summaryrefslogtreecommitdiff
path: root/vendor/github.com/klauspost/compress/fse/README.md
diff options
context:
space:
mode:
authorDaniel J Walsh <dwalsh@redhat.com>2019-08-01 03:46:14 -0400
committerDaniel J Walsh <dwalsh@redhat.com>2019-08-01 03:46:14 -0400
commit9d6dce119949d340ebb42becae018a3c11148690 (patch)
treec0bb999f9bddbc9379f9f7b159194d35c077fb36 /vendor/github.com/klauspost/compress/fse/README.md
parent39de184b8bfb14954f77190f0e6127c1ddc363c0 (diff)
downloadpodman-9d6dce119949d340ebb42becae018a3c11148690.tar.gz
podman-9d6dce119949d340ebb42becae018a3c11148690.tar.bz2
podman-9d6dce119949d340ebb42becae018a3c11148690.zip
github.com/containers/storage v1.12.13
Signed-off-by: Daniel J Walsh <dwalsh@redhat.com>
Diffstat (limited to 'vendor/github.com/klauspost/compress/fse/README.md')
-rw-r--r--vendor/github.com/klauspost/compress/fse/README.md79
1 files changed, 79 insertions, 0 deletions
diff --git a/vendor/github.com/klauspost/compress/fse/README.md b/vendor/github.com/klauspost/compress/fse/README.md
new file mode 100644
index 000000000..ea7324da6
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/fse/README.md
@@ -0,0 +1,79 @@
+# Finite State Entropy
+
+This package provides Finite State Entropy encoding and decoding.
+
+Finite State Entropy (also referenced as [tANS](https://en.wikipedia.org/wiki/Asymmetric_numeral_systems#tANS))
+encoding provides a fast near-optimal symbol encoding/decoding
+for byte blocks as implemented in [zstandard](https://github.com/facebook/zstd).
+
+This can be used for compressing input with a lot of similar input values to the smallest number of bytes.
+This does not perform any multi-byte [dictionary coding](https://en.wikipedia.org/wiki/Dictionary_coder) as LZ coders,
+but it can be used as a secondary step to compressors (like Snappy) that does not do entropy encoding.
+
+* [Godoc documentation](https://godoc.org/github.com/klauspost/compress/fse)
+
+## News
+
+ * Feb 2018: First implementation released. Consider this beta software for now.
+
+# Usage
+
+This package provides a low level interface that allows to compress single independent blocks.
+
+Each block is separate, and there is no built in integrity checks.
+This means that the caller should keep track of block sizes and also do checksums if needed.
+
+Compressing a block is done via the [`Compress`](https://godoc.org/github.com/klauspost/compress/fse#Compress) function.
+You must provide input and will receive the output and maybe an error.
+
+These error values can be returned:
+
+| Error | Description |
+|---------------------|-----------------------------------------------------------------------------|
+| `<nil>` | Everything ok, output is returned |
+| `ErrIncompressible` | Returned when input is judged to be too hard to compress |
+| `ErrUseRLE` | Returned from the compressor when the input is a single byte value repeated |
+| `(error)` | An internal error occurred. |
+
+As can be seen above there are errors that will be returned even under normal operation so it is important to handle these.
+
+To reduce allocations you can provide a [`Scratch`](https://godoc.org/github.com/klauspost/compress/fse#Scratch) object
+that can be re-used for successive calls. Both compression and decompression accepts a `Scratch` object, and the same
+object can be used for both.
+
+Be aware, that when re-using a `Scratch` object that the *output* buffer is also re-used, so if you are still using this
+you must set the `Out` field in the scratch to nil. The same buffer is used for compression and decompression output.
+
+Decompressing is done by calling the [`Decompress`](https://godoc.org/github.com/klauspost/compress/fse#Decompress) function.
+You must provide the output from the compression stage, at exactly the size you got back. If you receive an error back
+your input was likely corrupted.
+
+It is important to note that a successful decoding does *not* mean your output matches your original input.
+There are no integrity checks, so relying on errors from the decompressor does not assure your data is valid.
+
+For more detailed usage, see examples in the [godoc documentation](https://godoc.org/github.com/klauspost/compress/fse#pkg-examples).
+
+# Performance
+
+A lot of factors are affecting speed. Block sizes and compressibility of the material are primary factors.
+All compression functions are currently only running on the calling goroutine so only one core will be used per block.
+
+The compressor is significantly faster if symbols are kept as small as possible. The highest byte value of the input
+is used to reduce some of the processing, so if all your input is above byte value 64 for instance, it may be
+beneficial to transpose all your input values down by 64.
+
+With moderate block sizes around 64k speed are typically 200MB/s per core for compression and
+around 300MB/s decompression speed.
+
+The same hardware typically does Huffman (deflate) encoding at 125MB/s and decompression at 100MB/s.
+
+# Plans
+
+At one point, more internals will be exposed to facilitate more "expert" usage of the components.
+
+A streaming interface is also likely to be implemented. Likely compatible with [FSE stream format](https://github.com/Cyan4973/FiniteStateEntropy/blob/dev/programs/fileio.c#L261).
+
+# Contributing
+
+Contributions are always welcome. Be aware that adding public functions will require good justification and breaking
+changes will likely not be accepted. If in doubt open an issue before writing the PR. \ No newline at end of file