diff options
author | dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> | 2021-05-10 10:16:27 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-05-10 10:16:27 +0000 |
commit | d2f7d5cbabf8ce1057f2d04a6318cb76ad6488b3 (patch) | |
tree | 5c7ddaf638811fa57de746069bc64c10a26995dc /vendor/github.com/pquerna/ffjson/fflib/v1 | |
parent | 54bed1025d07bc5f77ee4e1e7f942157e211ec0a (diff) | |
download | podman-d2f7d5cbabf8ce1057f2d04a6318cb76ad6488b3.tar.gz podman-d2f7d5cbabf8ce1057f2d04a6318cb76ad6488b3.tar.bz2 podman-d2f7d5cbabf8ce1057f2d04a6318cb76ad6488b3.zip |
Bump github.com/containers/storage from 1.30.1 to 1.30.2
Bumps [github.com/containers/storage](https://github.com/containers/storage) from 1.30.1 to 1.30.2.
- [Release notes](https://github.com/containers/storage/releases)
- [Changelog](https://github.com/containers/storage/blob/master/docs/containers-storage-changes.md)
- [Commits](https://github.com/containers/storage/compare/v1.30.1...v1.30.2)
Signed-off-by: dependabot[bot] <support@github.com>
Diffstat (limited to 'vendor/github.com/pquerna/ffjson/fflib/v1')
17 files changed, 0 insertions, 6782 deletions
diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/buffer.go b/vendor/github.com/pquerna/ffjson/fflib/v1/buffer.go deleted file mode 100644 index 7f63a8582..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/buffer.go +++ /dev/null @@ -1,421 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package v1 - -// Simple byte buffer for marshaling data. - -import ( - "bytes" - "encoding/json" - "errors" - "io" - "unicode/utf8" -) - -type grower interface { - Grow(n int) -} - -type truncater interface { - Truncate(n int) - Reset() -} - -type bytesReader interface { - Bytes() []byte - String() string -} - -type runeWriter interface { - WriteRune(r rune) (n int, err error) -} - -type stringWriter interface { - WriteString(s string) (n int, err error) -} - -type lener interface { - Len() int -} - -type rewinder interface { - Rewind(n int) (err error) -} - -type encoder interface { - Encode(interface{}) error -} - -// TODO(pquerna): continue to reduce these interfaces - -type EncodingBuffer interface { - io.Writer - io.WriterTo - io.ByteWriter - stringWriter - truncater - grower - rewinder - encoder -} - -type DecodingBuffer interface { - io.ReadWriter - io.ByteWriter - stringWriter - runeWriter - truncater - grower - bytesReader - lener -} - -// A Buffer is a variable-sized buffer of bytes with Read and Write methods. -// The zero value for Buffer is an empty buffer ready to use. -type Buffer struct { - buf []byte // contents are the bytes buf[off : len(buf)] - off int // read at &buf[off], write at &buf[len(buf)] - runeBytes [utf8.UTFMax]byte // avoid allocation of slice on each WriteByte or Rune - encoder *json.Encoder - skipTrailingByte bool -} - -// ErrTooLarge is passed to panic if memory cannot be allocated to store data in a buffer. -var ErrTooLarge = errors.New("fflib.v1.Buffer: too large") - -// Bytes returns a slice of the contents of the unread portion of the buffer; -// len(b.Bytes()) == b.Len(). If the caller changes the contents of the -// returned slice, the contents of the buffer will change provided there -// are no intervening method calls on the Buffer. -func (b *Buffer) Bytes() []byte { return b.buf[b.off:] } - -// String returns the contents of the unread portion of the buffer -// as a string. If the Buffer is a nil pointer, it returns "<nil>". -func (b *Buffer) String() string { - if b == nil { - // Special case, useful in debugging. - return "<nil>" - } - return string(b.buf[b.off:]) -} - -// Len returns the number of bytes of the unread portion of the buffer; -// b.Len() == len(b.Bytes()). -func (b *Buffer) Len() int { return len(b.buf) - b.off } - -// Truncate discards all but the first n unread bytes from the buffer. -// It panics if n is negative or greater than the length of the buffer. -func (b *Buffer) Truncate(n int) { - if n == 0 { - b.off = 0 - b.buf = b.buf[0:0] - } else { - b.buf = b.buf[0 : b.off+n] - } -} - -// Reset resets the buffer so it has no content. -// b.Reset() is the same as b.Truncate(0). -func (b *Buffer) Reset() { b.Truncate(0) } - -// grow grows the buffer to guarantee space for n more bytes. -// It returns the index where bytes should be written. -// If the buffer can't grow it will panic with ErrTooLarge. -func (b *Buffer) grow(n int) int { - // If we have no buffer, get one from the pool - m := b.Len() - if m == 0 { - if b.buf == nil { - b.buf = makeSlice(2 * n) - b.off = 0 - } else if b.off != 0 { - // If buffer is empty, reset to recover space. - b.Truncate(0) - } - } - if len(b.buf)+n > cap(b.buf) { - var buf []byte - if m+n <= cap(b.buf)/2 { - // We can slide things down instead of allocating a new - // slice. We only need m+n <= cap(b.buf) to slide, but - // we instead let capacity get twice as large so we - // don't spend all our time copying. - copy(b.buf[:], b.buf[b.off:]) - buf = b.buf[:m] - } else { - // not enough space anywhere - buf = makeSlice(2*cap(b.buf) + n) - copy(buf, b.buf[b.off:]) - Pool(b.buf) - b.buf = buf - } - b.off = 0 - } - b.buf = b.buf[0 : b.off+m+n] - return b.off + m -} - -// Grow grows the buffer's capacity, if necessary, to guarantee space for -// another n bytes. After Grow(n), at least n bytes can be written to the -// buffer without another allocation. -// If n is negative, Grow will panic. -// If the buffer can't grow it will panic with ErrTooLarge. -func (b *Buffer) Grow(n int) { - if n < 0 { - panic("bytes.Buffer.Grow: negative count") - } - m := b.grow(n) - b.buf = b.buf[0:m] -} - -// Write appends the contents of p to the buffer, growing the buffer as -// needed. The return value n is the length of p; err is always nil. If the -// buffer becomes too large, Write will panic with ErrTooLarge. -func (b *Buffer) Write(p []byte) (n int, err error) { - if b.skipTrailingByte { - p = p[:len(p)-1] - } - m := b.grow(len(p)) - return copy(b.buf[m:], p), nil -} - -// WriteString appends the contents of s to the buffer, growing the buffer as -// needed. The return value n is the length of s; err is always nil. If the -// buffer becomes too large, WriteString will panic with ErrTooLarge. -func (b *Buffer) WriteString(s string) (n int, err error) { - m := b.grow(len(s)) - return copy(b.buf[m:], s), nil -} - -// MinRead is the minimum slice size passed to a Read call by -// Buffer.ReadFrom. As long as the Buffer has at least MinRead bytes beyond -// what is required to hold the contents of r, ReadFrom will not grow the -// underlying buffer. -const minRead = 512 - -// ReadFrom reads data from r until EOF and appends it to the buffer, growing -// the buffer as needed. The return value n is the number of bytes read. Any -// error except io.EOF encountered during the read is also returned. If the -// buffer becomes too large, ReadFrom will panic with ErrTooLarge. -func (b *Buffer) ReadFrom(r io.Reader) (n int64, err error) { - // If buffer is empty, reset to recover space. - if b.off >= len(b.buf) { - b.Truncate(0) - } - for { - if free := cap(b.buf) - len(b.buf); free < minRead { - // not enough space at end - newBuf := b.buf - if b.off+free < minRead { - // not enough space using beginning of buffer; - // double buffer capacity - newBuf = makeSlice(2*cap(b.buf) + minRead) - } - copy(newBuf, b.buf[b.off:]) - Pool(b.buf) - b.buf = newBuf[:len(b.buf)-b.off] - b.off = 0 - } - m, e := r.Read(b.buf[len(b.buf):cap(b.buf)]) - b.buf = b.buf[0 : len(b.buf)+m] - n += int64(m) - if e == io.EOF { - break - } - if e != nil { - return n, e - } - } - return n, nil // err is EOF, so return nil explicitly -} - -// WriteTo writes data to w until the buffer is drained or an error occurs. -// The return value n is the number of bytes written; it always fits into an -// int, but it is int64 to match the io.WriterTo interface. Any error -// encountered during the write is also returned. -func (b *Buffer) WriteTo(w io.Writer) (n int64, err error) { - if b.off < len(b.buf) { - nBytes := b.Len() - m, e := w.Write(b.buf[b.off:]) - if m > nBytes { - panic("bytes.Buffer.WriteTo: invalid Write count") - } - b.off += m - n = int64(m) - if e != nil { - return n, e - } - // all bytes should have been written, by definition of - // Write method in io.Writer - if m != nBytes { - return n, io.ErrShortWrite - } - } - // Buffer is now empty; reset. - b.Truncate(0) - return -} - -// WriteByte appends the byte c to the buffer, growing the buffer as needed. -// The returned error is always nil, but is included to match bufio.Writer's -// WriteByte. If the buffer becomes too large, WriteByte will panic with -// ErrTooLarge. -func (b *Buffer) WriteByte(c byte) error { - m := b.grow(1) - b.buf[m] = c - return nil -} - -func (b *Buffer) Rewind(n int) error { - b.buf = b.buf[:len(b.buf)-n] - return nil -} - -func (b *Buffer) Encode(v interface{}) error { - if b.encoder == nil { - b.encoder = json.NewEncoder(b) - } - b.skipTrailingByte = true - err := b.encoder.Encode(v) - b.skipTrailingByte = false - return err -} - -// WriteRune appends the UTF-8 encoding of Unicode code point r to the -// buffer, returning its length and an error, which is always nil but is -// included to match bufio.Writer's WriteRune. The buffer is grown as needed; -// if it becomes too large, WriteRune will panic with ErrTooLarge. -func (b *Buffer) WriteRune(r rune) (n int, err error) { - if r < utf8.RuneSelf { - b.WriteByte(byte(r)) - return 1, nil - } - n = utf8.EncodeRune(b.runeBytes[0:], r) - b.Write(b.runeBytes[0:n]) - return n, nil -} - -// Read reads the next len(p) bytes from the buffer or until the buffer -// is drained. The return value n is the number of bytes read. If the -// buffer has no data to return, err is io.EOF (unless len(p) is zero); -// otherwise it is nil. -func (b *Buffer) Read(p []byte) (n int, err error) { - if b.off >= len(b.buf) { - // Buffer is empty, reset to recover space. - b.Truncate(0) - if len(p) == 0 { - return - } - return 0, io.EOF - } - n = copy(p, b.buf[b.off:]) - b.off += n - return -} - -// Next returns a slice containing the next n bytes from the buffer, -// advancing the buffer as if the bytes had been returned by Read. -// If there are fewer than n bytes in the buffer, Next returns the entire buffer. -// The slice is only valid until the next call to a read or write method. -func (b *Buffer) Next(n int) []byte { - m := b.Len() - if n > m { - n = m - } - data := b.buf[b.off : b.off+n] - b.off += n - return data -} - -// ReadByte reads and returns the next byte from the buffer. -// If no byte is available, it returns error io.EOF. -func (b *Buffer) ReadByte() (c byte, err error) { - if b.off >= len(b.buf) { - // Buffer is empty, reset to recover space. - b.Truncate(0) - return 0, io.EOF - } - c = b.buf[b.off] - b.off++ - return c, nil -} - -// ReadRune reads and returns the next UTF-8-encoded -// Unicode code point from the buffer. -// If no bytes are available, the error returned is io.EOF. -// If the bytes are an erroneous UTF-8 encoding, it -// consumes one byte and returns U+FFFD, 1. -func (b *Buffer) ReadRune() (r rune, size int, err error) { - if b.off >= len(b.buf) { - // Buffer is empty, reset to recover space. - b.Truncate(0) - return 0, 0, io.EOF - } - c := b.buf[b.off] - if c < utf8.RuneSelf { - b.off++ - return rune(c), 1, nil - } - r, n := utf8.DecodeRune(b.buf[b.off:]) - b.off += n - return r, n, nil -} - -// ReadBytes reads until the first occurrence of delim in the input, -// returning a slice containing the data up to and including the delimiter. -// If ReadBytes encounters an error before finding a delimiter, -// it returns the data read before the error and the error itself (often io.EOF). -// ReadBytes returns err != nil if and only if the returned data does not end in -// delim. -func (b *Buffer) ReadBytes(delim byte) (line []byte, err error) { - slice, err := b.readSlice(delim) - // return a copy of slice. The buffer's backing array may - // be overwritten by later calls. - line = append(line, slice...) - return -} - -// readSlice is like ReadBytes but returns a reference to internal buffer data. -func (b *Buffer) readSlice(delim byte) (line []byte, err error) { - i := bytes.IndexByte(b.buf[b.off:], delim) - end := b.off + i + 1 - if i < 0 { - end = len(b.buf) - err = io.EOF - } - line = b.buf[b.off:end] - b.off = end - return line, err -} - -// ReadString reads until the first occurrence of delim in the input, -// returning a string containing the data up to and including the delimiter. -// If ReadString encounters an error before finding a delimiter, -// it returns the data read before the error and the error itself (often io.EOF). -// ReadString returns err != nil if and only if the returned data does not end -// in delim. -func (b *Buffer) ReadString(delim byte) (line string, err error) { - slice, err := b.readSlice(delim) - return string(slice), err -} - -// NewBuffer creates and initializes a new Buffer using buf as its initial -// contents. It is intended to prepare a Buffer to read existing data. It -// can also be used to size the internal buffer for writing. To do that, -// buf should have the desired capacity but a length of zero. -// -// In most cases, new(Buffer) (or just declaring a Buffer variable) is -// sufficient to initialize a Buffer. -func NewBuffer(buf []byte) *Buffer { return &Buffer{buf: buf} } - -// NewBufferString creates and initializes a new Buffer using string s as its -// initial contents. It is intended to prepare a buffer to read an existing -// string. -// -// In most cases, new(Buffer) (or just declaring a Buffer variable) is -// sufficient to initialize a Buffer. -func NewBufferString(s string) *Buffer { - return &Buffer{buf: []byte(s)} -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/buffer_nopool.go b/vendor/github.com/pquerna/ffjson/fflib/v1/buffer_nopool.go deleted file mode 100644 index b84af6ff9..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/buffer_nopool.go +++ /dev/null @@ -1,11 +0,0 @@ -// +build !go1.3 - -package v1 - -// Stub version of buffer_pool.go for Go 1.2, which doesn't have sync.Pool. - -func Pool(b []byte) {} - -func makeSlice(n int) []byte { - return make([]byte, n) -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/buffer_pool.go b/vendor/github.com/pquerna/ffjson/fflib/v1/buffer_pool.go deleted file mode 100644 index a021c57cf..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/buffer_pool.go +++ /dev/null @@ -1,105 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build go1.3 - -package v1 - -// Allocation pools for Buffers. - -import "sync" - -var pools [14]sync.Pool -var pool64 *sync.Pool - -func init() { - var i uint - // TODO(pquerna): add science here around actual pool sizes. - for i = 6; i < 20; i++ { - n := 1 << i - pools[poolNum(n)].New = func() interface{} { return make([]byte, 0, n) } - } - pool64 = &pools[0] -} - -// This returns the pool number that will give a buffer of -// at least 'i' bytes. -func poolNum(i int) int { - // TODO(pquerna): convert to log2 w/ bsr asm instruction: - // <https://groups.google.com/forum/#!topic/golang-nuts/uAb5J1_y7ns> - if i <= 64 { - return 0 - } else if i <= 128 { - return 1 - } else if i <= 256 { - return 2 - } else if i <= 512 { - return 3 - } else if i <= 1024 { - return 4 - } else if i <= 2048 { - return 5 - } else if i <= 4096 { - return 6 - } else if i <= 8192 { - return 7 - } else if i <= 16384 { - return 8 - } else if i <= 32768 { - return 9 - } else if i <= 65536 { - return 10 - } else if i <= 131072 { - return 11 - } else if i <= 262144 { - return 12 - } else if i <= 524288 { - return 13 - } else { - return -1 - } -} - -// Send a buffer to the Pool to reuse for other instances. -// You may no longer utilize the content of the buffer, since it may be used -// by other goroutines. -func Pool(b []byte) { - if b == nil { - return - } - c := cap(b) - - // Our smallest buffer is 64 bytes, so we discard smaller buffers. - if c < 64 { - return - } - - // We need to put the incoming buffer into the NEXT buffer, - // since a buffer guarantees AT LEAST the number of bytes available - // that is the top of this buffer. - // That is the reason for dividing the cap by 2, so it gets into the NEXT bucket. - // We add 2 to avoid rounding down if size is exactly power of 2. - pn := poolNum((c + 2) >> 1) - if pn != -1 { - pools[pn].Put(b[0:0]) - } - // if we didn't have a slot for this []byte, we just drop it and let the GC - // take care of it. -} - -// makeSlice allocates a slice of size n -- it will attempt to use a pool'ed -// instance whenever possible. -func makeSlice(n int) []byte { - if n <= 64 { - return pool64.Get().([]byte)[0:n] - } - - pn := poolNum(n) - - if pn != -1 { - return pools[pn].Get().([]byte)[0:n] - } else { - return make([]byte, n) - } -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/bytenum.go b/vendor/github.com/pquerna/ffjson/fflib/v1/bytenum.go deleted file mode 100644 index 08477409a..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/bytenum.go +++ /dev/null @@ -1,88 +0,0 @@ -/** - * Copyright 2014 Paul Querna - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -/* Portions of this file are on Go stdlib's strconv/iota.go */ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package v1 - -import ( - "github.com/pquerna/ffjson/fflib/v1/internal" -) - -func ParseFloat(s []byte, bitSize int) (f float64, err error) { - return internal.ParseFloat(s, bitSize) -} - -// ParseUint is like ParseInt but for unsigned numbers, and oeprating on []byte -func ParseUint(s []byte, base int, bitSize int) (n uint64, err error) { - if len(s) == 1 { - switch s[0] { - case '0': - return 0, nil - case '1': - return 1, nil - case '2': - return 2, nil - case '3': - return 3, nil - case '4': - return 4, nil - case '5': - return 5, nil - case '6': - return 6, nil - case '7': - return 7, nil - case '8': - return 8, nil - case '9': - return 9, nil - } - } - return internal.ParseUint(s, base, bitSize) -} - -func ParseInt(s []byte, base int, bitSize int) (i int64, err error) { - if len(s) == 1 { - switch s[0] { - case '0': - return 0, nil - case '1': - return 1, nil - case '2': - return 2, nil - case '3': - return 3, nil - case '4': - return 4, nil - case '5': - return 5, nil - case '6': - return 6, nil - case '7': - return 7, nil - case '8': - return 8, nil - case '9': - return 9, nil - } - } - return internal.ParseInt(s, base, bitSize) -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/decimal.go b/vendor/github.com/pquerna/ffjson/fflib/v1/decimal.go deleted file mode 100644 index 069df7a02..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/decimal.go +++ /dev/null @@ -1,378 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Multiprecision decimal numbers. -// For floating-point formatting only; not general purpose. -// Only operations are assign and (binary) left/right shift. -// Can do binary floating point in multiprecision decimal precisely -// because 2 divides 10; cannot do decimal floating point -// in multiprecision binary precisely. - -package v1 - -type decimal struct { - d [800]byte // digits - nd int // number of digits used - dp int // decimal point - neg bool - trunc bool // discarded nonzero digits beyond d[:nd] -} - -func (a *decimal) String() string { - n := 10 + a.nd - if a.dp > 0 { - n += a.dp - } - if a.dp < 0 { - n += -a.dp - } - - buf := make([]byte, n) - w := 0 - switch { - case a.nd == 0: - return "0" - - case a.dp <= 0: - // zeros fill space between decimal point and digits - buf[w] = '0' - w++ - buf[w] = '.' - w++ - w += digitZero(buf[w : w+-a.dp]) - w += copy(buf[w:], a.d[0:a.nd]) - - case a.dp < a.nd: - // decimal point in middle of digits - w += copy(buf[w:], a.d[0:a.dp]) - buf[w] = '.' - w++ - w += copy(buf[w:], a.d[a.dp:a.nd]) - - default: - // zeros fill space between digits and decimal point - w += copy(buf[w:], a.d[0:a.nd]) - w += digitZero(buf[w : w+a.dp-a.nd]) - } - return string(buf[0:w]) -} - -func digitZero(dst []byte) int { - for i := range dst { - dst[i] = '0' - } - return len(dst) -} - -// trim trailing zeros from number. -// (They are meaningless; the decimal point is tracked -// independent of the number of digits.) -func trim(a *decimal) { - for a.nd > 0 && a.d[a.nd-1] == '0' { - a.nd-- - } - if a.nd == 0 { - a.dp = 0 - } -} - -// Assign v to a. -func (a *decimal) Assign(v uint64) { - var buf [24]byte - - // Write reversed decimal in buf. - n := 0 - for v > 0 { - v1 := v / 10 - v -= 10 * v1 - buf[n] = byte(v + '0') - n++ - v = v1 - } - - // Reverse again to produce forward decimal in a.d. - a.nd = 0 - for n--; n >= 0; n-- { - a.d[a.nd] = buf[n] - a.nd++ - } - a.dp = a.nd - trim(a) -} - -// Maximum shift that we can do in one pass without overflow. -// Signed int has 31 bits, and we have to be able to accommodate 9<<k. -const maxShift = 27 - -// Binary shift right (* 2) by k bits. k <= maxShift to avoid overflow. -func rightShift(a *decimal, k uint) { - r := 0 // read pointer - w := 0 // write pointer - - // Pick up enough leading digits to cover first shift. - n := 0 - for ; n>>k == 0; r++ { - if r >= a.nd { - if n == 0 { - // a == 0; shouldn't get here, but handle anyway. - a.nd = 0 - return - } - for n>>k == 0 { - n = n * 10 - r++ - } - break - } - c := int(a.d[r]) - n = n*10 + c - '0' - } - a.dp -= r - 1 - - // Pick up a digit, put down a digit. - for ; r < a.nd; r++ { - c := int(a.d[r]) - dig := n >> k - n -= dig << k - a.d[w] = byte(dig + '0') - w++ - n = n*10 + c - '0' - } - - // Put down extra digits. - for n > 0 { - dig := n >> k - n -= dig << k - if w < len(a.d) { - a.d[w] = byte(dig + '0') - w++ - } else if dig > 0 { - a.trunc = true - } - n = n * 10 - } - - a.nd = w - trim(a) -} - -// Cheat sheet for left shift: table indexed by shift count giving -// number of new digits that will be introduced by that shift. -// -// For example, leftcheats[4] = {2, "625"}. That means that -// if we are shifting by 4 (multiplying by 16), it will add 2 digits -// when the string prefix is "625" through "999", and one fewer digit -// if the string prefix is "000" through "624". -// -// Credit for this trick goes to Ken. - -type leftCheat struct { - delta int // number of new digits - cutoff string // minus one digit if original < a. -} - -var leftcheats = []leftCheat{ - // Leading digits of 1/2^i = 5^i. - // 5^23 is not an exact 64-bit floating point number, - // so have to use bc for the math. - /* - seq 27 | sed 's/^/5^/' | bc | - awk 'BEGIN{ print "\tleftCheat{ 0, \"\" }," } - { - log2 = log(2)/log(10) - printf("\tleftCheat{ %d, \"%s\" },\t// * %d\n", - int(log2*NR+1), $0, 2**NR) - }' - */ - {0, ""}, - {1, "5"}, // * 2 - {1, "25"}, // * 4 - {1, "125"}, // * 8 - {2, "625"}, // * 16 - {2, "3125"}, // * 32 - {2, "15625"}, // * 64 - {3, "78125"}, // * 128 - {3, "390625"}, // * 256 - {3, "1953125"}, // * 512 - {4, "9765625"}, // * 1024 - {4, "48828125"}, // * 2048 - {4, "244140625"}, // * 4096 - {4, "1220703125"}, // * 8192 - {5, "6103515625"}, // * 16384 - {5, "30517578125"}, // * 32768 - {5, "152587890625"}, // * 65536 - {6, "762939453125"}, // * 131072 - {6, "3814697265625"}, // * 262144 - {6, "19073486328125"}, // * 524288 - {7, "95367431640625"}, // * 1048576 - {7, "476837158203125"}, // * 2097152 - {7, "2384185791015625"}, // * 4194304 - {7, "11920928955078125"}, // * 8388608 - {8, "59604644775390625"}, // * 16777216 - {8, "298023223876953125"}, // * 33554432 - {8, "1490116119384765625"}, // * 67108864 - {9, "7450580596923828125"}, // * 134217728 -} - -// Is the leading prefix of b lexicographically less than s? -func prefixIsLessThan(b []byte, s string) bool { - for i := 0; i < len(s); i++ { - if i >= len(b) { - return true - } - if b[i] != s[i] { - return b[i] < s[i] - } - } - return false -} - -// Binary shift left (/ 2) by k bits. k <= maxShift to avoid overflow. -func leftShift(a *decimal, k uint) { - delta := leftcheats[k].delta - if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) { - delta-- - } - - r := a.nd // read index - w := a.nd + delta // write index - n := 0 - - // Pick up a digit, put down a digit. - for r--; r >= 0; r-- { - n += (int(a.d[r]) - '0') << k - quo := n / 10 - rem := n - 10*quo - w-- - if w < len(a.d) { - a.d[w] = byte(rem + '0') - } else if rem != 0 { - a.trunc = true - } - n = quo - } - - // Put down extra digits. - for n > 0 { - quo := n / 10 - rem := n - 10*quo - w-- - if w < len(a.d) { - a.d[w] = byte(rem + '0') - } else if rem != 0 { - a.trunc = true - } - n = quo - } - - a.nd += delta - if a.nd >= len(a.d) { - a.nd = len(a.d) - } - a.dp += delta - trim(a) -} - -// Binary shift left (k > 0) or right (k < 0). -func (a *decimal) Shift(k int) { - switch { - case a.nd == 0: - // nothing to do: a == 0 - case k > 0: - for k > maxShift { - leftShift(a, maxShift) - k -= maxShift - } - leftShift(a, uint(k)) - case k < 0: - for k < -maxShift { - rightShift(a, maxShift) - k += maxShift - } - rightShift(a, uint(-k)) - } -} - -// If we chop a at nd digits, should we round up? -func shouldRoundUp(a *decimal, nd int) bool { - if nd < 0 || nd >= a.nd { - return false - } - if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even - // if we truncated, a little higher than what's recorded - always round up - if a.trunc { - return true - } - return nd > 0 && (a.d[nd-1]-'0')%2 != 0 - } - // not halfway - digit tells all - return a.d[nd] >= '5' -} - -// Round a to nd digits (or fewer). -// If nd is zero, it means we're rounding -// just to the left of the digits, as in -// 0.09 -> 0.1. -func (a *decimal) Round(nd int) { - if nd < 0 || nd >= a.nd { - return - } - if shouldRoundUp(a, nd) { - a.RoundUp(nd) - } else { - a.RoundDown(nd) - } -} - -// Round a down to nd digits (or fewer). -func (a *decimal) RoundDown(nd int) { - if nd < 0 || nd >= a.nd { - return - } - a.nd = nd - trim(a) -} - -// Round a up to nd digits (or fewer). -func (a *decimal) RoundUp(nd int) { - if nd < 0 || nd >= a.nd { - return - } - - // round up - for i := nd - 1; i >= 0; i-- { - c := a.d[i] - if c < '9' { // can stop after this digit - a.d[i]++ - a.nd = i + 1 - return - } - } - - // Number is all 9s. - // Change to single 1 with adjusted decimal point. - a.d[0] = '1' - a.nd = 1 - a.dp++ -} - -// Extract integer part, rounded appropriately. -// No guarantees about overflow. -func (a *decimal) RoundedInteger() uint64 { - if a.dp > 20 { - return 0xFFFFFFFFFFFFFFFF - } - var i int - n := uint64(0) - for i = 0; i < a.dp && i < a.nd; i++ { - n = n*10 + uint64(a.d[i]-'0') - } - for ; i < a.dp; i++ { - n *= 10 - } - if shouldRoundUp(a, a.dp) { - n++ - } - return n -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/extfloat.go b/vendor/github.com/pquerna/ffjson/fflib/v1/extfloat.go deleted file mode 100644 index 508ddc6be..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/extfloat.go +++ /dev/null @@ -1,668 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package v1 - -// An extFloat represents an extended floating-point number, with more -// precision than a float64. It does not try to save bits: the -// number represented by the structure is mant*(2^exp), with a negative -// sign if neg is true. -type extFloat struct { - mant uint64 - exp int - neg bool -} - -// Powers of ten taken from double-conversion library. -// http://code.google.com/p/double-conversion/ -const ( - firstPowerOfTen = -348 - stepPowerOfTen = 8 -) - -var smallPowersOfTen = [...]extFloat{ - {1 << 63, -63, false}, // 1 - {0xa << 60, -60, false}, // 1e1 - {0x64 << 57, -57, false}, // 1e2 - {0x3e8 << 54, -54, false}, // 1e3 - {0x2710 << 50, -50, false}, // 1e4 - {0x186a0 << 47, -47, false}, // 1e5 - {0xf4240 << 44, -44, false}, // 1e6 - {0x989680 << 40, -40, false}, // 1e7 -} - -var powersOfTen = [...]extFloat{ - {0xfa8fd5a0081c0288, -1220, false}, // 10^-348 - {0xbaaee17fa23ebf76, -1193, false}, // 10^-340 - {0x8b16fb203055ac76, -1166, false}, // 10^-332 - {0xcf42894a5dce35ea, -1140, false}, // 10^-324 - {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316 - {0xe61acf033d1a45df, -1087, false}, // 10^-308 - {0xab70fe17c79ac6ca, -1060, false}, // 10^-300 - {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292 - {0xbe5691ef416bd60c, -1007, false}, // 10^-284 - {0x8dd01fad907ffc3c, -980, false}, // 10^-276 - {0xd3515c2831559a83, -954, false}, // 10^-268 - {0x9d71ac8fada6c9b5, -927, false}, // 10^-260 - {0xea9c227723ee8bcb, -901, false}, // 10^-252 - {0xaecc49914078536d, -874, false}, // 10^-244 - {0x823c12795db6ce57, -847, false}, // 10^-236 - {0xc21094364dfb5637, -821, false}, // 10^-228 - {0x9096ea6f3848984f, -794, false}, // 10^-220 - {0xd77485cb25823ac7, -768, false}, // 10^-212 - {0xa086cfcd97bf97f4, -741, false}, // 10^-204 - {0xef340a98172aace5, -715, false}, // 10^-196 - {0xb23867fb2a35b28e, -688, false}, // 10^-188 - {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180 - {0xc5dd44271ad3cdba, -635, false}, // 10^-172 - {0x936b9fcebb25c996, -608, false}, // 10^-164 - {0xdbac6c247d62a584, -582, false}, // 10^-156 - {0xa3ab66580d5fdaf6, -555, false}, // 10^-148 - {0xf3e2f893dec3f126, -529, false}, // 10^-140 - {0xb5b5ada8aaff80b8, -502, false}, // 10^-132 - {0x87625f056c7c4a8b, -475, false}, // 10^-124 - {0xc9bcff6034c13053, -449, false}, // 10^-116 - {0x964e858c91ba2655, -422, false}, // 10^-108 - {0xdff9772470297ebd, -396, false}, // 10^-100 - {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92 - {0xf8a95fcf88747d94, -343, false}, // 10^-84 - {0xb94470938fa89bcf, -316, false}, // 10^-76 - {0x8a08f0f8bf0f156b, -289, false}, // 10^-68 - {0xcdb02555653131b6, -263, false}, // 10^-60 - {0x993fe2c6d07b7fac, -236, false}, // 10^-52 - {0xe45c10c42a2b3b06, -210, false}, // 10^-44 - {0xaa242499697392d3, -183, false}, // 10^-36 - {0xfd87b5f28300ca0e, -157, false}, // 10^-28 - {0xbce5086492111aeb, -130, false}, // 10^-20 - {0x8cbccc096f5088cc, -103, false}, // 10^-12 - {0xd1b71758e219652c, -77, false}, // 10^-4 - {0x9c40000000000000, -50, false}, // 10^4 - {0xe8d4a51000000000, -24, false}, // 10^12 - {0xad78ebc5ac620000, 3, false}, // 10^20 - {0x813f3978f8940984, 30, false}, // 10^28 - {0xc097ce7bc90715b3, 56, false}, // 10^36 - {0x8f7e32ce7bea5c70, 83, false}, // 10^44 - {0xd5d238a4abe98068, 109, false}, // 10^52 - {0x9f4f2726179a2245, 136, false}, // 10^60 - {0xed63a231d4c4fb27, 162, false}, // 10^68 - {0xb0de65388cc8ada8, 189, false}, // 10^76 - {0x83c7088e1aab65db, 216, false}, // 10^84 - {0xc45d1df942711d9a, 242, false}, // 10^92 - {0x924d692ca61be758, 269, false}, // 10^100 - {0xda01ee641a708dea, 295, false}, // 10^108 - {0xa26da3999aef774a, 322, false}, // 10^116 - {0xf209787bb47d6b85, 348, false}, // 10^124 - {0xb454e4a179dd1877, 375, false}, // 10^132 - {0x865b86925b9bc5c2, 402, false}, // 10^140 - {0xc83553c5c8965d3d, 428, false}, // 10^148 - {0x952ab45cfa97a0b3, 455, false}, // 10^156 - {0xde469fbd99a05fe3, 481, false}, // 10^164 - {0xa59bc234db398c25, 508, false}, // 10^172 - {0xf6c69a72a3989f5c, 534, false}, // 10^180 - {0xb7dcbf5354e9bece, 561, false}, // 10^188 - {0x88fcf317f22241e2, 588, false}, // 10^196 - {0xcc20ce9bd35c78a5, 614, false}, // 10^204 - {0x98165af37b2153df, 641, false}, // 10^212 - {0xe2a0b5dc971f303a, 667, false}, // 10^220 - {0xa8d9d1535ce3b396, 694, false}, // 10^228 - {0xfb9b7cd9a4a7443c, 720, false}, // 10^236 - {0xbb764c4ca7a44410, 747, false}, // 10^244 - {0x8bab8eefb6409c1a, 774, false}, // 10^252 - {0xd01fef10a657842c, 800, false}, // 10^260 - {0x9b10a4e5e9913129, 827, false}, // 10^268 - {0xe7109bfba19c0c9d, 853, false}, // 10^276 - {0xac2820d9623bf429, 880, false}, // 10^284 - {0x80444b5e7aa7cf85, 907, false}, // 10^292 - {0xbf21e44003acdd2d, 933, false}, // 10^300 - {0x8e679c2f5e44ff8f, 960, false}, // 10^308 - {0xd433179d9c8cb841, 986, false}, // 10^316 - {0x9e19db92b4e31ba9, 1013, false}, // 10^324 - {0xeb96bf6ebadf77d9, 1039, false}, // 10^332 - {0xaf87023b9bf0ee6b, 1066, false}, // 10^340 -} - -// floatBits returns the bits of the float64 that best approximates -// the extFloat passed as receiver. Overflow is set to true if -// the resulting float64 is ±Inf. -func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) { - f.Normalize() - - exp := f.exp + 63 - - // Exponent too small. - if exp < flt.bias+1 { - n := flt.bias + 1 - exp - f.mant >>= uint(n) - exp += n - } - - // Extract 1+flt.mantbits bits from the 64-bit mantissa. - mant := f.mant >> (63 - flt.mantbits) - if f.mant&(1<<(62-flt.mantbits)) != 0 { - // Round up. - mant += 1 - } - - // Rounding might have added a bit; shift down. - if mant == 2<<flt.mantbits { - mant >>= 1 - exp++ - } - - // Infinities. - if exp-flt.bias >= 1<<flt.expbits-1 { - // ±Inf - mant = 0 - exp = 1<<flt.expbits - 1 + flt.bias - overflow = true - } else if mant&(1<<flt.mantbits) == 0 { - // Denormalized? - exp = flt.bias - } - // Assemble bits. - bits = mant & (uint64(1)<<flt.mantbits - 1) - bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits - if f.neg { - bits |= 1 << (flt.mantbits + flt.expbits) - } - return -} - -// AssignComputeBounds sets f to the floating point value -// defined by mant, exp and precision given by flt. It returns -// lower, upper such that any number in the closed interval -// [lower, upper] is converted back to the same floating point number. -func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) { - f.mant = mant - f.exp = exp - int(flt.mantbits) - f.neg = neg - if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) { - // An exact integer - f.mant >>= uint(-f.exp) - f.exp = 0 - return *f, *f - } - expBiased := exp - flt.bias - - upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg} - if mant != 1<<flt.mantbits || expBiased == 1 { - lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg} - } else { - lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg} - } - return -} - -// Normalize normalizes f so that the highest bit of the mantissa is -// set, and returns the number by which the mantissa was left-shifted. -func (f *extFloat) Normalize() (shift uint) { - mant, exp := f.mant, f.exp - if mant == 0 { - return 0 - } - if mant>>(64-32) == 0 { - mant <<= 32 - exp -= 32 - } - if mant>>(64-16) == 0 { - mant <<= 16 - exp -= 16 - } - if mant>>(64-8) == 0 { - mant <<= 8 - exp -= 8 - } - if mant>>(64-4) == 0 { - mant <<= 4 - exp -= 4 - } - if mant>>(64-2) == 0 { - mant <<= 2 - exp -= 2 - } - if mant>>(64-1) == 0 { - mant <<= 1 - exp -= 1 - } - shift = uint(f.exp - exp) - f.mant, f.exp = mant, exp - return -} - -// Multiply sets f to the product f*g: the result is correctly rounded, -// but not normalized. -func (f *extFloat) Multiply(g extFloat) { - fhi, flo := f.mant>>32, uint64(uint32(f.mant)) - ghi, glo := g.mant>>32, uint64(uint32(g.mant)) - - // Cross products. - cross1 := fhi * glo - cross2 := flo * ghi - - // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo - f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32) - rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32) - // Round up. - rem += (1 << 31) - - f.mant += (rem >> 32) - f.exp = f.exp + g.exp + 64 -} - -var uint64pow10 = [...]uint64{ - 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, - 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, -} - -// AssignDecimal sets f to an approximate value mantissa*10^exp. It -// returns true if the value represented by f is guaranteed to be the -// best approximation of d after being rounded to a float64 or -// float32 depending on flt. -func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) { - const uint64digits = 19 - const errorscale = 8 - errors := 0 // An upper bound for error, computed in errorscale*ulp. - if trunc { - // the decimal number was truncated. - errors += errorscale / 2 - } - - f.mant = mantissa - f.exp = 0 - f.neg = neg - - // Multiply by powers of ten. - i := (exp10 - firstPowerOfTen) / stepPowerOfTen - if exp10 < firstPowerOfTen || i >= len(powersOfTen) { - return false - } - adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen - - // We multiply by exp%step - if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] { - // We can multiply the mantissa exactly. - f.mant *= uint64pow10[adjExp] - f.Normalize() - } else { - f.Normalize() - f.Multiply(smallPowersOfTen[adjExp]) - errors += errorscale / 2 - } - - // We multiply by 10 to the exp - exp%step. - f.Multiply(powersOfTen[i]) - if errors > 0 { - errors += 1 - } - errors += errorscale / 2 - - // Normalize - shift := f.Normalize() - errors <<= shift - - // Now f is a good approximation of the decimal. - // Check whether the error is too large: that is, if the mantissa - // is perturbated by the error, the resulting float64 will change. - // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits. - // - // In many cases the approximation will be good enough. - denormalExp := flt.bias - 63 - var extrabits uint - if f.exp <= denormalExp { - // f.mant * 2^f.exp is smaller than 2^(flt.bias+1). - extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp)) - } else { - extrabits = uint(63 - flt.mantbits) - } - - halfway := uint64(1) << (extrabits - 1) - mant_extra := f.mant & (1<<extrabits - 1) - - // Do a signed comparison here! If the error estimate could make - // the mantissa round differently for the conversion to double, - // then we can't give a definite answer. - if int64(halfway)-int64(errors) < int64(mant_extra) && - int64(mant_extra) < int64(halfway)+int64(errors) { - return false - } - return true -} - -// Frexp10 is an analogue of math.Frexp for decimal powers. It scales -// f by an approximate power of ten 10^-exp, and returns exp10, so -// that f*10^exp10 has the same value as the old f, up to an ulp, -// as well as the index of 10^-exp in the powersOfTen table. -func (f *extFloat) frexp10() (exp10, index int) { - // The constants expMin and expMax constrain the final value of the - // binary exponent of f. We want a small integral part in the result - // because finding digits of an integer requires divisions, whereas - // digits of the fractional part can be found by repeatedly multiplying - // by 10. - const expMin = -60 - const expMax = -32 - // Find power of ten such that x * 10^n has a binary exponent - // between expMin and expMax. - approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28. - i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen -Loop: - for { - exp := f.exp + powersOfTen[i].exp + 64 - switch { - case exp < expMin: - i++ - case exp > expMax: - i-- - default: - break Loop - } - } - // Apply the desired decimal shift on f. It will have exponent - // in the desired range. This is multiplication by 10^-exp10. - f.Multiply(powersOfTen[i]) - - return -(firstPowerOfTen + i*stepPowerOfTen), i -} - -// frexp10Many applies a common shift by a power of ten to a, b, c. -func frexp10Many(a, b, c *extFloat) (exp10 int) { - exp10, i := c.frexp10() - a.Multiply(powersOfTen[i]) - b.Multiply(powersOfTen[i]) - return -} - -// FixedDecimal stores in d the first n significant digits -// of the decimal representation of f. It returns false -// if it cannot be sure of the answer. -func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool { - if f.mant == 0 { - d.nd = 0 - d.dp = 0 - d.neg = f.neg - return true - } - if n == 0 { - panic("strconv: internal error: extFloat.FixedDecimal called with n == 0") - } - // Multiply by an appropriate power of ten to have a reasonable - // number to process. - f.Normalize() - exp10, _ := f.frexp10() - - shift := uint(-f.exp) - integer := uint32(f.mant >> shift) - fraction := f.mant - (uint64(integer) << shift) - ε := uint64(1) // ε is the uncertainty we have on the mantissa of f. - - // Write exactly n digits to d. - needed := n // how many digits are left to write. - integerDigits := 0 // the number of decimal digits of integer. - pow10 := uint64(1) // the power of ten by which f was scaled. - for i, pow := 0, uint64(1); i < 20; i++ { - if pow > uint64(integer) { - integerDigits = i - break - } - pow *= 10 - } - rest := integer - if integerDigits > needed { - // the integral part is already large, trim the last digits. - pow10 = uint64pow10[integerDigits-needed] - integer /= uint32(pow10) - rest -= integer * uint32(pow10) - } else { - rest = 0 - } - - // Write the digits of integer: the digits of rest are omitted. - var buf [32]byte - pos := len(buf) - for v := integer; v > 0; { - v1 := v / 10 - v -= 10 * v1 - pos-- - buf[pos] = byte(v + '0') - v = v1 - } - for i := pos; i < len(buf); i++ { - d.d[i-pos] = buf[i] - } - nd := len(buf) - pos - d.nd = nd - d.dp = integerDigits + exp10 - needed -= nd - - if needed > 0 { - if rest != 0 || pow10 != 1 { - panic("strconv: internal error, rest != 0 but needed > 0") - } - // Emit digits for the fractional part. Each time, 10*fraction - // fits in a uint64 without overflow. - for needed > 0 { - fraction *= 10 - ε *= 10 // the uncertainty scales as we multiply by ten. - if 2*ε > 1<<shift { - // the error is so large it could modify which digit to write, abort. - return false - } - digit := fraction >> shift - d.d[nd] = byte(digit + '0') - fraction -= digit << shift - nd++ - needed-- - } - d.nd = nd - } - - // We have written a truncation of f (a numerator / 10^d.dp). The remaining part - // can be interpreted as a small number (< 1) to be added to the last digit of the - // numerator. - // - // If rest > 0, the amount is: - // (rest<<shift | fraction) / (pow10 << shift) - // fraction being known with a ±ε uncertainty. - // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64. - // - // If rest = 0, pow10 == 1 and the amount is - // fraction / (1 << shift) - // fraction being known with a ±ε uncertainty. - // - // We pass this information to the rounding routine for adjustment. - - ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε) - if !ok { - return false - } - // Trim trailing zeros. - for i := d.nd - 1; i >= 0; i-- { - if d.d[i] != '0' { - d.nd = i + 1 - break - } - } - return true -} - -// adjustLastDigitFixed assumes d contains the representation of the integral part -// of some number, whose fractional part is num / (den << shift). The numerator -// num is only known up to an uncertainty of size ε, assumed to be less than -// (den << shift)/2. -// -// It will increase the last digit by one to account for correct rounding, typically -// when the fractional part is greater than 1/2, and will return false if ε is such -// that no correct answer can be given. -func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool { - if num > den<<shift { - panic("strconv: num > den<<shift in adjustLastDigitFixed") - } - if 2*ε > den<<shift { - panic("strconv: ε > (den<<shift)/2") - } - if 2*(num+ε) < den<<shift { - return true - } - if 2*(num-ε) > den<<shift { - // increment d by 1. - i := d.nd - 1 - for ; i >= 0; i-- { - if d.d[i] == '9' { - d.nd-- - } else { - break - } - } - if i < 0 { - d.d[0] = '1' - d.nd = 1 - d.dp++ - } else { - d.d[i]++ - } - return true - } - return false -} - -// ShortestDecimal stores in d the shortest decimal representation of f -// which belongs to the open interval (lower, upper), where f is supposed -// to lie. It returns false whenever the result is unsure. The implementation -// uses the Grisu3 algorithm. -func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool { - if f.mant == 0 { - d.nd = 0 - d.dp = 0 - d.neg = f.neg - return true - } - if f.exp == 0 && *lower == *f && *lower == *upper { - // an exact integer. - var buf [24]byte - n := len(buf) - 1 - for v := f.mant; v > 0; { - v1 := v / 10 - v -= 10 * v1 - buf[n] = byte(v + '0') - n-- - v = v1 - } - nd := len(buf) - n - 1 - for i := 0; i < nd; i++ { - d.d[i] = buf[n+1+i] - } - d.nd, d.dp = nd, nd - for d.nd > 0 && d.d[d.nd-1] == '0' { - d.nd-- - } - if d.nd == 0 { - d.dp = 0 - } - d.neg = f.neg - return true - } - upper.Normalize() - // Uniformize exponents. - if f.exp > upper.exp { - f.mant <<= uint(f.exp - upper.exp) - f.exp = upper.exp - } - if lower.exp > upper.exp { - lower.mant <<= uint(lower.exp - upper.exp) - lower.exp = upper.exp - } - - exp10 := frexp10Many(lower, f, upper) - // Take a safety margin due to rounding in frexp10Many, but we lose precision. - upper.mant++ - lower.mant-- - - // The shortest representation of f is either rounded up or down, but - // in any case, it is a truncation of upper. - shift := uint(-upper.exp) - integer := uint32(upper.mant >> shift) - fraction := upper.mant - (uint64(integer) << shift) - - // How far we can go down from upper until the result is wrong. - allowance := upper.mant - lower.mant - // How far we should go to get a very precise result. - targetDiff := upper.mant - f.mant - - // Count integral digits: there are at most 10. - var integerDigits int - for i, pow := 0, uint64(1); i < 20; i++ { - if pow > uint64(integer) { - integerDigits = i - break - } - pow *= 10 - } - for i := 0; i < integerDigits; i++ { - pow := uint64pow10[integerDigits-i-1] - digit := integer / uint32(pow) - d.d[i] = byte(digit + '0') - integer -= digit * uint32(pow) - // evaluate whether we should stop. - if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance { - d.nd = i + 1 - d.dp = integerDigits + exp10 - d.neg = f.neg - // Sometimes allowance is so large the last digit might need to be - // decremented to get closer to f. - return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2) - } - } - d.nd = integerDigits - d.dp = d.nd + exp10 - d.neg = f.neg - - // Compute digits of the fractional part. At each step fraction does not - // overflow. The choice of minExp implies that fraction is less than 2^60. - var digit int - multiplier := uint64(1) - for { - fraction *= 10 - multiplier *= 10 - digit = int(fraction >> shift) - d.d[d.nd] = byte(digit + '0') - d.nd++ - fraction -= uint64(digit) << shift - if fraction < allowance*multiplier { - // We are in the admissible range. Note that if allowance is about to - // overflow, that is, allowance > 2^64/10, the condition is automatically - // true due to the limited range of fraction. - return adjustLastDigit(d, - fraction, targetDiff*multiplier, allowance*multiplier, - 1<<shift, multiplier*2) - } - } -} - -// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to -// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε. -// It assumes that a decimal digit is worth ulpDecimal*ε, and that -// all data is known with a error estimate of ulpBinary*ε. -func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool { - if ulpDecimal < 2*ulpBinary { - // Approximation is too wide. - return false - } - for currentDiff+ulpDecimal/2+ulpBinary < targetDiff { - d.d[d.nd-1]-- - currentDiff += ulpDecimal - } - if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary { - // we have two choices, and don't know what to do. - return false - } - if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary { - // we went too far - return false - } - if d.nd == 1 && d.d[0] == '0' { - // the number has actually reached zero. - d.nd = 0 - d.dp = 0 - } - return true -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/fold.go b/vendor/github.com/pquerna/ffjson/fflib/v1/fold.go deleted file mode 100644 index 4d33e6f77..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/fold.go +++ /dev/null @@ -1,121 +0,0 @@ -/** - * Copyright 2014 Paul Querna - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -/* Portions of this file are on Go stdlib's encoding/json/fold.go */ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package v1 - -import ( - "unicode/utf8" -) - -const ( - caseMask = ^byte(0x20) // Mask to ignore case in ASCII. - kelvin = '\u212a' - smallLongEss = '\u017f' -) - -// equalFoldRight is a specialization of bytes.EqualFold when s is -// known to be all ASCII (including punctuation), but contains an 's', -// 'S', 'k', or 'K', requiring a Unicode fold on the bytes in t. -// See comments on foldFunc. -func EqualFoldRight(s, t []byte) bool { - for _, sb := range s { - if len(t) == 0 { - return false - } - tb := t[0] - if tb < utf8.RuneSelf { - if sb != tb { - sbUpper := sb & caseMask - if 'A' <= sbUpper && sbUpper <= 'Z' { - if sbUpper != tb&caseMask { - return false - } - } else { - return false - } - } - t = t[1:] - continue - } - // sb is ASCII and t is not. t must be either kelvin - // sign or long s; sb must be s, S, k, or K. - tr, size := utf8.DecodeRune(t) - switch sb { - case 's', 'S': - if tr != smallLongEss { - return false - } - case 'k', 'K': - if tr != kelvin { - return false - } - default: - return false - } - t = t[size:] - - } - if len(t) > 0 { - return false - } - return true -} - -// asciiEqualFold is a specialization of bytes.EqualFold for use when -// s is all ASCII (but may contain non-letters) and contains no -// special-folding letters. -// See comments on foldFunc. -func AsciiEqualFold(s, t []byte) bool { - if len(s) != len(t) { - return false - } - for i, sb := range s { - tb := t[i] - if sb == tb { - continue - } - if ('a' <= sb && sb <= 'z') || ('A' <= sb && sb <= 'Z') { - if sb&caseMask != tb&caseMask { - return false - } - } else { - return false - } - } - return true -} - -// simpleLetterEqualFold is a specialization of bytes.EqualFold for -// use when s is all ASCII letters (no underscores, etc) and also -// doesn't contain 'k', 'K', 's', or 'S'. -// See comments on foldFunc. -func SimpleLetterEqualFold(s, t []byte) bool { - if len(s) != len(t) { - return false - } - for i, b := range s { - if b&caseMask != t[i]&caseMask { - return false - } - } - return true -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/ftoa.go b/vendor/github.com/pquerna/ffjson/fflib/v1/ftoa.go deleted file mode 100644 index 360d6dbcf..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/ftoa.go +++ /dev/null @@ -1,542 +0,0 @@ -package v1 - -/** - * Copyright 2015 Paul Querna, Klaus Post - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -/* Most of this file are on Go stdlib's strconv/ftoa.go */ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -import "math" - -// TODO: move elsewhere? -type floatInfo struct { - mantbits uint - expbits uint - bias int -} - -var optimize = true // can change for testing - -var float32info = floatInfo{23, 8, -127} -var float64info = floatInfo{52, 11, -1023} - -// AppendFloat appends the string form of the floating-point number f, -// as generated by FormatFloat -func AppendFloat(dst EncodingBuffer, val float64, fmt byte, prec, bitSize int) { - var bits uint64 - var flt *floatInfo - switch bitSize { - case 32: - bits = uint64(math.Float32bits(float32(val))) - flt = &float32info - case 64: - bits = math.Float64bits(val) - flt = &float64info - default: - panic("strconv: illegal AppendFloat/FormatFloat bitSize") - } - - neg := bits>>(flt.expbits+flt.mantbits) != 0 - exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1) - mant := bits & (uint64(1)<<flt.mantbits - 1) - - switch exp { - case 1<<flt.expbits - 1: - // Inf, NaN - var s string - switch { - case mant != 0: - s = "NaN" - case neg: - s = "-Inf" - default: - s = "+Inf" - } - dst.WriteString(s) - return - - case 0: - // denormalized - exp++ - - default: - // add implicit top bit - mant |= uint64(1) << flt.mantbits - } - exp += flt.bias - - // Pick off easy binary format. - if fmt == 'b' { - fmtB(dst, neg, mant, exp, flt) - return - } - - if !optimize { - bigFtoa(dst, prec, fmt, neg, mant, exp, flt) - return - } - - var digs decimalSlice - ok := false - // Negative precision means "only as much as needed to be exact." - shortest := prec < 0 - if shortest { - // Try Grisu3 algorithm. - f := new(extFloat) - lower, upper := f.AssignComputeBounds(mant, exp, neg, flt) - var buf [32]byte - digs.d = buf[:] - ok = f.ShortestDecimal(&digs, &lower, &upper) - if !ok { - bigFtoa(dst, prec, fmt, neg, mant, exp, flt) - return - } - // Precision for shortest representation mode. - switch fmt { - case 'e', 'E': - prec = max(digs.nd-1, 0) - case 'f': - prec = max(digs.nd-digs.dp, 0) - case 'g', 'G': - prec = digs.nd - } - } else if fmt != 'f' { - // Fixed number of digits. - digits := prec - switch fmt { - case 'e', 'E': - digits++ - case 'g', 'G': - if prec == 0 { - prec = 1 - } - digits = prec - } - if digits <= 15 { - // try fast algorithm when the number of digits is reasonable. - var buf [24]byte - digs.d = buf[:] - f := extFloat{mant, exp - int(flt.mantbits), neg} - ok = f.FixedDecimal(&digs, digits) - } - } - if !ok { - bigFtoa(dst, prec, fmt, neg, mant, exp, flt) - return - } - formatDigits(dst, shortest, neg, digs, prec, fmt) - return -} - -// bigFtoa uses multiprecision computations to format a float. -func bigFtoa(dst EncodingBuffer, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) { - d := new(decimal) - d.Assign(mant) - d.Shift(exp - int(flt.mantbits)) - var digs decimalSlice - shortest := prec < 0 - if shortest { - roundShortest(d, mant, exp, flt) - digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} - // Precision for shortest representation mode. - switch fmt { - case 'e', 'E': - prec = digs.nd - 1 - case 'f': - prec = max(digs.nd-digs.dp, 0) - case 'g', 'G': - prec = digs.nd - } - } else { - // Round appropriately. - switch fmt { - case 'e', 'E': - d.Round(prec + 1) - case 'f': - d.Round(d.dp + prec) - case 'g', 'G': - if prec == 0 { - prec = 1 - } - d.Round(prec) - } - digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} - } - formatDigits(dst, shortest, neg, digs, prec, fmt) - return -} - -func formatDigits(dst EncodingBuffer, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) { - switch fmt { - case 'e', 'E': - fmtE(dst, neg, digs, prec, fmt) - return - case 'f': - fmtF(dst, neg, digs, prec) - return - case 'g', 'G': - // trailing fractional zeros in 'e' form will be trimmed. - eprec := prec - if eprec > digs.nd && digs.nd >= digs.dp { - eprec = digs.nd - } - // %e is used if the exponent from the conversion - // is less than -4 or greater than or equal to the precision. - // if precision was the shortest possible, use precision 6 for this decision. - if shortest { - eprec = 6 - } - exp := digs.dp - 1 - if exp < -4 || exp >= eprec { - if prec > digs.nd { - prec = digs.nd - } - fmtE(dst, neg, digs, prec-1, fmt+'e'-'g') - return - } - if prec > digs.dp { - prec = digs.nd - } - fmtF(dst, neg, digs, max(prec-digs.dp, 0)) - return - } - - // unknown format - dst.Write([]byte{'%', fmt}) - return -} - -// Round d (= mant * 2^exp) to the shortest number of digits -// that will let the original floating point value be precisely -// reconstructed. Size is original floating point size (64 or 32). -func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { - // If mantissa is zero, the number is zero; stop now. - if mant == 0 { - d.nd = 0 - return - } - - // Compute upper and lower such that any decimal number - // between upper and lower (possibly inclusive) - // will round to the original floating point number. - - // We may see at once that the number is already shortest. - // - // Suppose d is not denormal, so that 2^exp <= d < 10^dp. - // The closest shorter number is at least 10^(dp-nd) away. - // The lower/upper bounds computed below are at distance - // at most 2^(exp-mantbits). - // - // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits), - // or equivalently log2(10)*(dp-nd) > exp-mantbits. - // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32). - minexp := flt.bias + 1 // minimum possible exponent - if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) { - // The number is already shortest. - return - } - - // d = mant << (exp - mantbits) - // Next highest floating point number is mant+1 << exp-mantbits. - // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1. - upper := new(decimal) - upper.Assign(mant*2 + 1) - upper.Shift(exp - int(flt.mantbits) - 1) - - // d = mant << (exp - mantbits) - // Next lowest floating point number is mant-1 << exp-mantbits, - // unless mant-1 drops the significant bit and exp is not the minimum exp, - // in which case the next lowest is mant*2-1 << exp-mantbits-1. - // Either way, call it mantlo << explo-mantbits. - // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1. - var mantlo uint64 - var explo int - if mant > 1<<flt.mantbits || exp == minexp { - mantlo = mant - 1 - explo = exp - } else { - mantlo = mant*2 - 1 - explo = exp - 1 - } - lower := new(decimal) - lower.Assign(mantlo*2 + 1) - lower.Shift(explo - int(flt.mantbits) - 1) - - // The upper and lower bounds are possible outputs only if - // the original mantissa is even, so that IEEE round-to-even - // would round to the original mantissa and not the neighbors. - inclusive := mant%2 == 0 - - // Now we can figure out the minimum number of digits required. - // Walk along until d has distinguished itself from upper and lower. - for i := 0; i < d.nd; i++ { - var l, m, u byte // lower, middle, upper digits - if i < lower.nd { - l = lower.d[i] - } else { - l = '0' - } - m = d.d[i] - if i < upper.nd { - u = upper.d[i] - } else { - u = '0' - } - - // Okay to round down (truncate) if lower has a different digit - // or if lower is inclusive and is exactly the result of rounding down. - okdown := l != m || (inclusive && l == m && i+1 == lower.nd) - - // Okay to round up if upper has a different digit and - // either upper is inclusive or upper is bigger than the result of rounding up. - okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd) - - // If it's okay to do either, then round to the nearest one. - // If it's okay to do only one, do it. - switch { - case okdown && okup: - d.Round(i + 1) - return - case okdown: - d.RoundDown(i + 1) - return - case okup: - d.RoundUp(i + 1) - return - } - } -} - -type decimalSlice struct { - d []byte - nd, dp int - neg bool -} - -// %e: -d.ddddde±dd -func fmtE(dst EncodingBuffer, neg bool, d decimalSlice, prec int, fmt byte) { - // sign - if neg { - dst.WriteByte('-') - } - - // first digit - ch := byte('0') - if d.nd != 0 { - ch = d.d[0] - } - dst.WriteByte(ch) - - // .moredigits - if prec > 0 { - dst.WriteByte('.') - i := 1 - m := min(d.nd, prec+1) - if i < m { - dst.Write(d.d[i:m]) - i = m - } - for i <= prec { - dst.WriteByte('0') - i++ - } - } - - // e± - dst.WriteByte(fmt) - exp := d.dp - 1 - if d.nd == 0 { // special case: 0 has exponent 0 - exp = 0 - } - if exp < 0 { - ch = '-' - exp = -exp - } else { - ch = '+' - } - dst.WriteByte(ch) - - // dd or ddd - switch { - case exp < 10: - dst.WriteByte('0') - dst.WriteByte(byte(exp) + '0') - case exp < 100: - dst.WriteByte(byte(exp/10) + '0') - dst.WriteByte(byte(exp%10) + '0') - default: - dst.WriteByte(byte(exp/100) + '0') - dst.WriteByte(byte(exp/10)%10 + '0') - dst.WriteByte(byte(exp%10) + '0') - } - - return -} - -// %f: -ddddddd.ddddd -func fmtF(dst EncodingBuffer, neg bool, d decimalSlice, prec int) { - // sign - if neg { - dst.WriteByte('-') - } - - // integer, padded with zeros as needed. - if d.dp > 0 { - m := min(d.nd, d.dp) - dst.Write(d.d[:m]) - for ; m < d.dp; m++ { - dst.WriteByte('0') - } - } else { - dst.WriteByte('0') - } - - // fraction - if prec > 0 { - dst.WriteByte('.') - for i := 0; i < prec; i++ { - ch := byte('0') - if j := d.dp + i; 0 <= j && j < d.nd { - ch = d.d[j] - } - dst.WriteByte(ch) - } - } - - return -} - -// %b: -ddddddddp±ddd -func fmtB(dst EncodingBuffer, neg bool, mant uint64, exp int, flt *floatInfo) { - // sign - if neg { - dst.WriteByte('-') - } - - // mantissa - formatBits(dst, mant, 10, false) - - // p - dst.WriteByte('p') - - // ±exponent - exp -= int(flt.mantbits) - if exp >= 0 { - dst.WriteByte('+') - } - formatBits(dst, uint64(exp), 10, exp < 0) - - return -} - -func min(a, b int) int { - if a < b { - return a - } - return b -} - -func max(a, b int) int { - if a > b { - return a - } - return b -} - -// formatBits computes the string representation of u in the given base. -// If neg is set, u is treated as negative int64 value. -func formatBits(dst EncodingBuffer, u uint64, base int, neg bool) { - if base < 2 || base > len(digits) { - panic("strconv: illegal AppendInt/FormatInt base") - } - // 2 <= base && base <= len(digits) - - var a [64 + 1]byte // +1 for sign of 64bit value in base 2 - i := len(a) - - if neg { - u = -u - } - - // convert bits - if base == 10 { - // common case: use constants for / because - // the compiler can optimize it into a multiply+shift - - if ^uintptr(0)>>32 == 0 { - for u > uint64(^uintptr(0)) { - q := u / 1e9 - us := uintptr(u - q*1e9) // us % 1e9 fits into a uintptr - for j := 9; j > 0; j-- { - i-- - qs := us / 10 - a[i] = byte(us - qs*10 + '0') - us = qs - } - u = q - } - } - - // u guaranteed to fit into a uintptr - us := uintptr(u) - for us >= 10 { - i-- - q := us / 10 - a[i] = byte(us - q*10 + '0') - us = q - } - // u < 10 - i-- - a[i] = byte(us + '0') - - } else if s := shifts[base]; s > 0 { - // base is power of 2: use shifts and masks instead of / and % - b := uint64(base) - m := uintptr(b) - 1 // == 1<<s - 1 - for u >= b { - i-- - a[i] = digits[uintptr(u)&m] - u >>= s - } - // u < base - i-- - a[i] = digits[uintptr(u)] - - } else { - // general case - b := uint64(base) - for u >= b { - i-- - q := u / b - a[i] = digits[uintptr(u-q*b)] - u = q - } - // u < base - i-- - a[i] = digits[uintptr(u)] - } - - // add sign, if any - if neg { - i-- - a[i] = '-' - } - - dst.Write(a[i:]) -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/internal/atof.go b/vendor/github.com/pquerna/ffjson/fflib/v1/internal/atof.go deleted file mode 100644 index 46c1289ec..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/internal/atof.go +++ /dev/null @@ -1,936 +0,0 @@ -/** - * Copyright 2014 Paul Querna - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -/* Portions of this file are on Go stdlib's strconv/atof.go */ - -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package internal - -// decimal to binary floating point conversion. -// Algorithm: -// 1) Store input in multiprecision decimal. -// 2) Multiply/divide decimal by powers of two until in range [0.5, 1) -// 3) Multiply by 2^precision and round to get mantissa. - -import "math" - -var optimize = true // can change for testing - -func equalIgnoreCase(s1 []byte, s2 []byte) bool { - if len(s1) != len(s2) { - return false - } - for i := 0; i < len(s1); i++ { - c1 := s1[i] - if 'A' <= c1 && c1 <= 'Z' { - c1 += 'a' - 'A' - } - c2 := s2[i] - if 'A' <= c2 && c2 <= 'Z' { - c2 += 'a' - 'A' - } - if c1 != c2 { - return false - } - } - return true -} - -func special(s []byte) (f float64, ok bool) { - if len(s) == 0 { - return - } - switch s[0] { - default: - return - case '+': - if equalIgnoreCase(s, []byte("+inf")) || equalIgnoreCase(s, []byte("+infinity")) { - return math.Inf(1), true - } - case '-': - if equalIgnoreCase(s, []byte("-inf")) || equalIgnoreCase(s, []byte("-infinity")) { - return math.Inf(-1), true - } - case 'n', 'N': - if equalIgnoreCase(s, []byte("nan")) { - return math.NaN(), true - } - case 'i', 'I': - if equalIgnoreCase(s, []byte("inf")) || equalIgnoreCase(s, []byte("infinity")) { - return math.Inf(1), true - } - } - return -} - -func (b *decimal) set(s []byte) (ok bool) { - i := 0 - b.neg = false - b.trunc = false - - // optional sign - if i >= len(s) { - return - } - switch { - case s[i] == '+': - i++ - case s[i] == '-': - b.neg = true - i++ - } - - // digits - sawdot := false - sawdigits := false - for ; i < len(s); i++ { - switch { - case s[i] == '.': - if sawdot { - return - } - sawdot = true - b.dp = b.nd - continue - - case '0' <= s[i] && s[i] <= '9': - sawdigits = true - if s[i] == '0' && b.nd == 0 { // ignore leading zeros - b.dp-- - continue - } - if b.nd < len(b.d) { - b.d[b.nd] = s[i] - b.nd++ - } else if s[i] != '0' { - b.trunc = true - } - continue - } - break - } - if !sawdigits { - return - } - if !sawdot { - b.dp = b.nd - } - - // optional exponent moves decimal point. - // if we read a very large, very long number, - // just be sure to move the decimal point by - // a lot (say, 100000). it doesn't matter if it's - // not the exact number. - if i < len(s) && (s[i] == 'e' || s[i] == 'E') { - i++ - if i >= len(s) { - return - } - esign := 1 - if s[i] == '+' { - i++ - } else if s[i] == '-' { - i++ - esign = -1 - } - if i >= len(s) || s[i] < '0' || s[i] > '9' { - return - } - e := 0 - for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ { - if e < 10000 { - e = e*10 + int(s[i]) - '0' - } - } - b.dp += e * esign - } - - if i != len(s) { - return - } - - ok = true - return -} - -// readFloat reads a decimal mantissa and exponent from a float -// string representation. It sets ok to false if the number could -// not fit return types or is invalid. -func readFloat(s []byte) (mantissa uint64, exp int, neg, trunc, ok bool) { - const uint64digits = 19 - i := 0 - - // optional sign - if i >= len(s) { - return - } - switch { - case s[i] == '+': - i++ - case s[i] == '-': - neg = true - i++ - } - - // digits - sawdot := false - sawdigits := false - nd := 0 - ndMant := 0 - dp := 0 - for ; i < len(s); i++ { - switch c := s[i]; true { - case c == '.': - if sawdot { - return - } - sawdot = true - dp = nd - continue - - case '0' <= c && c <= '9': - sawdigits = true - if c == '0' && nd == 0 { // ignore leading zeros - dp-- - continue - } - nd++ - if ndMant < uint64digits { - mantissa *= 10 - mantissa += uint64(c - '0') - ndMant++ - } else if s[i] != '0' { - trunc = true - } - continue - } - break - } - if !sawdigits { - return - } - if !sawdot { - dp = nd - } - - // optional exponent moves decimal point. - // if we read a very large, very long number, - // just be sure to move the decimal point by - // a lot (say, 100000). it doesn't matter if it's - // not the exact number. - if i < len(s) && (s[i] == 'e' || s[i] == 'E') { - i++ - if i >= len(s) { - return - } - esign := 1 - if s[i] == '+' { - i++ - } else if s[i] == '-' { - i++ - esign = -1 - } - if i >= len(s) || s[i] < '0' || s[i] > '9' { - return - } - e := 0 - for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ { - if e < 10000 { - e = e*10 + int(s[i]) - '0' - } - } - dp += e * esign - } - - if i != len(s) { - return - } - - exp = dp - ndMant - ok = true - return - -} - -// decimal power of ten to binary power of two. -var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26} - -func (d *decimal) floatBits(flt *floatInfo) (b uint64, overflow bool) { - var exp int - var mant uint64 - - // Zero is always a special case. - if d.nd == 0 { - mant = 0 - exp = flt.bias - goto out - } - - // Obvious overflow/underflow. - // These bounds are for 64-bit floats. - // Will have to change if we want to support 80-bit floats in the future. - if d.dp > 310 { - goto overflow - } - if d.dp < -330 { - // zero - mant = 0 - exp = flt.bias - goto out - } - - // Scale by powers of two until in range [0.5, 1.0) - exp = 0 - for d.dp > 0 { - var n int - if d.dp >= len(powtab) { - n = 27 - } else { - n = powtab[d.dp] - } - d.Shift(-n) - exp += n - } - for d.dp < 0 || d.dp == 0 && d.d[0] < '5' { - var n int - if -d.dp >= len(powtab) { - n = 27 - } else { - n = powtab[-d.dp] - } - d.Shift(n) - exp -= n - } - - // Our range is [0.5,1) but floating point range is [1,2). - exp-- - - // Minimum representable exponent is flt.bias+1. - // If the exponent is smaller, move it up and - // adjust d accordingly. - if exp < flt.bias+1 { - n := flt.bias + 1 - exp - d.Shift(-n) - exp += n - } - - if exp-flt.bias >= 1<<flt.expbits-1 { - goto overflow - } - - // Extract 1+flt.mantbits bits. - d.Shift(int(1 + flt.mantbits)) - mant = d.RoundedInteger() - - // Rounding might have added a bit; shift down. - if mant == 2<<flt.mantbits { - mant >>= 1 - exp++ - if exp-flt.bias >= 1<<flt.expbits-1 { - goto overflow - } - } - - // Denormalized? - if mant&(1<<flt.mantbits) == 0 { - exp = flt.bias - } - goto out - -overflow: - // ±Inf - mant = 0 - exp = 1<<flt.expbits - 1 + flt.bias - overflow = true - -out: - // Assemble bits. - bits := mant & (uint64(1)<<flt.mantbits - 1) - bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits - if d.neg { - bits |= 1 << flt.mantbits << flt.expbits - } - return bits, overflow -} - -// Exact powers of 10. -var float64pow10 = []float64{ - 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, - 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, - 1e20, 1e21, 1e22, -} -var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10} - -// If possible to convert decimal representation to 64-bit float f exactly, -// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits. -// Three common cases: -// value is exact integer -// value is exact integer * exact power of ten -// value is exact integer / exact power of ten -// These all produce potentially inexact but correctly rounded answers. -func atof64exact(mantissa uint64, exp int, neg bool) (f float64, ok bool) { - if mantissa>>float64info.mantbits != 0 { - return - } - f = float64(mantissa) - if neg { - f = -f - } - switch { - case exp == 0: - // an integer. - return f, true - // Exact integers are <= 10^15. - // Exact powers of ten are <= 10^22. - case exp > 0 && exp <= 15+22: // int * 10^k - // If exponent is big but number of digits is not, - // can move a few zeros into the integer part. - if exp > 22 { - f *= float64pow10[exp-22] - exp = 22 - } - if f > 1e15 || f < -1e15 { - // the exponent was really too large. - return - } - return f * float64pow10[exp], true - case exp < 0 && exp >= -22: // int / 10^k - return f / float64pow10[-exp], true - } - return -} - -// If possible to compute mantissa*10^exp to 32-bit float f exactly, -// entirely in floating-point math, do so, avoiding the machinery above. -func atof32exact(mantissa uint64, exp int, neg bool) (f float32, ok bool) { - if mantissa>>float32info.mantbits != 0 { - return - } - f = float32(mantissa) - if neg { - f = -f - } - switch { - case exp == 0: - return f, true - // Exact integers are <= 10^7. - // Exact powers of ten are <= 10^10. - case exp > 0 && exp <= 7+10: // int * 10^k - // If exponent is big but number of digits is not, - // can move a few zeros into the integer part. - if exp > 10 { - f *= float32pow10[exp-10] - exp = 10 - } - if f > 1e7 || f < -1e7 { - // the exponent was really too large. - return - } - return f * float32pow10[exp], true - case exp < 0 && exp >= -10: // int / 10^k - return f / float32pow10[-exp], true - } - return -} - -const fnParseFloat = "ParseFloat" - -func atof32(s []byte) (f float32, err error) { - if val, ok := special(s); ok { - return float32(val), nil - } - - if optimize { - // Parse mantissa and exponent. - mantissa, exp, neg, trunc, ok := readFloat(s) - if ok { - // Try pure floating-point arithmetic conversion. - if !trunc { - if f, ok := atof32exact(mantissa, exp, neg); ok { - return f, nil - } - } - // Try another fast path. - ext := new(extFloat) - if ok := ext.AssignDecimal(mantissa, exp, neg, trunc, &float32info); ok { - b, ovf := ext.floatBits(&float32info) - f = math.Float32frombits(uint32(b)) - if ovf { - err = rangeError(fnParseFloat, string(s)) - } - return f, err - } - } - } - var d decimal - if !d.set(s) { - return 0, syntaxError(fnParseFloat, string(s)) - } - b, ovf := d.floatBits(&float32info) - f = math.Float32frombits(uint32(b)) - if ovf { - err = rangeError(fnParseFloat, string(s)) - } - return f, err -} - -func atof64(s []byte) (f float64, err error) { - if val, ok := special(s); ok { - return val, nil - } - - if optimize { - // Parse mantissa and exponent. - mantissa, exp, neg, trunc, ok := readFloat(s) - if ok { - // Try pure floating-point arithmetic conversion. - if !trunc { - if f, ok := atof64exact(mantissa, exp, neg); ok { - return f, nil - } - } - // Try another fast path. - ext := new(extFloat) - if ok := ext.AssignDecimal(mantissa, exp, neg, trunc, &float64info); ok { - b, ovf := ext.floatBits(&float64info) - f = math.Float64frombits(b) - if ovf { - err = rangeError(fnParseFloat, string(s)) - } - return f, err - } - } - } - var d decimal - if !d.set(s) { - return 0, syntaxError(fnParseFloat, string(s)) - } - b, ovf := d.floatBits(&float64info) - f = math.Float64frombits(b) - if ovf { - err = rangeError(fnParseFloat, string(s)) - } - return f, err -} - -// ParseFloat converts the string s to a floating-point number -// with the precision specified by bitSize: 32 for float32, or 64 for float64. -// When bitSize=32, the result still has type float64, but it will be -// convertible to float32 without changing its value. -// -// If s is well-formed and near a valid floating point number, -// ParseFloat returns the nearest floating point number rounded -// using IEEE754 unbiased rounding. -// -// The errors that ParseFloat returns have concrete type *NumError -// and include err.Num = s. -// -// If s is not syntactically well-formed, ParseFloat returns err.Err = ErrSyntax. -// -// If s is syntactically well-formed but is more than 1/2 ULP -// away from the largest floating point number of the given size, -// ParseFloat returns f = ±Inf, err.Err = ErrRange. -func ParseFloat(s []byte, bitSize int) (f float64, err error) { - if bitSize == 32 { - f1, err1 := atof32(s) - return float64(f1), err1 - } - f1, err1 := atof64(s) - return f1, err1 -} - -// oroginal: strconv/decimal.go, but not exported, and needed for PareFloat. - -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Multiprecision decimal numbers. -// For floating-point formatting only; not general purpose. -// Only operations are assign and (binary) left/right shift. -// Can do binary floating point in multiprecision decimal precisely -// because 2 divides 10; cannot do decimal floating point -// in multiprecision binary precisely. - -type decimal struct { - d [800]byte // digits - nd int // number of digits used - dp int // decimal point - neg bool - trunc bool // discarded nonzero digits beyond d[:nd] -} - -func (a *decimal) String() string { - n := 10 + a.nd - if a.dp > 0 { - n += a.dp - } - if a.dp < 0 { - n += -a.dp - } - - buf := make([]byte, n) - w := 0 - switch { - case a.nd == 0: - return "0" - - case a.dp <= 0: - // zeros fill space between decimal point and digits - buf[w] = '0' - w++ - buf[w] = '.' - w++ - w += digitZero(buf[w : w+-a.dp]) - w += copy(buf[w:], a.d[0:a.nd]) - - case a.dp < a.nd: - // decimal point in middle of digits - w += copy(buf[w:], a.d[0:a.dp]) - buf[w] = '.' - w++ - w += copy(buf[w:], a.d[a.dp:a.nd]) - - default: - // zeros fill space between digits and decimal point - w += copy(buf[w:], a.d[0:a.nd]) - w += digitZero(buf[w : w+a.dp-a.nd]) - } - return string(buf[0:w]) -} - -func digitZero(dst []byte) int { - for i := range dst { - dst[i] = '0' - } - return len(dst) -} - -// trim trailing zeros from number. -// (They are meaningless; the decimal point is tracked -// independent of the number of digits.) -func trim(a *decimal) { - for a.nd > 0 && a.d[a.nd-1] == '0' { - a.nd-- - } - if a.nd == 0 { - a.dp = 0 - } -} - -// Assign v to a. -func (a *decimal) Assign(v uint64) { - var buf [24]byte - - // Write reversed decimal in buf. - n := 0 - for v > 0 { - v1 := v / 10 - v -= 10 * v1 - buf[n] = byte(v + '0') - n++ - v = v1 - } - - // Reverse again to produce forward decimal in a.d. - a.nd = 0 - for n--; n >= 0; n-- { - a.d[a.nd] = buf[n] - a.nd++ - } - a.dp = a.nd - trim(a) -} - -// Maximum shift that we can do in one pass without overflow. -// Signed int has 31 bits, and we have to be able to accommodate 9<<k. -const maxShift = 27 - -// Binary shift right (* 2) by k bits. k <= maxShift to avoid overflow. -func rightShift(a *decimal, k uint) { - r := 0 // read pointer - w := 0 // write pointer - - // Pick up enough leading digits to cover first shift. - n := 0 - for ; n>>k == 0; r++ { - if r >= a.nd { - if n == 0 { - // a == 0; shouldn't get here, but handle anyway. - a.nd = 0 - return - } - for n>>k == 0 { - n = n * 10 - r++ - } - break - } - c := int(a.d[r]) - n = n*10 + c - '0' - } - a.dp -= r - 1 - - // Pick up a digit, put down a digit. - for ; r < a.nd; r++ { - c := int(a.d[r]) - dig := n >> k - n -= dig << k - a.d[w] = byte(dig + '0') - w++ - n = n*10 + c - '0' - } - - // Put down extra digits. - for n > 0 { - dig := n >> k - n -= dig << k - if w < len(a.d) { - a.d[w] = byte(dig + '0') - w++ - } else if dig > 0 { - a.trunc = true - } - n = n * 10 - } - - a.nd = w - trim(a) -} - -// Cheat sheet for left shift: table indexed by shift count giving -// number of new digits that will be introduced by that shift. -// -// For example, leftcheats[4] = {2, "625"}. That means that -// if we are shifting by 4 (multiplying by 16), it will add 2 digits -// when the string prefix is "625" through "999", and one fewer digit -// if the string prefix is "000" through "624". -// -// Credit for this trick goes to Ken. - -type leftCheat struct { - delta int // number of new digits - cutoff string // minus one digit if original < a. -} - -var leftcheats = []leftCheat{ - // Leading digits of 1/2^i = 5^i. - // 5^23 is not an exact 64-bit floating point number, - // so have to use bc for the math. - /* - seq 27 | sed 's/^/5^/' | bc | - awk 'BEGIN{ print "\tleftCheat{ 0, \"\" }," } - { - log2 = log(2)/log(10) - printf("\tleftCheat{ %d, \"%s\" },\t// * %d\n", - int(log2*NR+1), $0, 2**NR) - }' - */ - {0, ""}, - {1, "5"}, // * 2 - {1, "25"}, // * 4 - {1, "125"}, // * 8 - {2, "625"}, // * 16 - {2, "3125"}, // * 32 - {2, "15625"}, // * 64 - {3, "78125"}, // * 128 - {3, "390625"}, // * 256 - {3, "1953125"}, // * 512 - {4, "9765625"}, // * 1024 - {4, "48828125"}, // * 2048 - {4, "244140625"}, // * 4096 - {4, "1220703125"}, // * 8192 - {5, "6103515625"}, // * 16384 - {5, "30517578125"}, // * 32768 - {5, "152587890625"}, // * 65536 - {6, "762939453125"}, // * 131072 - {6, "3814697265625"}, // * 262144 - {6, "19073486328125"}, // * 524288 - {7, "95367431640625"}, // * 1048576 - {7, "476837158203125"}, // * 2097152 - {7, "2384185791015625"}, // * 4194304 - {7, "11920928955078125"}, // * 8388608 - {8, "59604644775390625"}, // * 16777216 - {8, "298023223876953125"}, // * 33554432 - {8, "1490116119384765625"}, // * 67108864 - {9, "7450580596923828125"}, // * 134217728 -} - -// Is the leading prefix of b lexicographically less than s? -func prefixIsLessThan(b []byte, s string) bool { - for i := 0; i < len(s); i++ { - if i >= len(b) { - return true - } - if b[i] != s[i] { - return b[i] < s[i] - } - } - return false -} - -// Binary shift left (/ 2) by k bits. k <= maxShift to avoid overflow. -func leftShift(a *decimal, k uint) { - delta := leftcheats[k].delta - if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) { - delta-- - } - - r := a.nd // read index - w := a.nd + delta // write index - n := 0 - - // Pick up a digit, put down a digit. - for r--; r >= 0; r-- { - n += (int(a.d[r]) - '0') << k - quo := n / 10 - rem := n - 10*quo - w-- - if w < len(a.d) { - a.d[w] = byte(rem + '0') - } else if rem != 0 { - a.trunc = true - } - n = quo - } - - // Put down extra digits. - for n > 0 { - quo := n / 10 - rem := n - 10*quo - w-- - if w < len(a.d) { - a.d[w] = byte(rem + '0') - } else if rem != 0 { - a.trunc = true - } - n = quo - } - - a.nd += delta - if a.nd >= len(a.d) { - a.nd = len(a.d) - } - a.dp += delta - trim(a) -} - -// Binary shift left (k > 0) or right (k < 0). -func (a *decimal) Shift(k int) { - switch { - case a.nd == 0: - // nothing to do: a == 0 - case k > 0: - for k > maxShift { - leftShift(a, maxShift) - k -= maxShift - } - leftShift(a, uint(k)) - case k < 0: - for k < -maxShift { - rightShift(a, maxShift) - k += maxShift - } - rightShift(a, uint(-k)) - } -} - -// If we chop a at nd digits, should we round up? -func shouldRoundUp(a *decimal, nd int) bool { - if nd < 0 || nd >= a.nd { - return false - } - if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even - // if we truncated, a little higher than what's recorded - always round up - if a.trunc { - return true - } - return nd > 0 && (a.d[nd-1]-'0')%2 != 0 - } - // not halfway - digit tells all - return a.d[nd] >= '5' -} - -// Round a to nd digits (or fewer). -// If nd is zero, it means we're rounding -// just to the left of the digits, as in -// 0.09 -> 0.1. -func (a *decimal) Round(nd int) { - if nd < 0 || nd >= a.nd { - return - } - if shouldRoundUp(a, nd) { - a.RoundUp(nd) - } else { - a.RoundDown(nd) - } -} - -// Round a down to nd digits (or fewer). -func (a *decimal) RoundDown(nd int) { - if nd < 0 || nd >= a.nd { - return - } - a.nd = nd - trim(a) -} - -// Round a up to nd digits (or fewer). -func (a *decimal) RoundUp(nd int) { - if nd < 0 || nd >= a.nd { - return - } - - // round up - for i := nd - 1; i >= 0; i-- { - c := a.d[i] - if c < '9' { // can stop after this digit - a.d[i]++ - a.nd = i + 1 - return - } - } - - // Number is all 9s. - // Change to single 1 with adjusted decimal point. - a.d[0] = '1' - a.nd = 1 - a.dp++ -} - -// Extract integer part, rounded appropriately. -// No guarantees about overflow. -func (a *decimal) RoundedInteger() uint64 { - if a.dp > 20 { - return 0xFFFFFFFFFFFFFFFF - } - var i int - n := uint64(0) - for i = 0; i < a.dp && i < a.nd; i++ { - n = n*10 + uint64(a.d[i]-'0') - } - for ; i < a.dp; i++ { - n *= 10 - } - if shouldRoundUp(a, a.dp) { - n++ - } - return n -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/internal/atoi.go b/vendor/github.com/pquerna/ffjson/fflib/v1/internal/atoi.go deleted file mode 100644 index 06eb2ec29..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/internal/atoi.go +++ /dev/null @@ -1,213 +0,0 @@ -/** - * Copyright 2014 Paul Querna - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -/* Portions of this file are on Go stdlib's strconv/atoi.go */ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package internal - -import ( - "errors" - "strconv" -) - -// ErrRange indicates that a value is out of range for the target type. -var ErrRange = errors.New("value out of range") - -// ErrSyntax indicates that a value does not have the right syntax for the target type. -var ErrSyntax = errors.New("invalid syntax") - -// A NumError records a failed conversion. -type NumError struct { - Func string // the failing function (ParseBool, ParseInt, ParseUint, ParseFloat) - Num string // the input - Err error // the reason the conversion failed (ErrRange, ErrSyntax) -} - -func (e *NumError) Error() string { - return "strconv." + e.Func + ": " + "parsing " + strconv.Quote(e.Num) + ": " + e.Err.Error() -} - -func syntaxError(fn, str string) *NumError { - return &NumError{fn, str, ErrSyntax} -} - -func rangeError(fn, str string) *NumError { - return &NumError{fn, str, ErrRange} -} - -const intSize = 32 << uint(^uint(0)>>63) - -// IntSize is the size in bits of an int or uint value. -const IntSize = intSize - -// Return the first number n such that n*base >= 1<<64. -func cutoff64(base int) uint64 { - if base < 2 { - return 0 - } - return (1<<64-1)/uint64(base) + 1 -} - -// ParseUint is like ParseInt but for unsigned numbers, and oeprating on []byte -func ParseUint(s []byte, base int, bitSize int) (n uint64, err error) { - var cutoff, maxVal uint64 - - if bitSize == 0 { - bitSize = int(IntSize) - } - - s0 := s - switch { - case len(s) < 1: - err = ErrSyntax - goto Error - - case 2 <= base && base <= 36: - // valid base; nothing to do - - case base == 0: - // Look for octal, hex prefix. - switch { - case s[0] == '0' && len(s) > 1 && (s[1] == 'x' || s[1] == 'X'): - base = 16 - s = s[2:] - if len(s) < 1 { - err = ErrSyntax - goto Error - } - case s[0] == '0': - base = 8 - default: - base = 10 - } - - default: - err = errors.New("invalid base " + strconv.Itoa(base)) - goto Error - } - - n = 0 - cutoff = cutoff64(base) - maxVal = 1<<uint(bitSize) - 1 - - for i := 0; i < len(s); i++ { - var v byte - d := s[i] - switch { - case '0' <= d && d <= '9': - v = d - '0' - case 'a' <= d && d <= 'z': - v = d - 'a' + 10 - case 'A' <= d && d <= 'Z': - v = d - 'A' + 10 - default: - n = 0 - err = ErrSyntax - goto Error - } - if int(v) >= base { - n = 0 - err = ErrSyntax - goto Error - } - - if n >= cutoff { - // n*base overflows - n = 1<<64 - 1 - err = ErrRange - goto Error - } - n *= uint64(base) - - n1 := n + uint64(v) - if n1 < n || n1 > maxVal { - // n+v overflows - n = 1<<64 - 1 - err = ErrRange - goto Error - } - n = n1 - } - - return n, nil - -Error: - return n, &NumError{"ParseUint", string(s0), err} -} - -// ParseInt interprets a string s in the given base (2 to 36) and -// returns the corresponding value i. If base == 0, the base is -// implied by the string's prefix: base 16 for "0x", base 8 for -// "0", and base 10 otherwise. -// -// The bitSize argument specifies the integer type -// that the result must fit into. Bit sizes 0, 8, 16, 32, and 64 -// correspond to int, int8, int16, int32, and int64. -// -// The errors that ParseInt returns have concrete type *NumError -// and include err.Num = s. If s is empty or contains invalid -// digits, err.Err = ErrSyntax and the returned value is 0; -// if the value corresponding to s cannot be represented by a -// signed integer of the given size, err.Err = ErrRange and the -// returned value is the maximum magnitude integer of the -// appropriate bitSize and sign. -func ParseInt(s []byte, base int, bitSize int) (i int64, err error) { - const fnParseInt = "ParseInt" - - if bitSize == 0 { - bitSize = int(IntSize) - } - - // Empty string bad. - if len(s) == 0 { - return 0, syntaxError(fnParseInt, string(s)) - } - - // Pick off leading sign. - s0 := s - neg := false - if s[0] == '+' { - s = s[1:] - } else if s[0] == '-' { - neg = true - s = s[1:] - } - - // Convert unsigned and check range. - var un uint64 - un, err = ParseUint(s, base, bitSize) - if err != nil && err.(*NumError).Err != ErrRange { - err.(*NumError).Func = fnParseInt - err.(*NumError).Num = string(s0) - return 0, err - } - cutoff := uint64(1 << uint(bitSize-1)) - if !neg && un >= cutoff { - return int64(cutoff - 1), rangeError(fnParseInt, string(s0)) - } - if neg && un > cutoff { - return -int64(cutoff), rangeError(fnParseInt, string(s0)) - } - n := int64(un) - if neg { - n = -n - } - return n, nil -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/internal/extfloat.go b/vendor/github.com/pquerna/ffjson/fflib/v1/internal/extfloat.go deleted file mode 100644 index ab791085a..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/internal/extfloat.go +++ /dev/null @@ -1,668 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package internal - -// An extFloat represents an extended floating-point number, with more -// precision than a float64. It does not try to save bits: the -// number represented by the structure is mant*(2^exp), with a negative -// sign if neg is true. -type extFloat struct { - mant uint64 - exp int - neg bool -} - -// Powers of ten taken from double-conversion library. -// http://code.google.com/p/double-conversion/ -const ( - firstPowerOfTen = -348 - stepPowerOfTen = 8 -) - -var smallPowersOfTen = [...]extFloat{ - {1 << 63, -63, false}, // 1 - {0xa << 60, -60, false}, // 1e1 - {0x64 << 57, -57, false}, // 1e2 - {0x3e8 << 54, -54, false}, // 1e3 - {0x2710 << 50, -50, false}, // 1e4 - {0x186a0 << 47, -47, false}, // 1e5 - {0xf4240 << 44, -44, false}, // 1e6 - {0x989680 << 40, -40, false}, // 1e7 -} - -var powersOfTen = [...]extFloat{ - {0xfa8fd5a0081c0288, -1220, false}, // 10^-348 - {0xbaaee17fa23ebf76, -1193, false}, // 10^-340 - {0x8b16fb203055ac76, -1166, false}, // 10^-332 - {0xcf42894a5dce35ea, -1140, false}, // 10^-324 - {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316 - {0xe61acf033d1a45df, -1087, false}, // 10^-308 - {0xab70fe17c79ac6ca, -1060, false}, // 10^-300 - {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292 - {0xbe5691ef416bd60c, -1007, false}, // 10^-284 - {0x8dd01fad907ffc3c, -980, false}, // 10^-276 - {0xd3515c2831559a83, -954, false}, // 10^-268 - {0x9d71ac8fada6c9b5, -927, false}, // 10^-260 - {0xea9c227723ee8bcb, -901, false}, // 10^-252 - {0xaecc49914078536d, -874, false}, // 10^-244 - {0x823c12795db6ce57, -847, false}, // 10^-236 - {0xc21094364dfb5637, -821, false}, // 10^-228 - {0x9096ea6f3848984f, -794, false}, // 10^-220 - {0xd77485cb25823ac7, -768, false}, // 10^-212 - {0xa086cfcd97bf97f4, -741, false}, // 10^-204 - {0xef340a98172aace5, -715, false}, // 10^-196 - {0xb23867fb2a35b28e, -688, false}, // 10^-188 - {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180 - {0xc5dd44271ad3cdba, -635, false}, // 10^-172 - {0x936b9fcebb25c996, -608, false}, // 10^-164 - {0xdbac6c247d62a584, -582, false}, // 10^-156 - {0xa3ab66580d5fdaf6, -555, false}, // 10^-148 - {0xf3e2f893dec3f126, -529, false}, // 10^-140 - {0xb5b5ada8aaff80b8, -502, false}, // 10^-132 - {0x87625f056c7c4a8b, -475, false}, // 10^-124 - {0xc9bcff6034c13053, -449, false}, // 10^-116 - {0x964e858c91ba2655, -422, false}, // 10^-108 - {0xdff9772470297ebd, -396, false}, // 10^-100 - {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92 - {0xf8a95fcf88747d94, -343, false}, // 10^-84 - {0xb94470938fa89bcf, -316, false}, // 10^-76 - {0x8a08f0f8bf0f156b, -289, false}, // 10^-68 - {0xcdb02555653131b6, -263, false}, // 10^-60 - {0x993fe2c6d07b7fac, -236, false}, // 10^-52 - {0xe45c10c42a2b3b06, -210, false}, // 10^-44 - {0xaa242499697392d3, -183, false}, // 10^-36 - {0xfd87b5f28300ca0e, -157, false}, // 10^-28 - {0xbce5086492111aeb, -130, false}, // 10^-20 - {0x8cbccc096f5088cc, -103, false}, // 10^-12 - {0xd1b71758e219652c, -77, false}, // 10^-4 - {0x9c40000000000000, -50, false}, // 10^4 - {0xe8d4a51000000000, -24, false}, // 10^12 - {0xad78ebc5ac620000, 3, false}, // 10^20 - {0x813f3978f8940984, 30, false}, // 10^28 - {0xc097ce7bc90715b3, 56, false}, // 10^36 - {0x8f7e32ce7bea5c70, 83, false}, // 10^44 - {0xd5d238a4abe98068, 109, false}, // 10^52 - {0x9f4f2726179a2245, 136, false}, // 10^60 - {0xed63a231d4c4fb27, 162, false}, // 10^68 - {0xb0de65388cc8ada8, 189, false}, // 10^76 - {0x83c7088e1aab65db, 216, false}, // 10^84 - {0xc45d1df942711d9a, 242, false}, // 10^92 - {0x924d692ca61be758, 269, false}, // 10^100 - {0xda01ee641a708dea, 295, false}, // 10^108 - {0xa26da3999aef774a, 322, false}, // 10^116 - {0xf209787bb47d6b85, 348, false}, // 10^124 - {0xb454e4a179dd1877, 375, false}, // 10^132 - {0x865b86925b9bc5c2, 402, false}, // 10^140 - {0xc83553c5c8965d3d, 428, false}, // 10^148 - {0x952ab45cfa97a0b3, 455, false}, // 10^156 - {0xde469fbd99a05fe3, 481, false}, // 10^164 - {0xa59bc234db398c25, 508, false}, // 10^172 - {0xf6c69a72a3989f5c, 534, false}, // 10^180 - {0xb7dcbf5354e9bece, 561, false}, // 10^188 - {0x88fcf317f22241e2, 588, false}, // 10^196 - {0xcc20ce9bd35c78a5, 614, false}, // 10^204 - {0x98165af37b2153df, 641, false}, // 10^212 - {0xe2a0b5dc971f303a, 667, false}, // 10^220 - {0xa8d9d1535ce3b396, 694, false}, // 10^228 - {0xfb9b7cd9a4a7443c, 720, false}, // 10^236 - {0xbb764c4ca7a44410, 747, false}, // 10^244 - {0x8bab8eefb6409c1a, 774, false}, // 10^252 - {0xd01fef10a657842c, 800, false}, // 10^260 - {0x9b10a4e5e9913129, 827, false}, // 10^268 - {0xe7109bfba19c0c9d, 853, false}, // 10^276 - {0xac2820d9623bf429, 880, false}, // 10^284 - {0x80444b5e7aa7cf85, 907, false}, // 10^292 - {0xbf21e44003acdd2d, 933, false}, // 10^300 - {0x8e679c2f5e44ff8f, 960, false}, // 10^308 - {0xd433179d9c8cb841, 986, false}, // 10^316 - {0x9e19db92b4e31ba9, 1013, false}, // 10^324 - {0xeb96bf6ebadf77d9, 1039, false}, // 10^332 - {0xaf87023b9bf0ee6b, 1066, false}, // 10^340 -} - -// floatBits returns the bits of the float64 that best approximates -// the extFloat passed as receiver. Overflow is set to true if -// the resulting float64 is ±Inf. -func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) { - f.Normalize() - - exp := f.exp + 63 - - // Exponent too small. - if exp < flt.bias+1 { - n := flt.bias + 1 - exp - f.mant >>= uint(n) - exp += n - } - - // Extract 1+flt.mantbits bits from the 64-bit mantissa. - mant := f.mant >> (63 - flt.mantbits) - if f.mant&(1<<(62-flt.mantbits)) != 0 { - // Round up. - mant += 1 - } - - // Rounding might have added a bit; shift down. - if mant == 2<<flt.mantbits { - mant >>= 1 - exp++ - } - - // Infinities. - if exp-flt.bias >= 1<<flt.expbits-1 { - // ±Inf - mant = 0 - exp = 1<<flt.expbits - 1 + flt.bias - overflow = true - } else if mant&(1<<flt.mantbits) == 0 { - // Denormalized? - exp = flt.bias - } - // Assemble bits. - bits = mant & (uint64(1)<<flt.mantbits - 1) - bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits - if f.neg { - bits |= 1 << (flt.mantbits + flt.expbits) - } - return -} - -// AssignComputeBounds sets f to the floating point value -// defined by mant, exp and precision given by flt. It returns -// lower, upper such that any number in the closed interval -// [lower, upper] is converted back to the same floating point number. -func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) { - f.mant = mant - f.exp = exp - int(flt.mantbits) - f.neg = neg - if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) { - // An exact integer - f.mant >>= uint(-f.exp) - f.exp = 0 - return *f, *f - } - expBiased := exp - flt.bias - - upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg} - if mant != 1<<flt.mantbits || expBiased == 1 { - lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg} - } else { - lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg} - } - return -} - -// Normalize normalizes f so that the highest bit of the mantissa is -// set, and returns the number by which the mantissa was left-shifted. -func (f *extFloat) Normalize() (shift uint) { - mant, exp := f.mant, f.exp - if mant == 0 { - return 0 - } - if mant>>(64-32) == 0 { - mant <<= 32 - exp -= 32 - } - if mant>>(64-16) == 0 { - mant <<= 16 - exp -= 16 - } - if mant>>(64-8) == 0 { - mant <<= 8 - exp -= 8 - } - if mant>>(64-4) == 0 { - mant <<= 4 - exp -= 4 - } - if mant>>(64-2) == 0 { - mant <<= 2 - exp -= 2 - } - if mant>>(64-1) == 0 { - mant <<= 1 - exp -= 1 - } - shift = uint(f.exp - exp) - f.mant, f.exp = mant, exp - return -} - -// Multiply sets f to the product f*g: the result is correctly rounded, -// but not normalized. -func (f *extFloat) Multiply(g extFloat) { - fhi, flo := f.mant>>32, uint64(uint32(f.mant)) - ghi, glo := g.mant>>32, uint64(uint32(g.mant)) - - // Cross products. - cross1 := fhi * glo - cross2 := flo * ghi - - // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo - f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32) - rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32) - // Round up. - rem += (1 << 31) - - f.mant += (rem >> 32) - f.exp = f.exp + g.exp + 64 -} - -var uint64pow10 = [...]uint64{ - 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, - 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, -} - -// AssignDecimal sets f to an approximate value mantissa*10^exp. It -// returns true if the value represented by f is guaranteed to be the -// best approximation of d after being rounded to a float64 or -// float32 depending on flt. -func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) { - const uint64digits = 19 - const errorscale = 8 - errors := 0 // An upper bound for error, computed in errorscale*ulp. - if trunc { - // the decimal number was truncated. - errors += errorscale / 2 - } - - f.mant = mantissa - f.exp = 0 - f.neg = neg - - // Multiply by powers of ten. - i := (exp10 - firstPowerOfTen) / stepPowerOfTen - if exp10 < firstPowerOfTen || i >= len(powersOfTen) { - return false - } - adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen - - // We multiply by exp%step - if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] { - // We can multiply the mantissa exactly. - f.mant *= uint64pow10[adjExp] - f.Normalize() - } else { - f.Normalize() - f.Multiply(smallPowersOfTen[adjExp]) - errors += errorscale / 2 - } - - // We multiply by 10 to the exp - exp%step. - f.Multiply(powersOfTen[i]) - if errors > 0 { - errors += 1 - } - errors += errorscale / 2 - - // Normalize - shift := f.Normalize() - errors <<= shift - - // Now f is a good approximation of the decimal. - // Check whether the error is too large: that is, if the mantissa - // is perturbated by the error, the resulting float64 will change. - // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits. - // - // In many cases the approximation will be good enough. - denormalExp := flt.bias - 63 - var extrabits uint - if f.exp <= denormalExp { - // f.mant * 2^f.exp is smaller than 2^(flt.bias+1). - extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp)) - } else { - extrabits = uint(63 - flt.mantbits) - } - - halfway := uint64(1) << (extrabits - 1) - mant_extra := f.mant & (1<<extrabits - 1) - - // Do a signed comparison here! If the error estimate could make - // the mantissa round differently for the conversion to double, - // then we can't give a definite answer. - if int64(halfway)-int64(errors) < int64(mant_extra) && - int64(mant_extra) < int64(halfway)+int64(errors) { - return false - } - return true -} - -// Frexp10 is an analogue of math.Frexp for decimal powers. It scales -// f by an approximate power of ten 10^-exp, and returns exp10, so -// that f*10^exp10 has the same value as the old f, up to an ulp, -// as well as the index of 10^-exp in the powersOfTen table. -func (f *extFloat) frexp10() (exp10, index int) { - // The constants expMin and expMax constrain the final value of the - // binary exponent of f. We want a small integral part in the result - // because finding digits of an integer requires divisions, whereas - // digits of the fractional part can be found by repeatedly multiplying - // by 10. - const expMin = -60 - const expMax = -32 - // Find power of ten such that x * 10^n has a binary exponent - // between expMin and expMax. - approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28. - i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen -Loop: - for { - exp := f.exp + powersOfTen[i].exp + 64 - switch { - case exp < expMin: - i++ - case exp > expMax: - i-- - default: - break Loop - } - } - // Apply the desired decimal shift on f. It will have exponent - // in the desired range. This is multiplication by 10^-exp10. - f.Multiply(powersOfTen[i]) - - return -(firstPowerOfTen + i*stepPowerOfTen), i -} - -// frexp10Many applies a common shift by a power of ten to a, b, c. -func frexp10Many(a, b, c *extFloat) (exp10 int) { - exp10, i := c.frexp10() - a.Multiply(powersOfTen[i]) - b.Multiply(powersOfTen[i]) - return -} - -// FixedDecimal stores in d the first n significant digits -// of the decimal representation of f. It returns false -// if it cannot be sure of the answer. -func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool { - if f.mant == 0 { - d.nd = 0 - d.dp = 0 - d.neg = f.neg - return true - } - if n == 0 { - panic("strconv: internal error: extFloat.FixedDecimal called with n == 0") - } - // Multiply by an appropriate power of ten to have a reasonable - // number to process. - f.Normalize() - exp10, _ := f.frexp10() - - shift := uint(-f.exp) - integer := uint32(f.mant >> shift) - fraction := f.mant - (uint64(integer) << shift) - ε := uint64(1) // ε is the uncertainty we have on the mantissa of f. - - // Write exactly n digits to d. - needed := n // how many digits are left to write. - integerDigits := 0 // the number of decimal digits of integer. - pow10 := uint64(1) // the power of ten by which f was scaled. - for i, pow := 0, uint64(1); i < 20; i++ { - if pow > uint64(integer) { - integerDigits = i - break - } - pow *= 10 - } - rest := integer - if integerDigits > needed { - // the integral part is already large, trim the last digits. - pow10 = uint64pow10[integerDigits-needed] - integer /= uint32(pow10) - rest -= integer * uint32(pow10) - } else { - rest = 0 - } - - // Write the digits of integer: the digits of rest are omitted. - var buf [32]byte - pos := len(buf) - for v := integer; v > 0; { - v1 := v / 10 - v -= 10 * v1 - pos-- - buf[pos] = byte(v + '0') - v = v1 - } - for i := pos; i < len(buf); i++ { - d.d[i-pos] = buf[i] - } - nd := len(buf) - pos - d.nd = nd - d.dp = integerDigits + exp10 - needed -= nd - - if needed > 0 { - if rest != 0 || pow10 != 1 { - panic("strconv: internal error, rest != 0 but needed > 0") - } - // Emit digits for the fractional part. Each time, 10*fraction - // fits in a uint64 without overflow. - for needed > 0 { - fraction *= 10 - ε *= 10 // the uncertainty scales as we multiply by ten. - if 2*ε > 1<<shift { - // the error is so large it could modify which digit to write, abort. - return false - } - digit := fraction >> shift - d.d[nd] = byte(digit + '0') - fraction -= digit << shift - nd++ - needed-- - } - d.nd = nd - } - - // We have written a truncation of f (a numerator / 10^d.dp). The remaining part - // can be interpreted as a small number (< 1) to be added to the last digit of the - // numerator. - // - // If rest > 0, the amount is: - // (rest<<shift | fraction) / (pow10 << shift) - // fraction being known with a ±ε uncertainty. - // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64. - // - // If rest = 0, pow10 == 1 and the amount is - // fraction / (1 << shift) - // fraction being known with a ±ε uncertainty. - // - // We pass this information to the rounding routine for adjustment. - - ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε) - if !ok { - return false - } - // Trim trailing zeros. - for i := d.nd - 1; i >= 0; i-- { - if d.d[i] != '0' { - d.nd = i + 1 - break - } - } - return true -} - -// adjustLastDigitFixed assumes d contains the representation of the integral part -// of some number, whose fractional part is num / (den << shift). The numerator -// num is only known up to an uncertainty of size ε, assumed to be less than -// (den << shift)/2. -// -// It will increase the last digit by one to account for correct rounding, typically -// when the fractional part is greater than 1/2, and will return false if ε is such -// that no correct answer can be given. -func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool { - if num > den<<shift { - panic("strconv: num > den<<shift in adjustLastDigitFixed") - } - if 2*ε > den<<shift { - panic("strconv: ε > (den<<shift)/2") - } - if 2*(num+ε) < den<<shift { - return true - } - if 2*(num-ε) > den<<shift { - // increment d by 1. - i := d.nd - 1 - for ; i >= 0; i-- { - if d.d[i] == '9' { - d.nd-- - } else { - break - } - } - if i < 0 { - d.d[0] = '1' - d.nd = 1 - d.dp++ - } else { - d.d[i]++ - } - return true - } - return false -} - -// ShortestDecimal stores in d the shortest decimal representation of f -// which belongs to the open interval (lower, upper), where f is supposed -// to lie. It returns false whenever the result is unsure. The implementation -// uses the Grisu3 algorithm. -func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool { - if f.mant == 0 { - d.nd = 0 - d.dp = 0 - d.neg = f.neg - return true - } - if f.exp == 0 && *lower == *f && *lower == *upper { - // an exact integer. - var buf [24]byte - n := len(buf) - 1 - for v := f.mant; v > 0; { - v1 := v / 10 - v -= 10 * v1 - buf[n] = byte(v + '0') - n-- - v = v1 - } - nd := len(buf) - n - 1 - for i := 0; i < nd; i++ { - d.d[i] = buf[n+1+i] - } - d.nd, d.dp = nd, nd - for d.nd > 0 && d.d[d.nd-1] == '0' { - d.nd-- - } - if d.nd == 0 { - d.dp = 0 - } - d.neg = f.neg - return true - } - upper.Normalize() - // Uniformize exponents. - if f.exp > upper.exp { - f.mant <<= uint(f.exp - upper.exp) - f.exp = upper.exp - } - if lower.exp > upper.exp { - lower.mant <<= uint(lower.exp - upper.exp) - lower.exp = upper.exp - } - - exp10 := frexp10Many(lower, f, upper) - // Take a safety margin due to rounding in frexp10Many, but we lose precision. - upper.mant++ - lower.mant-- - - // The shortest representation of f is either rounded up or down, but - // in any case, it is a truncation of upper. - shift := uint(-upper.exp) - integer := uint32(upper.mant >> shift) - fraction := upper.mant - (uint64(integer) << shift) - - // How far we can go down from upper until the result is wrong. - allowance := upper.mant - lower.mant - // How far we should go to get a very precise result. - targetDiff := upper.mant - f.mant - - // Count integral digits: there are at most 10. - var integerDigits int - for i, pow := 0, uint64(1); i < 20; i++ { - if pow > uint64(integer) { - integerDigits = i - break - } - pow *= 10 - } - for i := 0; i < integerDigits; i++ { - pow := uint64pow10[integerDigits-i-1] - digit := integer / uint32(pow) - d.d[i] = byte(digit + '0') - integer -= digit * uint32(pow) - // evaluate whether we should stop. - if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance { - d.nd = i + 1 - d.dp = integerDigits + exp10 - d.neg = f.neg - // Sometimes allowance is so large the last digit might need to be - // decremented to get closer to f. - return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2) - } - } - d.nd = integerDigits - d.dp = d.nd + exp10 - d.neg = f.neg - - // Compute digits of the fractional part. At each step fraction does not - // overflow. The choice of minExp implies that fraction is less than 2^60. - var digit int - multiplier := uint64(1) - for { - fraction *= 10 - multiplier *= 10 - digit = int(fraction >> shift) - d.d[d.nd] = byte(digit + '0') - d.nd++ - fraction -= uint64(digit) << shift - if fraction < allowance*multiplier { - // We are in the admissible range. Note that if allowance is about to - // overflow, that is, allowance > 2^64/10, the condition is automatically - // true due to the limited range of fraction. - return adjustLastDigit(d, - fraction, targetDiff*multiplier, allowance*multiplier, - 1<<shift, multiplier*2) - } - } -} - -// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to -// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε. -// It assumes that a decimal digit is worth ulpDecimal*ε, and that -// all data is known with a error estimate of ulpBinary*ε. -func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool { - if ulpDecimal < 2*ulpBinary { - // Approximation is too wide. - return false - } - for currentDiff+ulpDecimal/2+ulpBinary < targetDiff { - d.d[d.nd-1]-- - currentDiff += ulpDecimal - } - if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary { - // we have two choices, and don't know what to do. - return false - } - if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary { - // we went too far - return false - } - if d.nd == 1 && d.d[0] == '0' { - // the number has actually reached zero. - d.nd = 0 - d.dp = 0 - } - return true -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/internal/ftoa.go b/vendor/github.com/pquerna/ffjson/fflib/v1/internal/ftoa.go deleted file mode 100644 index 253f83b45..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/internal/ftoa.go +++ /dev/null @@ -1,475 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Binary to decimal floating point conversion. -// Algorithm: -// 1) store mantissa in multiprecision decimal -// 2) shift decimal by exponent -// 3) read digits out & format - -package internal - -import "math" - -// TODO: move elsewhere? -type floatInfo struct { - mantbits uint - expbits uint - bias int -} - -var float32info = floatInfo{23, 8, -127} -var float64info = floatInfo{52, 11, -1023} - -// FormatFloat converts the floating-point number f to a string, -// according to the format fmt and precision prec. It rounds the -// result assuming that the original was obtained from a floating-point -// value of bitSize bits (32 for float32, 64 for float64). -// -// The format fmt is one of -// 'b' (-ddddp±ddd, a binary exponent), -// 'e' (-d.dddde±dd, a decimal exponent), -// 'E' (-d.ddddE±dd, a decimal exponent), -// 'f' (-ddd.dddd, no exponent), -// 'g' ('e' for large exponents, 'f' otherwise), or -// 'G' ('E' for large exponents, 'f' otherwise). -// -// The precision prec controls the number of digits -// (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats. -// For 'e', 'E', and 'f' it is the number of digits after the decimal point. -// For 'g' and 'G' it is the total number of digits. -// The special precision -1 uses the smallest number of digits -// necessary such that ParseFloat will return f exactly. -func formatFloat(f float64, fmt byte, prec, bitSize int) string { - return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize)) -} - -// AppendFloat appends the string form of the floating-point number f, -// as generated by FormatFloat, to dst and returns the extended buffer. -func appendFloat(dst []byte, f float64, fmt byte, prec int, bitSize int) []byte { - return genericFtoa(dst, f, fmt, prec, bitSize) -} - -func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte { - var bits uint64 - var flt *floatInfo - switch bitSize { - case 32: - bits = uint64(math.Float32bits(float32(val))) - flt = &float32info - case 64: - bits = math.Float64bits(val) - flt = &float64info - default: - panic("strconv: illegal AppendFloat/FormatFloat bitSize") - } - - neg := bits>>(flt.expbits+flt.mantbits) != 0 - exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1) - mant := bits & (uint64(1)<<flt.mantbits - 1) - - switch exp { - case 1<<flt.expbits - 1: - // Inf, NaN - var s string - switch { - case mant != 0: - s = "NaN" - case neg: - s = "-Inf" - default: - s = "+Inf" - } - return append(dst, s...) - - case 0: - // denormalized - exp++ - - default: - // add implicit top bit - mant |= uint64(1) << flt.mantbits - } - exp += flt.bias - - // Pick off easy binary format. - if fmt == 'b' { - return fmtB(dst, neg, mant, exp, flt) - } - - if !optimize { - return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) - } - - var digs decimalSlice - ok := false - // Negative precision means "only as much as needed to be exact." - shortest := prec < 0 - if shortest { - // Try Grisu3 algorithm. - f := new(extFloat) - lower, upper := f.AssignComputeBounds(mant, exp, neg, flt) - var buf [32]byte - digs.d = buf[:] - ok = f.ShortestDecimal(&digs, &lower, &upper) - if !ok { - return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) - } - // Precision for shortest representation mode. - switch fmt { - case 'e', 'E': - prec = digs.nd - 1 - case 'f': - prec = max(digs.nd-digs.dp, 0) - case 'g', 'G': - prec = digs.nd - } - } else if fmt != 'f' { - // Fixed number of digits. - digits := prec - switch fmt { - case 'e', 'E': - digits++ - case 'g', 'G': - if prec == 0 { - prec = 1 - } - digits = prec - } - if digits <= 15 { - // try fast algorithm when the number of digits is reasonable. - var buf [24]byte - digs.d = buf[:] - f := extFloat{mant, exp - int(flt.mantbits), neg} - ok = f.FixedDecimal(&digs, digits) - } - } - if !ok { - return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) - } - return formatDigits(dst, shortest, neg, digs, prec, fmt) -} - -// bigFtoa uses multiprecision computations to format a float. -func bigFtoa(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { - d := new(decimal) - d.Assign(mant) - d.Shift(exp - int(flt.mantbits)) - var digs decimalSlice - shortest := prec < 0 - if shortest { - roundShortest(d, mant, exp, flt) - digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} - // Precision for shortest representation mode. - switch fmt { - case 'e', 'E': - prec = digs.nd - 1 - case 'f': - prec = max(digs.nd-digs.dp, 0) - case 'g', 'G': - prec = digs.nd - } - } else { - // Round appropriately. - switch fmt { - case 'e', 'E': - d.Round(prec + 1) - case 'f': - d.Round(d.dp + prec) - case 'g', 'G': - if prec == 0 { - prec = 1 - } - d.Round(prec) - } - digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} - } - return formatDigits(dst, shortest, neg, digs, prec, fmt) -} - -func formatDigits(dst []byte, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) []byte { - switch fmt { - case 'e', 'E': - return fmtE(dst, neg, digs, prec, fmt) - case 'f': - return fmtF(dst, neg, digs, prec) - case 'g', 'G': - // trailing fractional zeros in 'e' form will be trimmed. - eprec := prec - if eprec > digs.nd && digs.nd >= digs.dp { - eprec = digs.nd - } - // %e is used if the exponent from the conversion - // is less than -4 or greater than or equal to the precision. - // if precision was the shortest possible, use precision 6 for this decision. - if shortest { - eprec = 6 - } - exp := digs.dp - 1 - if exp < -4 || exp >= eprec { - if prec > digs.nd { - prec = digs.nd - } - return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g') - } - if prec > digs.dp { - prec = digs.nd - } - return fmtF(dst, neg, digs, max(prec-digs.dp, 0)) - } - - // unknown format - return append(dst, '%', fmt) -} - -// Round d (= mant * 2^exp) to the shortest number of digits -// that will let the original floating point value be precisely -// reconstructed. Size is original floating point size (64 or 32). -func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { - // If mantissa is zero, the number is zero; stop now. - if mant == 0 { - d.nd = 0 - return - } - - // Compute upper and lower such that any decimal number - // between upper and lower (possibly inclusive) - // will round to the original floating point number. - - // We may see at once that the number is already shortest. - // - // Suppose d is not denormal, so that 2^exp <= d < 10^dp. - // The closest shorter number is at least 10^(dp-nd) away. - // The lower/upper bounds computed below are at distance - // at most 2^(exp-mantbits). - // - // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits), - // or equivalently log2(10)*(dp-nd) > exp-mantbits. - // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32). - minexp := flt.bias + 1 // minimum possible exponent - if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) { - // The number is already shortest. - return - } - - // d = mant << (exp - mantbits) - // Next highest floating point number is mant+1 << exp-mantbits. - // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1. - upper := new(decimal) - upper.Assign(mant*2 + 1) - upper.Shift(exp - int(flt.mantbits) - 1) - - // d = mant << (exp - mantbits) - // Next lowest floating point number is mant-1 << exp-mantbits, - // unless mant-1 drops the significant bit and exp is not the minimum exp, - // in which case the next lowest is mant*2-1 << exp-mantbits-1. - // Either way, call it mantlo << explo-mantbits. - // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1. - var mantlo uint64 - var explo int - if mant > 1<<flt.mantbits || exp == minexp { - mantlo = mant - 1 - explo = exp - } else { - mantlo = mant*2 - 1 - explo = exp - 1 - } - lower := new(decimal) - lower.Assign(mantlo*2 + 1) - lower.Shift(explo - int(flt.mantbits) - 1) - - // The upper and lower bounds are possible outputs only if - // the original mantissa is even, so that IEEE round-to-even - // would round to the original mantissa and not the neighbors. - inclusive := mant%2 == 0 - - // Now we can figure out the minimum number of digits required. - // Walk along until d has distinguished itself from upper and lower. - for i := 0; i < d.nd; i++ { - var l, m, u byte // lower, middle, upper digits - if i < lower.nd { - l = lower.d[i] - } else { - l = '0' - } - m = d.d[i] - if i < upper.nd { - u = upper.d[i] - } else { - u = '0' - } - - // Okay to round down (truncate) if lower has a different digit - // or if lower is inclusive and is exactly the result of rounding down. - okdown := l != m || (inclusive && l == m && i+1 == lower.nd) - - // Okay to round up if upper has a different digit and - // either upper is inclusive or upper is bigger than the result of rounding up. - okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd) - - // If it's okay to do either, then round to the nearest one. - // If it's okay to do only one, do it. - switch { - case okdown && okup: - d.Round(i + 1) - return - case okdown: - d.RoundDown(i + 1) - return - case okup: - d.RoundUp(i + 1) - return - } - } -} - -type decimalSlice struct { - d []byte - nd, dp int - neg bool -} - -// %e: -d.ddddde±dd -func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte { - // sign - if neg { - dst = append(dst, '-') - } - - // first digit - ch := byte('0') - if d.nd != 0 { - ch = d.d[0] - } - dst = append(dst, ch) - - // .moredigits - if prec > 0 { - dst = append(dst, '.') - i := 1 - m := d.nd + prec + 1 - max(d.nd, prec+1) - for i < m { - dst = append(dst, d.d[i]) - i++ - } - for i <= prec { - dst = append(dst, '0') - i++ - } - } - - // e± - dst = append(dst, fmt) - exp := d.dp - 1 - if d.nd == 0 { // special case: 0 has exponent 0 - exp = 0 - } - if exp < 0 { - ch = '-' - exp = -exp - } else { - ch = '+' - } - dst = append(dst, ch) - - // dddd - var buf [3]byte - i := len(buf) - for exp >= 10 { - i-- - buf[i] = byte(exp%10 + '0') - exp /= 10 - } - // exp < 10 - i-- - buf[i] = byte(exp + '0') - - switch i { - case 0: - dst = append(dst, buf[0], buf[1], buf[2]) - case 1: - dst = append(dst, buf[1], buf[2]) - case 2: - // leading zeroes - dst = append(dst, '0', buf[2]) - } - return dst -} - -// %f: -ddddddd.ddddd -func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte { - // sign - if neg { - dst = append(dst, '-') - } - - // integer, padded with zeros as needed. - if d.dp > 0 { - var i int - for i = 0; i < d.dp && i < d.nd; i++ { - dst = append(dst, d.d[i]) - } - for ; i < d.dp; i++ { - dst = append(dst, '0') - } - } else { - dst = append(dst, '0') - } - - // fraction - if prec > 0 { - dst = append(dst, '.') - for i := 0; i < prec; i++ { - ch := byte('0') - if j := d.dp + i; 0 <= j && j < d.nd { - ch = d.d[j] - } - dst = append(dst, ch) - } - } - - return dst -} - -// %b: -ddddddddp+ddd -func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { - var buf [50]byte - w := len(buf) - exp -= int(flt.mantbits) - esign := byte('+') - if exp < 0 { - esign = '-' - exp = -exp - } - n := 0 - for exp > 0 || n < 1 { - n++ - w-- - buf[w] = byte(exp%10 + '0') - exp /= 10 - } - w-- - buf[w] = esign - w-- - buf[w] = 'p' - n = 0 - for mant > 0 || n < 1 { - n++ - w-- - buf[w] = byte(mant%10 + '0') - mant /= 10 - } - if neg { - w-- - buf[w] = '-' - } - return append(dst, buf[w:]...) -} - -func max(a, b int) int { - if a > b { - return a - } - return b -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/iota.go b/vendor/github.com/pquerna/ffjson/fflib/v1/iota.go deleted file mode 100644 index 3e50f0c41..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/iota.go +++ /dev/null @@ -1,161 +0,0 @@ -/** - * Copyright 2014 Paul Querna - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -/* Portions of this file are on Go stdlib's strconv/iota.go */ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package v1 - -import ( - "io" -) - -const ( - digits = "0123456789abcdefghijklmnopqrstuvwxyz" - digits01 = "0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789" - digits10 = "0000000000111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999" -) - -var shifts = [len(digits) + 1]uint{ - 1 << 1: 1, - 1 << 2: 2, - 1 << 3: 3, - 1 << 4: 4, - 1 << 5: 5, -} - -var smallNumbers = [][]byte{ - []byte("0"), - []byte("1"), - []byte("2"), - []byte("3"), - []byte("4"), - []byte("5"), - []byte("6"), - []byte("7"), - []byte("8"), - []byte("9"), - []byte("10"), -} - -type FormatBitsWriter interface { - io.Writer - io.ByteWriter -} - -type FormatBitsScratch struct{} - -// -// DEPRECIATED: `scratch` is no longer used, FormatBits2 is available. -// -// FormatBits computes the string representation of u in the given base. -// If neg is set, u is treated as negative int64 value. If append_ is -// set, the string is appended to dst and the resulting byte slice is -// returned as the first result value; otherwise the string is returned -// as the second result value. -// -func FormatBits(scratch *FormatBitsScratch, dst FormatBitsWriter, u uint64, base int, neg bool) { - FormatBits2(dst, u, base, neg) -} - -// FormatBits2 computes the string representation of u in the given base. -// If neg is set, u is treated as negative int64 value. If append_ is -// set, the string is appended to dst and the resulting byte slice is -// returned as the first result value; otherwise the string is returned -// as the second result value. -// -func FormatBits2(dst FormatBitsWriter, u uint64, base int, neg bool) { - if base < 2 || base > len(digits) { - panic("strconv: illegal AppendInt/FormatInt base") - } - // fast path for small common numbers - if u <= 10 { - if neg { - dst.WriteByte('-') - } - dst.Write(smallNumbers[u]) - return - } - - // 2 <= base && base <= len(digits) - - var a = makeSlice(65) - // var a [64 + 1]byte // +1 for sign of 64bit value in base 2 - i := len(a) - - if neg { - u = -u - } - - // convert bits - if base == 10 { - // common case: use constants for / and % because - // the compiler can optimize it into a multiply+shift, - // and unroll loop - for u >= 100 { - i -= 2 - q := u / 100 - j := uintptr(u - q*100) - a[i+1] = digits01[j] - a[i+0] = digits10[j] - u = q - } - if u >= 10 { - i-- - q := u / 10 - a[i] = digits[uintptr(u-q*10)] - u = q - } - - } else if s := shifts[base]; s > 0 { - // base is power of 2: use shifts and masks instead of / and % - b := uint64(base) - m := uintptr(b) - 1 // == 1<<s - 1 - for u >= b { - i-- - a[i] = digits[uintptr(u)&m] - u >>= s - } - - } else { - // general case - b := uint64(base) - for u >= b { - i-- - a[i] = digits[uintptr(u%b)] - u /= b - } - } - - // u < base - i-- - a[i] = digits[uintptr(u)] - - // add sign, if any - if neg { - i-- - a[i] = '-' - } - - dst.Write(a[i:]) - - Pool(a) - - return -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/jsonstring.go b/vendor/github.com/pquerna/ffjson/fflib/v1/jsonstring.go deleted file mode 100644 index 513b45d57..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/jsonstring.go +++ /dev/null @@ -1,512 +0,0 @@ -/** - * Copyright 2014 Paul Querna - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -/* Portions of this file are on Go stdlib's encoding/json/encode.go */ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package v1 - -import ( - "io" - "unicode/utf8" - "strconv" - "unicode/utf16" - "unicode" -) - -const hex = "0123456789abcdef" - -type JsonStringWriter interface { - io.Writer - io.ByteWriter - stringWriter -} - -func WriteJsonString(buf JsonStringWriter, s string) { - WriteJson(buf, []byte(s)) -} - -/** - * Function ported from encoding/json: func (e *encodeState) string(s string) (int, error) - */ -func WriteJson(buf JsonStringWriter, s []byte) { - buf.WriteByte('"') - start := 0 - for i := 0; i < len(s); { - if b := s[i]; b < utf8.RuneSelf { - /* - if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' { - i++ - continue - } - */ - if lt[b] == true { - i++ - continue - } - - if start < i { - buf.Write(s[start:i]) - } - switch b { - case '\\', '"': - buf.WriteByte('\\') - buf.WriteByte(b) - case '\n': - buf.WriteByte('\\') - buf.WriteByte('n') - case '\r': - buf.WriteByte('\\') - buf.WriteByte('r') - default: - // This encodes bytes < 0x20 except for \n and \r, - // as well as < and >. The latter are escaped because they - // can lead to security holes when user-controlled strings - // are rendered into JSON and served to some browsers. - buf.WriteString(`\u00`) - buf.WriteByte(hex[b>>4]) - buf.WriteByte(hex[b&0xF]) - } - i++ - start = i - continue - } - c, size := utf8.DecodeRune(s[i:]) - if c == utf8.RuneError && size == 1 { - if start < i { - buf.Write(s[start:i]) - } - buf.WriteString(`\ufffd`) - i += size - start = i - continue - } - // U+2028 is LINE SEPARATOR. - // U+2029 is PARAGRAPH SEPARATOR. - // They are both technically valid characters in JSON strings, - // but don't work in JSONP, which has to be evaluated as JavaScript, - // and can lead to security holes there. It is valid JSON to - // escape them, so we do so unconditionally. - // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion. - if c == '\u2028' || c == '\u2029' { - if start < i { - buf.Write(s[start:i]) - } - buf.WriteString(`\u202`) - buf.WriteByte(hex[c&0xF]) - i += size - start = i - continue - } - i += size - } - if start < len(s) { - buf.Write(s[start:]) - } - buf.WriteByte('"') -} - -// UnquoteBytes will decode []byte containing json string to go string -// ported from encoding/json/decode.go -func UnquoteBytes(s []byte) (t []byte, ok bool) { - if len(s) < 2 || s[0] != '"' || s[len(s)-1] != '"' { - return - } - s = s[1 : len(s)-1] - - // Check for unusual characters. If there are none, - // then no unquoting is needed, so return a slice of the - // original bytes. - r := 0 - for r < len(s) { - c := s[r] - if c == '\\' || c == '"' || c < ' ' { - break - } - if c < utf8.RuneSelf { - r++ - continue - } - rr, size := utf8.DecodeRune(s[r:]) - if rr == utf8.RuneError && size == 1 { - break - } - r += size - } - if r == len(s) { - return s, true - } - - b := make([]byte, len(s)+2*utf8.UTFMax) - w := copy(b, s[0:r]) - for r < len(s) { - // Out of room? Can only happen if s is full of - // malformed UTF-8 and we're replacing each - // byte with RuneError. - if w >= len(b)-2*utf8.UTFMax { - nb := make([]byte, (len(b)+utf8.UTFMax)*2) - copy(nb, b[0:w]) - b = nb - } - switch c := s[r]; { - case c == '\\': - r++ - if r >= len(s) { - return - } - switch s[r] { - default: - return - case '"', '\\', '/', '\'': - b[w] = s[r] - r++ - w++ - case 'b': - b[w] = '\b' - r++ - w++ - case 'f': - b[w] = '\f' - r++ - w++ - case 'n': - b[w] = '\n' - r++ - w++ - case 'r': - b[w] = '\r' - r++ - w++ - case 't': - b[w] = '\t' - r++ - w++ - case 'u': - r-- - rr := getu4(s[r:]) - if rr < 0 { - return - } - r += 6 - if utf16.IsSurrogate(rr) { - rr1 := getu4(s[r:]) - if dec := utf16.DecodeRune(rr, rr1); dec != unicode.ReplacementChar { - // A valid pair; consume. - r += 6 - w += utf8.EncodeRune(b[w:], dec) - break - } - // Invalid surrogate; fall back to replacement rune. - rr = unicode.ReplacementChar - } - w += utf8.EncodeRune(b[w:], rr) - } - - // Quote, control characters are invalid. - case c == '"', c < ' ': - return - - // ASCII - case c < utf8.RuneSelf: - b[w] = c - r++ - w++ - - // Coerce to well-formed UTF-8. - default: - rr, size := utf8.DecodeRune(s[r:]) - r += size - w += utf8.EncodeRune(b[w:], rr) - } - } - return b[0:w], true -} - -// getu4 decodes \uXXXX from the beginning of s, returning the hex value, -// or it returns -1. -func getu4(s []byte) rune { - if len(s) < 6 || s[0] != '\\' || s[1] != 'u' { - return -1 - } - r, err := strconv.ParseUint(string(s[2:6]), 16, 64) - if err != nil { - return -1 - } - return rune(r) -} - -// TODO(pquerna): consider combining wibth the normal byte mask. -var lt [256]bool = [256]bool{ - false, /* 0 */ - false, /* 1 */ - false, /* 2 */ - false, /* 3 */ - false, /* 4 */ - false, /* 5 */ - false, /* 6 */ - false, /* 7 */ - false, /* 8 */ - false, /* 9 */ - false, /* 10 */ - false, /* 11 */ - false, /* 12 */ - false, /* 13 */ - false, /* 14 */ - false, /* 15 */ - false, /* 16 */ - false, /* 17 */ - false, /* 18 */ - false, /* 19 */ - false, /* 20 */ - false, /* 21 */ - false, /* 22 */ - false, /* 23 */ - false, /* 24 */ - false, /* 25 */ - false, /* 26 */ - false, /* 27 */ - false, /* 28 */ - false, /* 29 */ - false, /* 30 */ - false, /* 31 */ - true, /* 32 */ - true, /* 33 */ - false, /* 34 */ - true, /* 35 */ - true, /* 36 */ - true, /* 37 */ - false, /* 38 */ - true, /* 39 */ - true, /* 40 */ - true, /* 41 */ - true, /* 42 */ - true, /* 43 */ - true, /* 44 */ - true, /* 45 */ - true, /* 46 */ - true, /* 47 */ - true, /* 48 */ - true, /* 49 */ - true, /* 50 */ - true, /* 51 */ - true, /* 52 */ - true, /* 53 */ - true, /* 54 */ - true, /* 55 */ - true, /* 56 */ - true, /* 57 */ - true, /* 58 */ - true, /* 59 */ - false, /* 60 */ - true, /* 61 */ - false, /* 62 */ - true, /* 63 */ - true, /* 64 */ - true, /* 65 */ - true, /* 66 */ - true, /* 67 */ - true, /* 68 */ - true, /* 69 */ - true, /* 70 */ - true, /* 71 */ - true, /* 72 */ - true, /* 73 */ - true, /* 74 */ - true, /* 75 */ - true, /* 76 */ - true, /* 77 */ - true, /* 78 */ - true, /* 79 */ - true, /* 80 */ - true, /* 81 */ - true, /* 82 */ - true, /* 83 */ - true, /* 84 */ - true, /* 85 */ - true, /* 86 */ - true, /* 87 */ - true, /* 88 */ - true, /* 89 */ - true, /* 90 */ - true, /* 91 */ - false, /* 92 */ - true, /* 93 */ - true, /* 94 */ - true, /* 95 */ - true, /* 96 */ - true, /* 97 */ - true, /* 98 */ - true, /* 99 */ - true, /* 100 */ - true, /* 101 */ - true, /* 102 */ - true, /* 103 */ - true, /* 104 */ - true, /* 105 */ - true, /* 106 */ - true, /* 107 */ - true, /* 108 */ - true, /* 109 */ - true, /* 110 */ - true, /* 111 */ - true, /* 112 */ - true, /* 113 */ - true, /* 114 */ - true, /* 115 */ - true, /* 116 */ - true, /* 117 */ - true, /* 118 */ - true, /* 119 */ - true, /* 120 */ - true, /* 121 */ - true, /* 122 */ - true, /* 123 */ - true, /* 124 */ - true, /* 125 */ - true, /* 126 */ - true, /* 127 */ - true, /* 128 */ - true, /* 129 */ - true, /* 130 */ - true, /* 131 */ - true, /* 132 */ - true, /* 133 */ - true, /* 134 */ - true, /* 135 */ - true, /* 136 */ - true, /* 137 */ - true, /* 138 */ - true, /* 139 */ - true, /* 140 */ - true, /* 141 */ - true, /* 142 */ - true, /* 143 */ - true, /* 144 */ - true, /* 145 */ - true, /* 146 */ - true, /* 147 */ - true, /* 148 */ - true, /* 149 */ - true, /* 150 */ - true, /* 151 */ - true, /* 152 */ - true, /* 153 */ - true, /* 154 */ - true, /* 155 */ - true, /* 156 */ - true, /* 157 */ - true, /* 158 */ - true, /* 159 */ - true, /* 160 */ - true, /* 161 */ - true, /* 162 */ - true, /* 163 */ - true, /* 164 */ - true, /* 165 */ - true, /* 166 */ - true, /* 167 */ - true, /* 168 */ - true, /* 169 */ - true, /* 170 */ - true, /* 171 */ - true, /* 172 */ - true, /* 173 */ - true, /* 174 */ - true, /* 175 */ - true, /* 176 */ - true, /* 177 */ - true, /* 178 */ - true, /* 179 */ - true, /* 180 */ - true, /* 181 */ - true, /* 182 */ - true, /* 183 */ - true, /* 184 */ - true, /* 185 */ - true, /* 186 */ - true, /* 187 */ - true, /* 188 */ - true, /* 189 */ - true, /* 190 */ - true, /* 191 */ - true, /* 192 */ - true, /* 193 */ - true, /* 194 */ - true, /* 195 */ - true, /* 196 */ - true, /* 197 */ - true, /* 198 */ - true, /* 199 */ - true, /* 200 */ - true, /* 201 */ - true, /* 202 */ - true, /* 203 */ - true, /* 204 */ - true, /* 205 */ - true, /* 206 */ - true, /* 207 */ - true, /* 208 */ - true, /* 209 */ - true, /* 210 */ - true, /* 211 */ - true, /* 212 */ - true, /* 213 */ - true, /* 214 */ - true, /* 215 */ - true, /* 216 */ - true, /* 217 */ - true, /* 218 */ - true, /* 219 */ - true, /* 220 */ - true, /* 221 */ - true, /* 222 */ - true, /* 223 */ - true, /* 224 */ - true, /* 225 */ - true, /* 226 */ - true, /* 227 */ - true, /* 228 */ - true, /* 229 */ - true, /* 230 */ - true, /* 231 */ - true, /* 232 */ - true, /* 233 */ - true, /* 234 */ - true, /* 235 */ - true, /* 236 */ - true, /* 237 */ - true, /* 238 */ - true, /* 239 */ - true, /* 240 */ - true, /* 241 */ - true, /* 242 */ - true, /* 243 */ - true, /* 244 */ - true, /* 245 */ - true, /* 246 */ - true, /* 247 */ - true, /* 248 */ - true, /* 249 */ - true, /* 250 */ - true, /* 251 */ - true, /* 252 */ - true, /* 253 */ - true, /* 254 */ - true, /* 255 */ -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/lexer.go b/vendor/github.com/pquerna/ffjson/fflib/v1/lexer.go deleted file mode 100644 index 5589292ff..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/lexer.go +++ /dev/null @@ -1,937 +0,0 @@ -/** - * Copyright 2014 Paul Querna - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -/* Portions of this file are on derived from yajl: <https://github.com/lloyd/yajl> */ -/* - * Copyright (c) 2007-2014, Lloyd Hilaiel <me@lloyd.io> - * - * Permission to use, copy, modify, and/or distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ - -package v1 - -import ( - "errors" - "fmt" - "io" -) - -type FFParseState int - -const ( - FFParse_map_start FFParseState = iota - FFParse_want_key - FFParse_want_colon - FFParse_want_value - FFParse_after_value -) - -type FFTok int - -const ( - FFTok_init FFTok = iota - FFTok_bool FFTok = iota - FFTok_colon FFTok = iota - FFTok_comma FFTok = iota - FFTok_eof FFTok = iota - FFTok_error FFTok = iota - FFTok_left_brace FFTok = iota - FFTok_left_bracket FFTok = iota - FFTok_null FFTok = iota - FFTok_right_brace FFTok = iota - FFTok_right_bracket FFTok = iota - - /* we differentiate between integers and doubles to allow the - * parser to interpret the number without re-scanning */ - FFTok_integer FFTok = iota - FFTok_double FFTok = iota - - FFTok_string FFTok = iota - - /* comment tokens are not currently returned to the parser, ever */ - FFTok_comment FFTok = iota -) - -type FFErr int - -const ( - FFErr_e_ok FFErr = iota - FFErr_io FFErr = iota - FFErr_string_invalid_utf8 FFErr = iota - FFErr_string_invalid_escaped_char FFErr = iota - FFErr_string_invalid_json_char FFErr = iota - FFErr_string_invalid_hex_char FFErr = iota - FFErr_invalid_char FFErr = iota - FFErr_invalid_string FFErr = iota - FFErr_missing_integer_after_decimal FFErr = iota - FFErr_missing_integer_after_exponent FFErr = iota - FFErr_missing_integer_after_minus FFErr = iota - FFErr_unallowed_comment FFErr = iota - FFErr_incomplete_comment FFErr = iota - FFErr_unexpected_token_type FFErr = iota // TODO: improve this error -) - -type FFLexer struct { - reader *ffReader - Output DecodingBuffer - Token FFTok - Error FFErr - BigError error - // TODO: convert all of this to an interface - lastCurrentChar int - captureAll bool - buf Buffer -} - -func NewFFLexer(input []byte) *FFLexer { - fl := &FFLexer{ - Token: FFTok_init, - Error: FFErr_e_ok, - reader: newffReader(input), - Output: &Buffer{}, - } - // TODO: guess size? - //fl.Output.Grow(64) - return fl -} - -type LexerError struct { - offset int - line int - char int - err error -} - -// Reset the Lexer and add new input. -func (ffl *FFLexer) Reset(input []byte) { - ffl.Token = FFTok_init - ffl.Error = FFErr_e_ok - ffl.BigError = nil - ffl.reader.Reset(input) - ffl.lastCurrentChar = 0 - ffl.Output.Reset() -} - -func (le *LexerError) Error() string { - return fmt.Sprintf(`ffjson error: (%T)%s offset=%d line=%d char=%d`, - le.err, le.err.Error(), - le.offset, le.line, le.char) -} - -func (ffl *FFLexer) WrapErr(err error) error { - line, char := ffl.reader.PosWithLine() - // TOOD: calcualte lines/characters based on offset - return &LexerError{ - offset: ffl.reader.Pos(), - line: line, - char: char, - err: err, - } -} - -func (ffl *FFLexer) scanReadByte() (byte, error) { - var c byte - var err error - if ffl.captureAll { - c, err = ffl.reader.ReadByte() - } else { - c, err = ffl.reader.ReadByteNoWS() - } - - if err != nil { - ffl.Error = FFErr_io - ffl.BigError = err - return 0, err - } - - return c, nil -} - -func (ffl *FFLexer) readByte() (byte, error) { - - c, err := ffl.reader.ReadByte() - if err != nil { - ffl.Error = FFErr_io - ffl.BigError = err - return 0, err - } - - return c, nil -} - -func (ffl *FFLexer) unreadByte() { - ffl.reader.UnreadByte() -} - -func (ffl *FFLexer) wantBytes(want []byte, iftrue FFTok) FFTok { - startPos := ffl.reader.Pos() - for _, b := range want { - c, err := ffl.readByte() - - if err != nil { - return FFTok_error - } - - if c != b { - ffl.unreadByte() - // fmt.Printf("wanted bytes: %s\n", string(want)) - // TODO(pquerna): thsi is a bad error message - ffl.Error = FFErr_invalid_string - return FFTok_error - } - } - - endPos := ffl.reader.Pos() - ffl.Output.Write(ffl.reader.Slice(startPos, endPos)) - return iftrue -} - -func (ffl *FFLexer) lexComment() FFTok { - c, err := ffl.readByte() - if err != nil { - return FFTok_error - } - - if c == '/' { - // a // comment, scan until line ends. - for { - c, err := ffl.readByte() - if err != nil { - return FFTok_error - } - - if c == '\n' { - return FFTok_comment - } - } - } else if c == '*' { - // a /* */ comment, scan */ - for { - c, err := ffl.readByte() - if err != nil { - return FFTok_error - } - - if c == '*' { - c, err := ffl.readByte() - - if err != nil { - return FFTok_error - } - - if c == '/' { - return FFTok_comment - } - - ffl.Error = FFErr_incomplete_comment - return FFTok_error - } - } - } else { - ffl.Error = FFErr_incomplete_comment - return FFTok_error - } -} - -func (ffl *FFLexer) lexString() FFTok { - if ffl.captureAll { - ffl.buf.Reset() - err := ffl.reader.SliceString(&ffl.buf) - - if err != nil { - ffl.BigError = err - return FFTok_error - } - - WriteJson(ffl.Output, ffl.buf.Bytes()) - - return FFTok_string - } else { - err := ffl.reader.SliceString(ffl.Output) - - if err != nil { - ffl.BigError = err - return FFTok_error - } - - return FFTok_string - } -} - -func (ffl *FFLexer) lexNumber() FFTok { - var numRead int = 0 - tok := FFTok_integer - startPos := ffl.reader.Pos() - - c, err := ffl.readByte() - if err != nil { - return FFTok_error - } - - /* optional leading minus */ - if c == '-' { - c, err = ffl.readByte() - if err != nil { - return FFTok_error - } - } - - /* a single zero, or a series of integers */ - if c == '0' { - c, err = ffl.readByte() - if err != nil { - return FFTok_error - } - } else if c >= '1' && c <= '9' { - for c >= '0' && c <= '9' { - c, err = ffl.readByte() - if err != nil { - return FFTok_error - } - } - } else { - ffl.unreadByte() - ffl.Error = FFErr_missing_integer_after_minus - return FFTok_error - } - - if c == '.' { - numRead = 0 - c, err = ffl.readByte() - if err != nil { - return FFTok_error - } - - for c >= '0' && c <= '9' { - numRead++ - c, err = ffl.readByte() - if err != nil { - return FFTok_error - } - } - - if numRead == 0 { - ffl.unreadByte() - - ffl.Error = FFErr_missing_integer_after_decimal - return FFTok_error - } - - tok = FFTok_double - } - - /* optional exponent (indicates this is floating point) */ - if c == 'e' || c == 'E' { - numRead = 0 - c, err = ffl.readByte() - if err != nil { - return FFTok_error - } - - /* optional sign */ - if c == '+' || c == '-' { - c, err = ffl.readByte() - if err != nil { - return FFTok_error - } - } - - for c >= '0' && c <= '9' { - numRead++ - c, err = ffl.readByte() - if err != nil { - return FFTok_error - } - } - - if numRead == 0 { - ffl.Error = FFErr_missing_integer_after_exponent - return FFTok_error - } - - tok = FFTok_double - } - - ffl.unreadByte() - - endPos := ffl.reader.Pos() - ffl.Output.Write(ffl.reader.Slice(startPos, endPos)) - return tok -} - -var true_bytes = []byte{'r', 'u', 'e'} -var false_bytes = []byte{'a', 'l', 's', 'e'} -var null_bytes = []byte{'u', 'l', 'l'} - -func (ffl *FFLexer) Scan() FFTok { - tok := FFTok_error - if ffl.captureAll == false { - ffl.Output.Reset() - } - ffl.Token = FFTok_init - - for { - c, err := ffl.scanReadByte() - if err != nil { - if err == io.EOF { - return FFTok_eof - } else { - return FFTok_error - } - } - - switch c { - case '{': - tok = FFTok_left_bracket - if ffl.captureAll { - ffl.Output.WriteByte('{') - } - goto lexed - case '}': - tok = FFTok_right_bracket - if ffl.captureAll { - ffl.Output.WriteByte('}') - } - goto lexed - case '[': - tok = FFTok_left_brace - if ffl.captureAll { - ffl.Output.WriteByte('[') - } - goto lexed - case ']': - tok = FFTok_right_brace - if ffl.captureAll { - ffl.Output.WriteByte(']') - } - goto lexed - case ',': - tok = FFTok_comma - if ffl.captureAll { - ffl.Output.WriteByte(',') - } - goto lexed - case ':': - tok = FFTok_colon - if ffl.captureAll { - ffl.Output.WriteByte(':') - } - goto lexed - case '\t', '\n', '\v', '\f', '\r', ' ': - if ffl.captureAll { - ffl.Output.WriteByte(c) - } - case 't': - ffl.Output.WriteByte('t') - tok = ffl.wantBytes(true_bytes, FFTok_bool) - goto lexed - case 'f': - ffl.Output.WriteByte('f') - tok = ffl.wantBytes(false_bytes, FFTok_bool) - goto lexed - case 'n': - ffl.Output.WriteByte('n') - tok = ffl.wantBytes(null_bytes, FFTok_null) - goto lexed - case '"': - tok = ffl.lexString() - goto lexed - case '-', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': - ffl.unreadByte() - tok = ffl.lexNumber() - goto lexed - case '/': - tok = ffl.lexComment() - goto lexed - default: - tok = FFTok_error - ffl.Error = FFErr_invalid_char - goto lexed - } - } - -lexed: - ffl.Token = tok - return tok -} - -func (ffl *FFLexer) scanField(start FFTok, capture bool) ([]byte, error) { - switch start { - case FFTok_left_brace, - FFTok_left_bracket: - { - end := FFTok_right_brace - if start == FFTok_left_bracket { - end = FFTok_right_bracket - if capture { - ffl.Output.WriteByte('{') - } - } else { - if capture { - ffl.Output.WriteByte('[') - } - } - - depth := 1 - if capture { - ffl.captureAll = true - } - // TODO: work. - scanloop: - for { - tok := ffl.Scan() - //fmt.Printf("capture-token: %v end: %v depth: %v\n", tok, end, depth) - switch tok { - case FFTok_eof: - return nil, errors.New("ffjson: unexpected EOF") - case FFTok_error: - if ffl.BigError != nil { - return nil, ffl.BigError - } - return nil, ffl.Error.ToError() - case end: - depth-- - if depth == 0 { - break scanloop - } - case start: - depth++ - } - } - - if capture { - ffl.captureAll = false - } - - if capture { - return ffl.Output.Bytes(), nil - } else { - return nil, nil - } - } - case FFTok_bool, - FFTok_integer, - FFTok_null, - FFTok_double: - // simple value, return it. - if capture { - return ffl.Output.Bytes(), nil - } else { - return nil, nil - } - - case FFTok_string: - //TODO(pquerna): so, other users expect this to be a quoted string :( - if capture { - ffl.buf.Reset() - WriteJson(&ffl.buf, ffl.Output.Bytes()) - return ffl.buf.Bytes(), nil - } else { - return nil, nil - } - } - - return nil, fmt.Errorf("ffjson: invalid capture type: %v", start) -} - -// Captures an entire field value, including recursive objects, -// and converts them to a []byte suitable to pass to a sub-object's -// UnmarshalJSON -func (ffl *FFLexer) CaptureField(start FFTok) ([]byte, error) { - return ffl.scanField(start, true) -} - -func (ffl *FFLexer) SkipField(start FFTok) error { - _, err := ffl.scanField(start, false) - return err -} - -// TODO(pquerna): return line number and offset. -func (err FFErr) ToError() error { - switch err { - case FFErr_e_ok: - return nil - case FFErr_io: - return errors.New("ffjson: IO error") - case FFErr_string_invalid_utf8: - return errors.New("ffjson: string with invalid UTF-8 sequence") - case FFErr_string_invalid_escaped_char: - return errors.New("ffjson: string with invalid escaped character") - case FFErr_string_invalid_json_char: - return errors.New("ffjson: string with invalid JSON character") - case FFErr_string_invalid_hex_char: - return errors.New("ffjson: string with invalid hex character") - case FFErr_invalid_char: - return errors.New("ffjson: invalid character") - case FFErr_invalid_string: - return errors.New("ffjson: invalid string") - case FFErr_missing_integer_after_decimal: - return errors.New("ffjson: missing integer after decimal") - case FFErr_missing_integer_after_exponent: - return errors.New("ffjson: missing integer after exponent") - case FFErr_missing_integer_after_minus: - return errors.New("ffjson: missing integer after minus") - case FFErr_unallowed_comment: - return errors.New("ffjson: unallowed comment") - case FFErr_incomplete_comment: - return errors.New("ffjson: incomplete comment") - case FFErr_unexpected_token_type: - return errors.New("ffjson: unexpected token sequence") - } - - panic(fmt.Sprintf("unknown error type: %v ", err)) -} - -func (state FFParseState) String() string { - switch state { - case FFParse_map_start: - return "map:start" - case FFParse_want_key: - return "want_key" - case FFParse_want_colon: - return "want_colon" - case FFParse_want_value: - return "want_value" - case FFParse_after_value: - return "after_value" - } - - panic(fmt.Sprintf("unknown parse state: %d", int(state))) -} - -func (tok FFTok) String() string { - switch tok { - case FFTok_init: - return "tok:init" - case FFTok_bool: - return "tok:bool" - case FFTok_colon: - return "tok:colon" - case FFTok_comma: - return "tok:comma" - case FFTok_eof: - return "tok:eof" - case FFTok_error: - return "tok:error" - case FFTok_left_brace: - return "tok:left_brace" - case FFTok_left_bracket: - return "tok:left_bracket" - case FFTok_null: - return "tok:null" - case FFTok_right_brace: - return "tok:right_brace" - case FFTok_right_bracket: - return "tok:right_bracket" - case FFTok_integer: - return "tok:integer" - case FFTok_double: - return "tok:double" - case FFTok_string: - return "tok:string" - case FFTok_comment: - return "comment" - } - - panic(fmt.Sprintf("unknown token: %d", int(tok))) -} - -/* a lookup table which lets us quickly determine three things: - * cVEC - valid escaped control char - * note. the solidus '/' may be escaped or not. - * cIJC - invalid json char - * cVHC - valid hex char - * cNFP - needs further processing (from a string scanning perspective) - * cNUC - needs utf8 checking when enabled (from a string scanning perspective) - */ - -const ( - cVEC int8 = 0x01 - cIJC int8 = 0x02 - cVHC int8 = 0x04 - cNFP int8 = 0x08 - cNUC int8 = 0x10 -) - -var byteLookupTable [256]int8 = [256]int8{ - cIJC, /* 0 */ - cIJC, /* 1 */ - cIJC, /* 2 */ - cIJC, /* 3 */ - cIJC, /* 4 */ - cIJC, /* 5 */ - cIJC, /* 6 */ - cIJC, /* 7 */ - cIJC, /* 8 */ - cIJC, /* 9 */ - cIJC, /* 10 */ - cIJC, /* 11 */ - cIJC, /* 12 */ - cIJC, /* 13 */ - cIJC, /* 14 */ - cIJC, /* 15 */ - cIJC, /* 16 */ - cIJC, /* 17 */ - cIJC, /* 18 */ - cIJC, /* 19 */ - cIJC, /* 20 */ - cIJC, /* 21 */ - cIJC, /* 22 */ - cIJC, /* 23 */ - cIJC, /* 24 */ - cIJC, /* 25 */ - cIJC, /* 26 */ - cIJC, /* 27 */ - cIJC, /* 28 */ - cIJC, /* 29 */ - cIJC, /* 30 */ - cIJC, /* 31 */ - 0, /* 32 */ - 0, /* 33 */ - cVEC | cIJC | cNFP, /* 34 */ - 0, /* 35 */ - 0, /* 36 */ - 0, /* 37 */ - 0, /* 38 */ - 0, /* 39 */ - 0, /* 40 */ - 0, /* 41 */ - 0, /* 42 */ - 0, /* 43 */ - 0, /* 44 */ - 0, /* 45 */ - 0, /* 46 */ - cVEC, /* 47 */ - cVHC, /* 48 */ - cVHC, /* 49 */ - cVHC, /* 50 */ - cVHC, /* 51 */ - cVHC, /* 52 */ - cVHC, /* 53 */ - cVHC, /* 54 */ - cVHC, /* 55 */ - cVHC, /* 56 */ - cVHC, /* 57 */ - 0, /* 58 */ - 0, /* 59 */ - 0, /* 60 */ - 0, /* 61 */ - 0, /* 62 */ - 0, /* 63 */ - 0, /* 64 */ - cVHC, /* 65 */ - cVHC, /* 66 */ - cVHC, /* 67 */ - cVHC, /* 68 */ - cVHC, /* 69 */ - cVHC, /* 70 */ - 0, /* 71 */ - 0, /* 72 */ - 0, /* 73 */ - 0, /* 74 */ - 0, /* 75 */ - 0, /* 76 */ - 0, /* 77 */ - 0, /* 78 */ - 0, /* 79 */ - 0, /* 80 */ - 0, /* 81 */ - 0, /* 82 */ - 0, /* 83 */ - 0, /* 84 */ - 0, /* 85 */ - 0, /* 86 */ - 0, /* 87 */ - 0, /* 88 */ - 0, /* 89 */ - 0, /* 90 */ - 0, /* 91 */ - cVEC | cIJC | cNFP, /* 92 */ - 0, /* 93 */ - 0, /* 94 */ - 0, /* 95 */ - 0, /* 96 */ - cVHC, /* 97 */ - cVEC | cVHC, /* 98 */ - cVHC, /* 99 */ - cVHC, /* 100 */ - cVHC, /* 101 */ - cVEC | cVHC, /* 102 */ - 0, /* 103 */ - 0, /* 104 */ - 0, /* 105 */ - 0, /* 106 */ - 0, /* 107 */ - 0, /* 108 */ - 0, /* 109 */ - cVEC, /* 110 */ - 0, /* 111 */ - 0, /* 112 */ - 0, /* 113 */ - cVEC, /* 114 */ - 0, /* 115 */ - cVEC, /* 116 */ - 0, /* 117 */ - 0, /* 118 */ - 0, /* 119 */ - 0, /* 120 */ - 0, /* 121 */ - 0, /* 122 */ - 0, /* 123 */ - 0, /* 124 */ - 0, /* 125 */ - 0, /* 126 */ - 0, /* 127 */ - cNUC, /* 128 */ - cNUC, /* 129 */ - cNUC, /* 130 */ - cNUC, /* 131 */ - cNUC, /* 132 */ - cNUC, /* 133 */ - cNUC, /* 134 */ - cNUC, /* 135 */ - cNUC, /* 136 */ - cNUC, /* 137 */ - cNUC, /* 138 */ - cNUC, /* 139 */ - cNUC, /* 140 */ - cNUC, /* 141 */ - cNUC, /* 142 */ - cNUC, /* 143 */ - cNUC, /* 144 */ - cNUC, /* 145 */ - cNUC, /* 146 */ - cNUC, /* 147 */ - cNUC, /* 148 */ - cNUC, /* 149 */ - cNUC, /* 150 */ - cNUC, /* 151 */ - cNUC, /* 152 */ - cNUC, /* 153 */ - cNUC, /* 154 */ - cNUC, /* 155 */ - cNUC, /* 156 */ - cNUC, /* 157 */ - cNUC, /* 158 */ - cNUC, /* 159 */ - cNUC, /* 160 */ - cNUC, /* 161 */ - cNUC, /* 162 */ - cNUC, /* 163 */ - cNUC, /* 164 */ - cNUC, /* 165 */ - cNUC, /* 166 */ - cNUC, /* 167 */ - cNUC, /* 168 */ - cNUC, /* 169 */ - cNUC, /* 170 */ - cNUC, /* 171 */ - cNUC, /* 172 */ - cNUC, /* 173 */ - cNUC, /* 174 */ - cNUC, /* 175 */ - cNUC, /* 176 */ - cNUC, /* 177 */ - cNUC, /* 178 */ - cNUC, /* 179 */ - cNUC, /* 180 */ - cNUC, /* 181 */ - cNUC, /* 182 */ - cNUC, /* 183 */ - cNUC, /* 184 */ - cNUC, /* 185 */ - cNUC, /* 186 */ - cNUC, /* 187 */ - cNUC, /* 188 */ - cNUC, /* 189 */ - cNUC, /* 190 */ - cNUC, /* 191 */ - cNUC, /* 192 */ - cNUC, /* 193 */ - cNUC, /* 194 */ - cNUC, /* 195 */ - cNUC, /* 196 */ - cNUC, /* 197 */ - cNUC, /* 198 */ - cNUC, /* 199 */ - cNUC, /* 200 */ - cNUC, /* 201 */ - cNUC, /* 202 */ - cNUC, /* 203 */ - cNUC, /* 204 */ - cNUC, /* 205 */ - cNUC, /* 206 */ - cNUC, /* 207 */ - cNUC, /* 208 */ - cNUC, /* 209 */ - cNUC, /* 210 */ - cNUC, /* 211 */ - cNUC, /* 212 */ - cNUC, /* 213 */ - cNUC, /* 214 */ - cNUC, /* 215 */ - cNUC, /* 216 */ - cNUC, /* 217 */ - cNUC, /* 218 */ - cNUC, /* 219 */ - cNUC, /* 220 */ - cNUC, /* 221 */ - cNUC, /* 222 */ - cNUC, /* 223 */ - cNUC, /* 224 */ - cNUC, /* 225 */ - cNUC, /* 226 */ - cNUC, /* 227 */ - cNUC, /* 228 */ - cNUC, /* 229 */ - cNUC, /* 230 */ - cNUC, /* 231 */ - cNUC, /* 232 */ - cNUC, /* 233 */ - cNUC, /* 234 */ - cNUC, /* 235 */ - cNUC, /* 236 */ - cNUC, /* 237 */ - cNUC, /* 238 */ - cNUC, /* 239 */ - cNUC, /* 240 */ - cNUC, /* 241 */ - cNUC, /* 242 */ - cNUC, /* 243 */ - cNUC, /* 244 */ - cNUC, /* 245 */ - cNUC, /* 246 */ - cNUC, /* 247 */ - cNUC, /* 248 */ - cNUC, /* 249 */ - cNUC, /* 250 */ - cNUC, /* 251 */ - cNUC, /* 252 */ - cNUC, /* 253 */ - cNUC, /* 254 */ - cNUC, /* 255 */ -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/reader.go b/vendor/github.com/pquerna/ffjson/fflib/v1/reader.go deleted file mode 100644 index 96746b9d4..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/reader.go +++ /dev/null @@ -1,512 +0,0 @@ -/** - * Copyright 2014 Paul Querna - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -package v1 - -import ( - "fmt" - "io" - "unicode" - "unicode/utf16" -) - -const sliceStringMask = cIJC | cNFP - -type ffReader struct { - s []byte - i int - l int -} - -func newffReader(d []byte) *ffReader { - return &ffReader{ - s: d, - i: 0, - l: len(d), - } -} - -func (r *ffReader) Slice(start, stop int) []byte { - return r.s[start:stop] -} - -func (r *ffReader) Pos() int { - return r.i -} - -// Reset the reader, and add new input. -func (r *ffReader) Reset(d []byte) { - r.s = d - r.i = 0 - r.l = len(d) -} - -// Calculates the Position with line and line offset, -// because this isn't counted for performance reasons, -// it will iterate the buffer from the beginning, and should -// only be used in error-paths. -func (r *ffReader) PosWithLine() (int, int) { - currentLine := 1 - currentChar := 0 - - for i := 0; i < r.i; i++ { - c := r.s[i] - currentChar++ - if c == '\n' { - currentLine++ - currentChar = 0 - } - } - - return currentLine, currentChar -} - -func (r *ffReader) ReadByteNoWS() (byte, error) { - if r.i >= r.l { - return 0, io.EOF - } - - j := r.i - - for { - c := r.s[j] - j++ - - // inline whitespace parsing gives another ~8% performance boost - // for many kinds of nicely indented JSON. - // ... and using a [255]bool instead of multiple ifs, gives another 2% - /* - if c != '\t' && - c != '\n' && - c != '\v' && - c != '\f' && - c != '\r' && - c != ' ' { - r.i = j - return c, nil - } - */ - if whitespaceLookupTable[c] == false { - r.i = j - return c, nil - } - - if j >= r.l { - return 0, io.EOF - } - } -} - -func (r *ffReader) ReadByte() (byte, error) { - if r.i >= r.l { - return 0, io.EOF - } - - r.i++ - - return r.s[r.i-1], nil -} - -func (r *ffReader) UnreadByte() error { - if r.i <= 0 { - panic("ffReader.UnreadByte: at beginning of slice") - } - r.i-- - return nil -} - -func (r *ffReader) readU4(j int) (rune, error) { - - var u4 [4]byte - for i := 0; i < 4; i++ { - if j >= r.l { - return -1, io.EOF - } - c := r.s[j] - if byteLookupTable[c]&cVHC != 0 { - u4[i] = c - j++ - continue - } else { - // TODO(pquerna): handle errors better. layering violation. - return -1, fmt.Errorf("lex_string_invalid_hex_char: %v %v", c, string(u4[:])) - } - } - - // TODO(pquerna): utf16.IsSurrogate - rr, err := ParseUint(u4[:], 16, 64) - if err != nil { - return -1, err - } - return rune(rr), nil -} - -func (r *ffReader) handleEscaped(c byte, j int, out DecodingBuffer) (int, error) { - if j >= r.l { - return 0, io.EOF - } - - c = r.s[j] - j++ - - if c == 'u' { - ru, err := r.readU4(j) - if err != nil { - return 0, err - } - - if utf16.IsSurrogate(ru) { - ru2, err := r.readU4(j + 6) - if err != nil { - return 0, err - } - out.Write(r.s[r.i : j-2]) - r.i = j + 10 - j = r.i - rval := utf16.DecodeRune(ru, ru2) - if rval != unicode.ReplacementChar { - out.WriteRune(rval) - } else { - return 0, fmt.Errorf("lex_string_invalid_unicode_surrogate: %v %v", ru, ru2) - } - } else { - out.Write(r.s[r.i : j-2]) - r.i = j + 4 - j = r.i - out.WriteRune(ru) - } - return j, nil - } else if byteLookupTable[c]&cVEC == 0 { - return 0, fmt.Errorf("lex_string_invalid_escaped_char: %v", c) - } else { - out.Write(r.s[r.i : j-2]) - r.i = j - j = r.i - - switch c { - case '"': - out.WriteByte('"') - case '\\': - out.WriteByte('\\') - case '/': - out.WriteByte('/') - case 'b': - out.WriteByte('\b') - case 'f': - out.WriteByte('\f') - case 'n': - out.WriteByte('\n') - case 'r': - out.WriteByte('\r') - case 't': - out.WriteByte('\t') - } - } - - return j, nil -} - -func (r *ffReader) SliceString(out DecodingBuffer) error { - var c byte - // TODO(pquerna): string_with_escapes? de-escape here? - j := r.i - - for { - if j >= r.l { - return io.EOF - } - - j, c = scanString(r.s, j) - - if c == '"' { - if j != r.i { - out.Write(r.s[r.i : j-1]) - r.i = j - } - return nil - } else if c == '\\' { - var err error - j, err = r.handleEscaped(c, j, out) - if err != nil { - return err - } - } else if byteLookupTable[c]&cIJC != 0 { - return fmt.Errorf("lex_string_invalid_json_char: %v", c) - } - continue - } -} - -// TODO(pquerna): consider combining wibth the normal byte mask. -var whitespaceLookupTable [256]bool = [256]bool{ - false, /* 0 */ - false, /* 1 */ - false, /* 2 */ - false, /* 3 */ - false, /* 4 */ - false, /* 5 */ - false, /* 6 */ - false, /* 7 */ - false, /* 8 */ - true, /* 9 */ - true, /* 10 */ - true, /* 11 */ - true, /* 12 */ - true, /* 13 */ - false, /* 14 */ - false, /* 15 */ - false, /* 16 */ - false, /* 17 */ - false, /* 18 */ - false, /* 19 */ - false, /* 20 */ - false, /* 21 */ - false, /* 22 */ - false, /* 23 */ - false, /* 24 */ - false, /* 25 */ - false, /* 26 */ - false, /* 27 */ - false, /* 28 */ - false, /* 29 */ - false, /* 30 */ - false, /* 31 */ - true, /* 32 */ - false, /* 33 */ - false, /* 34 */ - false, /* 35 */ - false, /* 36 */ - false, /* 37 */ - false, /* 38 */ - false, /* 39 */ - false, /* 40 */ - false, /* 41 */ - false, /* 42 */ - false, /* 43 */ - false, /* 44 */ - false, /* 45 */ - false, /* 46 */ - false, /* 47 */ - false, /* 48 */ - false, /* 49 */ - false, /* 50 */ - false, /* 51 */ - false, /* 52 */ - false, /* 53 */ - false, /* 54 */ - false, /* 55 */ - false, /* 56 */ - false, /* 57 */ - false, /* 58 */ - false, /* 59 */ - false, /* 60 */ - false, /* 61 */ - false, /* 62 */ - false, /* 63 */ - false, /* 64 */ - false, /* 65 */ - false, /* 66 */ - false, /* 67 */ - false, /* 68 */ - false, /* 69 */ - false, /* 70 */ - false, /* 71 */ - false, /* 72 */ - false, /* 73 */ - false, /* 74 */ - false, /* 75 */ - false, /* 76 */ - false, /* 77 */ - false, /* 78 */ - false, /* 79 */ - false, /* 80 */ - false, /* 81 */ - false, /* 82 */ - false, /* 83 */ - false, /* 84 */ - false, /* 85 */ - false, /* 86 */ - false, /* 87 */ - false, /* 88 */ - false, /* 89 */ - false, /* 90 */ - false, /* 91 */ - false, /* 92 */ - false, /* 93 */ - false, /* 94 */ - false, /* 95 */ - false, /* 96 */ - false, /* 97 */ - false, /* 98 */ - false, /* 99 */ - false, /* 100 */ - false, /* 101 */ - false, /* 102 */ - false, /* 103 */ - false, /* 104 */ - false, /* 105 */ - false, /* 106 */ - false, /* 107 */ - false, /* 108 */ - false, /* 109 */ - false, /* 110 */ - false, /* 111 */ - false, /* 112 */ - false, /* 113 */ - false, /* 114 */ - false, /* 115 */ - false, /* 116 */ - false, /* 117 */ - false, /* 118 */ - false, /* 119 */ - false, /* 120 */ - false, /* 121 */ - false, /* 122 */ - false, /* 123 */ - false, /* 124 */ - false, /* 125 */ - false, /* 126 */ - false, /* 127 */ - false, /* 128 */ - false, /* 129 */ - false, /* 130 */ - false, /* 131 */ - false, /* 132 */ - false, /* 133 */ - false, /* 134 */ - false, /* 135 */ - false, /* 136 */ - false, /* 137 */ - false, /* 138 */ - false, /* 139 */ - false, /* 140 */ - false, /* 141 */ - false, /* 142 */ - false, /* 143 */ - false, /* 144 */ - false, /* 145 */ - false, /* 146 */ - false, /* 147 */ - false, /* 148 */ - false, /* 149 */ - false, /* 150 */ - false, /* 151 */ - false, /* 152 */ - false, /* 153 */ - false, /* 154 */ - false, /* 155 */ - false, /* 156 */ - false, /* 157 */ - false, /* 158 */ - false, /* 159 */ - false, /* 160 */ - false, /* 161 */ - false, /* 162 */ - false, /* 163 */ - false, /* 164 */ - false, /* 165 */ - false, /* 166 */ - false, /* 167 */ - false, /* 168 */ - false, /* 169 */ - false, /* 170 */ - false, /* 171 */ - false, /* 172 */ - false, /* 173 */ - false, /* 174 */ - false, /* 175 */ - false, /* 176 */ - false, /* 177 */ - false, /* 178 */ - false, /* 179 */ - false, /* 180 */ - false, /* 181 */ - false, /* 182 */ - false, /* 183 */ - false, /* 184 */ - false, /* 185 */ - false, /* 186 */ - false, /* 187 */ - false, /* 188 */ - false, /* 189 */ - false, /* 190 */ - false, /* 191 */ - false, /* 192 */ - false, /* 193 */ - false, /* 194 */ - false, /* 195 */ - false, /* 196 */ - false, /* 197 */ - false, /* 198 */ - false, /* 199 */ - false, /* 200 */ - false, /* 201 */ - false, /* 202 */ - false, /* 203 */ - false, /* 204 */ - false, /* 205 */ - false, /* 206 */ - false, /* 207 */ - false, /* 208 */ - false, /* 209 */ - false, /* 210 */ - false, /* 211 */ - false, /* 212 */ - false, /* 213 */ - false, /* 214 */ - false, /* 215 */ - false, /* 216 */ - false, /* 217 */ - false, /* 218 */ - false, /* 219 */ - false, /* 220 */ - false, /* 221 */ - false, /* 222 */ - false, /* 223 */ - false, /* 224 */ - false, /* 225 */ - false, /* 226 */ - false, /* 227 */ - false, /* 228 */ - false, /* 229 */ - false, /* 230 */ - false, /* 231 */ - false, /* 232 */ - false, /* 233 */ - false, /* 234 */ - false, /* 235 */ - false, /* 236 */ - false, /* 237 */ - false, /* 238 */ - false, /* 239 */ - false, /* 240 */ - false, /* 241 */ - false, /* 242 */ - false, /* 243 */ - false, /* 244 */ - false, /* 245 */ - false, /* 246 */ - false, /* 247 */ - false, /* 248 */ - false, /* 249 */ - false, /* 250 */ - false, /* 251 */ - false, /* 252 */ - false, /* 253 */ - false, /* 254 */ - false, /* 255 */ -} diff --git a/vendor/github.com/pquerna/ffjson/fflib/v1/reader_scan_generic.go b/vendor/github.com/pquerna/ffjson/fflib/v1/reader_scan_generic.go deleted file mode 100644 index 47c260770..000000000 --- a/vendor/github.com/pquerna/ffjson/fflib/v1/reader_scan_generic.go +++ /dev/null @@ -1,34 +0,0 @@ -/** - * Copyright 2014 Paul Querna - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -package v1 - -func scanString(s []byte, j int) (int, byte) { - for { - if j >= len(s) { - return j, 0 - } - - c := s[j] - j++ - if byteLookupTable[c]&sliceStringMask == 0 { - continue - } - - return j, c - } -} |