first+root]
+ root = child
+ }
+}
+func doPivotByFreq(data []literalNode, lo, hi int) (midlo, midhi int) {
+ m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
+ if hi-lo > 40 {
+ // Tukey's ``Ninther,'' median of three medians of three.
+ s := (hi - lo) / 8
+ medianOfThreeSortByFreq(data, lo, lo+s, lo+2*s)
+ medianOfThreeSortByFreq(data, m, m-s, m+s)
+ medianOfThreeSortByFreq(data, hi-1, hi-1-s, hi-1-2*s)
+ }
+ medianOfThreeSortByFreq(data, lo, m, hi-1)
+
+ // Invariants are:
+ // data[lo] = pivot (set up by ChoosePivot)
+ // data[lo < i < a] < pivot
+ // data[a <= i < b] <= pivot
+ // data[b <= i < c] unexamined
+ // data[c <= i < hi-1] > pivot
+ // data[hi-1] >= pivot
+ pivot := lo
+ a, c := lo+1, hi-1
+
+ for ; a < c && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ {
+ }
+ b := a
+ for {
+ for ; b < c && (data[pivot].freq == data[b].freq && data[pivot].literal > data[b].literal || data[pivot].freq > data[b].freq); b++ { // data[b] <= pivot
+ }
+ for ; b < c && (data[pivot].freq == data[c-1].freq && data[pivot].literal < data[c-1].literal || data[pivot].freq < data[c-1].freq); c-- { // data[c-1] > pivot
+ }
+ if b >= c {
+ break
+ }
+ // data[b] > pivot; data[c-1] <= pivot
+ data[b], data[c-1] = data[c-1], data[b]
+ b++
+ c--
+ }
+ // If hi-c<3 then there are duplicates (by property of median of nine).
+ // Let's be a bit more conservative, and set border to 5.
+ protect := hi-c < 5
+ if !protect && hi-c < (hi-lo)/4 {
+ // Lets test some points for equality to pivot
+ dups := 0
+ if data[pivot].freq == data[hi-1].freq && data[pivot].literal > data[hi-1].literal || data[pivot].freq > data[hi-1].freq { // data[hi-1] = pivot
+ data[c], data[hi-1] = data[hi-1], data[c]
+ c++
+ dups++
+ }
+ if data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq { // data[b-1] = pivot
+ b--
+ dups++
+ }
+ // m-lo = (hi-lo)/2 > 6
+ // b-lo > (hi-lo)*3/4-1 > 8
+ // ==> m < b ==> data[m] <= pivot
+ if data[m].freq == data[pivot].freq && data[m].literal > data[pivot].literal || data[m].freq > data[pivot].freq { // data[m] = pivot
+ data[m], data[b-1] = data[b-1], data[m]
+ b--
+ dups++
+ }
+ // if at least 2 points are equal to pivot, assume skewed distribution
+ protect = dups > 1
+ }
+ if protect {
+ // Protect against a lot of duplicates
+ // Add invariant:
+ // data[a <= i < b] unexamined
+ // data[b <= i < c] = pivot
+ for {
+ for ; a < b && (data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq); b-- { // data[b] == pivot
+ }
+ for ; a < b && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ { // data[a] < pivot
+ }
+ if a >= b {
+ break
+ }
+ // data[a] == pivot; data[b-1] < pivot
+ data[a], data[b-1] = data[b-1], data[a]
+ a++
+ b--
+ }
+ }
+ // Swap pivot into middle
+ data[pivot], data[b-1] = data[b-1], data[pivot]
+ return b - 1, c
+}
+
+// Insertion sort
+func insertionSortByFreq(data []literalNode, a, b int) {
+ for i := a + 1; i < b; i++ {
+ for j := i; j > a && (data[j].freq == data[j-1].freq && data[j].literal < data[j-1].literal || data[j].freq < data[j-1].freq); j-- {
+ data[j], data[j-1] = data[j-1], data[j]
+ }
+ }
+}
+
+// quickSortByFreq, loosely following Bentley and McIlroy,
+// ``Engineering a Sort Function,'' SP&E November 1993.
+
+// medianOfThreeSortByFreq moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
+func medianOfThreeSortByFreq(data []literalNode, m1, m0, m2 int) {
+ // sort 3 elements
+ if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq {
+ data[m1], data[m0] = data[m0], data[m1]
+ }
+ // data[m0] <= data[m1]
+ if data[m2].freq == data[m1].freq && data[m2].literal < data[m1].literal || data[m2].freq < data[m1].freq {
+ data[m2], data[m1] = data[m1], data[m2]
+ // data[m0] <= data[m2] && data[m1] < data[m2]
+ if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq {
+ data[m1], data[m0] = data[m0], data[m1]
+ }
+ }
+ // now data[m0] <= data[m1] <= data[m2]
+}
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_sortByLiteral.go b/vendor/github.com/klauspost/compress/flate/huffman_sortByLiteral.go
new file mode 100644
index 000000000..93f1aea10
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/huffman_sortByLiteral.go
@@ -0,0 +1,201 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+// Sort sorts data.
+// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
+// data.Less and data.Swap. The sort is not guaranteed to be stable.
+func sortByLiteral(data []literalNode) {
+ n := len(data)
+ quickSort(data, 0, n, maxDepth(n))
+}
+
+func quickSort(data []literalNode, a, b, maxDepth int) {
+ for b-a > 12 { // Use ShellSort for slices <= 12 elements
+ if maxDepth == 0 {
+ heapSort(data, a, b)
+ return
+ }
+ maxDepth--
+ mlo, mhi := doPivot(data, a, b)
+ // Avoiding recursion on the larger subproblem guarantees
+ // a stack depth of at most lg(b-a).
+ if mlo-a < b-mhi {
+ quickSort(data, a, mlo, maxDepth)
+ a = mhi // i.e., quickSort(data, mhi, b)
+ } else {
+ quickSort(data, mhi, b, maxDepth)
+ b = mlo // i.e., quickSort(data, a, mlo)
+ }
+ }
+ if b-a > 1 {
+ // Do ShellSort pass with gap 6
+ // It could be written in this simplified form cause b-a <= 12
+ for i := a + 6; i < b; i++ {
+ if data[i].literal < data[i-6].literal {
+ data[i], data[i-6] = data[i-6], data[i]
+ }
+ }
+ insertionSort(data, a, b)
+ }
+}
+func heapSort(data []literalNode, a, b int) {
+ first := a
+ lo := 0
+ hi := b - a
+
+ // Build heap with greatest element at top.
+ for i := (hi - 1) / 2; i >= 0; i-- {
+ siftDown(data, i, hi, first)
+ }
+
+ // Pop elements, largest first, into end of data.
+ for i := hi - 1; i >= 0; i-- {
+ data[first], data[first+i] = data[first+i], data[first]
+ siftDown(data, lo, i, first)
+ }
+}
+
+// siftDown implements the heap property on data[lo, hi).
+// first is an offset into the array where the root of the heap lies.
+func siftDown(data []literalNode, lo, hi, first int) {
+ root := lo
+ for {
+ child := 2*root + 1
+ if child >= hi {
+ break
+ }
+ if child+1 < hi && data[first+child].literal < data[first+child+1].literal {
+ child++
+ }
+ if data[first+root].literal > data[first+child].literal {
+ return
+ }
+ data[first+root], data[first+child] = data[first+child], data[first+root]
+ root = child
+ }
+}
+func doPivot(data []literalNode, lo, hi int) (midlo, midhi int) {
+ m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
+ if hi-lo > 40 {
+ // Tukey's ``Ninther,'' median of three medians of three.
+ s := (hi - lo) / 8
+ medianOfThree(data, lo, lo+s, lo+2*s)
+ medianOfThree(data, m, m-s, m+s)
+ medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
+ }
+ medianOfThree(data, lo, m, hi-1)
+
+ // Invariants are:
+ // data[lo] = pivot (set up by ChoosePivot)
+ // data[lo < i < a] < pivot
+ // data[a <= i < b] <= pivot
+ // data[b <= i < c] unexamined
+ // data[c <= i < hi-1] > pivot
+ // data[hi-1] >= pivot
+ pivot := lo
+ a, c := lo+1, hi-1
+
+ for ; a < c && data[a].literal < data[pivot].literal; a++ {
+ }
+ b := a
+ for {
+ for ; b < c && data[pivot].literal > data[b].literal; b++ { // data[b] <= pivot
+ }
+ for ; b < c && data[pivot].literal < data[c-1].literal; c-- { // data[c-1] > pivot
+ }
+ if b >= c {
+ break
+ }
+ // data[b] > pivot; data[c-1] <= pivot
+ data[b], data[c-1] = data[c-1], data[b]
+ b++
+ c--
+ }
+ // If hi-c<3 then there are duplicates (by property of median of nine).
+ // Let's be a bit more conservative, and set border to 5.
+ protect := hi-c < 5
+ if !protect && hi-c < (hi-lo)/4 {
+ // Lets test some points for equality to pivot
+ dups := 0
+ if data[pivot].literal > data[hi-1].literal { // data[hi-1] = pivot
+ data[c], data[hi-1] = data[hi-1], data[c]
+ c++
+ dups++
+ }
+ if data[b-1].literal > data[pivot].literal { // data[b-1] = pivot
+ b--
+ dups++
+ }
+ // m-lo = (hi-lo)/2 > 6
+ // b-lo > (hi-lo)*3/4-1 > 8
+ // ==> m < b ==> data[m] <= pivot
+ if data[m].literal > data[pivot].literal { // data[m] = pivot
+ data[m], data[b-1] = data[b-1], data[m]
+ b--
+ dups++
+ }
+ // if at least 2 points are equal to pivot, assume skewed distribution
+ protect = dups > 1
+ }
+ if protect {
+ // Protect against a lot of duplicates
+ // Add invariant:
+ // data[a <= i < b] unexamined
+ // data[b <= i < c] = pivot
+ for {
+ for ; a < b && data[b-1].literal > data[pivot].literal; b-- { // data[b] == pivot
+ }
+ for ; a < b && data[a].literal < data[pivot].literal; a++ { // data[a] < pivot
+ }
+ if a >= b {
+ break
+ }
+ // data[a] == pivot; data[b-1] < pivot
+ data[a], data[b-1] = data[b-1], data[a]
+ a++
+ b--
+ }
+ }
+ // Swap pivot into middle
+ data[pivot], data[b-1] = data[b-1], data[pivot]
+ return b - 1, c
+}
+
+// Insertion sort
+func insertionSort(data []literalNode, a, b int) {
+ for i := a + 1; i < b; i++ {
+ for j := i; j > a && data[j].literal < data[j-1].literal; j-- {
+ data[j], data[j-1] = data[j-1], data[j]
+ }
+ }
+}
+
+// maxDepth returns a threshold at which quicksort should switch
+// to heapsort. It returns 2*ceil(lg(n+1)).
+func maxDepth(n int) int {
+ var depth int
+ for i := n; i > 0; i >>= 1 {
+ depth++
+ }
+ return depth * 2
+}
+
+// medianOfThree moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
+func medianOfThree(data []literalNode, m1, m0, m2 int) {
+ // sort 3 elements
+ if data[m1].literal < data[m0].literal {
+ data[m1], data[m0] = data[m0], data[m1]
+ }
+ // data[m0] <= data[m1]
+ if data[m2].literal < data[m1].literal {
+ data[m2], data[m1] = data[m1], data[m2]
+ // data[m0] <= data[m2] && data[m1] < data[m2]
+ if data[m1].literal < data[m0].literal {
+ data[m1], data[m0] = data[m0], data[m1]
+ }
+ }
+ // now data[m0] <= data[m1] <= data[m2]
+}
diff --git a/vendor/github.com/klauspost/compress/flate/token.go b/vendor/github.com/klauspost/compress/flate/token.go
index b3df0d894..099c0ddbc 100644
--- a/vendor/github.com/klauspost/compress/flate/token.go
+++ b/vendor/github.com/klauspost/compress/flate/token.go
@@ -184,9 +184,7 @@ func (t *tokens) indexTokens(in []token) {
t.Reset()
for _, tok := range in {
if tok < matchType {
- t.tokens[t.n] = tok
- t.litHist[tok]++
- t.n++
+ t.AddLiteral(tok.literal())
continue
}
t.AddMatch(uint32(tok.length()), tok.offset())
@@ -211,43 +209,53 @@ func (t *tokens) AddLiteral(lit byte) {
t.nLits++
}
+// from https://stackoverflow.com/a/28730362
+func mFastLog2(val float32) float32 {
+ ux := int32(math.Float32bits(val))
+ log2 := (float32)(((ux >> 23) & 255) - 128)
+ ux &= -0x7f800001
+ ux += 127 << 23
+ uval := math.Float32frombits(uint32(ux))
+ log2 += ((-0.34484843)*uval+2.02466578)*uval - 0.67487759
+ return log2
+}
+
// EstimatedBits will return an minimum size estimated by an *optimal*
// compression of the block.
// The size of the block
func (t *tokens) EstimatedBits() int {
- shannon := float64(0)
+ shannon := float32(0)
bits := int(0)
nMatches := 0
if t.nLits > 0 {
- invTotal := 1.0 / float64(t.nLits)
+ invTotal := 1.0 / float32(t.nLits)
for _, v := range t.litHist[:] {
if v > 0 {
- n := float64(v)
- shannon += math.Ceil(-math.Log2(n*invTotal) * n)
+ n := float32(v)
+ shannon += -mFastLog2(n*invTotal) * n
}
}
// Just add 15 for EOB
shannon += 15
- for _, v := range t.extraHist[1 : literalCount-256] {
+ for i, v := range t.extraHist[1 : literalCount-256] {
if v > 0 {
- n := float64(v)
- shannon += math.Ceil(-math.Log2(n*invTotal) * n)
- bits += int(lengthExtraBits[v&31]) * int(v)
+ n := float32(v)
+ shannon += -mFastLog2(n*invTotal) * n
+ bits += int(lengthExtraBits[i&31]) * int(v)
nMatches += int(v)
}
}
}
if nMatches > 0 {
- invTotal := 1.0 / float64(nMatches)
- for _, v := range t.offHist[:offsetCodeCount] {
+ invTotal := 1.0 / float32(nMatches)
+ for i, v := range t.offHist[:offsetCodeCount] {
if v > 0 {
- n := float64(v)
- shannon += math.Ceil(-math.Log2(n*invTotal) * n)
- bits += int(offsetExtraBits[v&31]) * int(n)
+ n := float32(v)
+ shannon += -mFastLog2(n*invTotal) * n
+ bits += int(offsetExtraBits[i&31]) * int(v)
}
}
}
-
return int(shannon) + bits
}