summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/crypto/ssh/kex.go
diff options
context:
space:
mode:
authorJhon Honce <jhonce@redhat.com>2020-01-14 15:34:15 -0700
committerJhon Honce <jhonce@redhat.com>2020-01-15 09:13:45 -0700
commit89678ab0edb0429adc515b7abfedb69db7323bde (patch)
tree58eb1065d53f5d90a6cb4185d9b0b960f8316907 /vendor/golang.org/x/crypto/ssh/kex.go
parentad5137bc7b346ef2e28eb85c872728b6748bc629 (diff)
downloadpodman-89678ab0edb0429adc515b7abfedb69db7323bde.tar.gz
podman-89678ab0edb0429adc515b7abfedb69db7323bde.tar.bz2
podman-89678ab0edb0429adc515b7abfedb69db7323bde.zip
Add APIv2 CLI example POC
* Add ReadMe, CLI and unit files to support socket activation, both for system and rootless Signed-off-by: Jhon Honce <jhonce@redhat.com>
Diffstat (limited to 'vendor/golang.org/x/crypto/ssh/kex.go')
-rw-r--r--vendor/golang.org/x/crypto/ssh/kex.go789
1 files changed, 789 insertions, 0 deletions
diff --git a/vendor/golang.org/x/crypto/ssh/kex.go b/vendor/golang.org/x/crypto/ssh/kex.go
new file mode 100644
index 000000000..6c3c648fc
--- /dev/null
+++ b/vendor/golang.org/x/crypto/ssh/kex.go
@@ -0,0 +1,789 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssh
+
+import (
+ "crypto"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/subtle"
+ "encoding/binary"
+ "errors"
+ "fmt"
+ "io"
+ "math/big"
+
+ "golang.org/x/crypto/curve25519"
+)
+
+const (
+ kexAlgoDH1SHA1 = "diffie-hellman-group1-sha1"
+ kexAlgoDH14SHA1 = "diffie-hellman-group14-sha1"
+ kexAlgoECDH256 = "ecdh-sha2-nistp256"
+ kexAlgoECDH384 = "ecdh-sha2-nistp384"
+ kexAlgoECDH521 = "ecdh-sha2-nistp521"
+ kexAlgoCurve25519SHA256 = "curve25519-sha256@libssh.org"
+
+ // For the following kex only the client half contains a production
+ // ready implementation. The server half only consists of a minimal
+ // implementation to satisfy the automated tests.
+ kexAlgoDHGEXSHA1 = "diffie-hellman-group-exchange-sha1"
+ kexAlgoDHGEXSHA256 = "diffie-hellman-group-exchange-sha256"
+)
+
+// kexResult captures the outcome of a key exchange.
+type kexResult struct {
+ // Session hash. See also RFC 4253, section 8.
+ H []byte
+
+ // Shared secret. See also RFC 4253, section 8.
+ K []byte
+
+ // Host key as hashed into H.
+ HostKey []byte
+
+ // Signature of H.
+ Signature []byte
+
+ // A cryptographic hash function that matches the security
+ // level of the key exchange algorithm. It is used for
+ // calculating H, and for deriving keys from H and K.
+ Hash crypto.Hash
+
+ // The session ID, which is the first H computed. This is used
+ // to derive key material inside the transport.
+ SessionID []byte
+}
+
+// handshakeMagics contains data that is always included in the
+// session hash.
+type handshakeMagics struct {
+ clientVersion, serverVersion []byte
+ clientKexInit, serverKexInit []byte
+}
+
+func (m *handshakeMagics) write(w io.Writer) {
+ writeString(w, m.clientVersion)
+ writeString(w, m.serverVersion)
+ writeString(w, m.clientKexInit)
+ writeString(w, m.serverKexInit)
+}
+
+// kexAlgorithm abstracts different key exchange algorithms.
+type kexAlgorithm interface {
+ // Server runs server-side key agreement, signing the result
+ // with a hostkey.
+ Server(p packetConn, rand io.Reader, magics *handshakeMagics, s Signer) (*kexResult, error)
+
+ // Client runs the client-side key agreement. Caller is
+ // responsible for verifying the host key signature.
+ Client(p packetConn, rand io.Reader, magics *handshakeMagics) (*kexResult, error)
+}
+
+// dhGroup is a multiplicative group suitable for implementing Diffie-Hellman key agreement.
+type dhGroup struct {
+ g, p, pMinus1 *big.Int
+}
+
+func (group *dhGroup) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, error) {
+ if theirPublic.Cmp(bigOne) <= 0 || theirPublic.Cmp(group.pMinus1) >= 0 {
+ return nil, errors.New("ssh: DH parameter out of bounds")
+ }
+ return new(big.Int).Exp(theirPublic, myPrivate, group.p), nil
+}
+
+func (group *dhGroup) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
+ hashFunc := crypto.SHA1
+
+ var x *big.Int
+ for {
+ var err error
+ if x, err = rand.Int(randSource, group.pMinus1); err != nil {
+ return nil, err
+ }
+ if x.Sign() > 0 {
+ break
+ }
+ }
+
+ X := new(big.Int).Exp(group.g, x, group.p)
+ kexDHInit := kexDHInitMsg{
+ X: X,
+ }
+ if err := c.writePacket(Marshal(&kexDHInit)); err != nil {
+ return nil, err
+ }
+
+ packet, err := c.readPacket()
+ if err != nil {
+ return nil, err
+ }
+
+ var kexDHReply kexDHReplyMsg
+ if err = Unmarshal(packet, &kexDHReply); err != nil {
+ return nil, err
+ }
+
+ ki, err := group.diffieHellman(kexDHReply.Y, x)
+ if err != nil {
+ return nil, err
+ }
+
+ h := hashFunc.New()
+ magics.write(h)
+ writeString(h, kexDHReply.HostKey)
+ writeInt(h, X)
+ writeInt(h, kexDHReply.Y)
+ K := make([]byte, intLength(ki))
+ marshalInt(K, ki)
+ h.Write(K)
+
+ return &kexResult{
+ H: h.Sum(nil),
+ K: K,
+ HostKey: kexDHReply.HostKey,
+ Signature: kexDHReply.Signature,
+ Hash: crypto.SHA1,
+ }, nil
+}
+
+func (group *dhGroup) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
+ hashFunc := crypto.SHA1
+ packet, err := c.readPacket()
+ if err != nil {
+ return
+ }
+ var kexDHInit kexDHInitMsg
+ if err = Unmarshal(packet, &kexDHInit); err != nil {
+ return
+ }
+
+ var y *big.Int
+ for {
+ if y, err = rand.Int(randSource, group.pMinus1); err != nil {
+ return
+ }
+ if y.Sign() > 0 {
+ break
+ }
+ }
+
+ Y := new(big.Int).Exp(group.g, y, group.p)
+ ki, err := group.diffieHellman(kexDHInit.X, y)
+ if err != nil {
+ return nil, err
+ }
+
+ hostKeyBytes := priv.PublicKey().Marshal()
+
+ h := hashFunc.New()
+ magics.write(h)
+ writeString(h, hostKeyBytes)
+ writeInt(h, kexDHInit.X)
+ writeInt(h, Y)
+
+ K := make([]byte, intLength(ki))
+ marshalInt(K, ki)
+ h.Write(K)
+
+ H := h.Sum(nil)
+
+ // H is already a hash, but the hostkey signing will apply its
+ // own key-specific hash algorithm.
+ sig, err := signAndMarshal(priv, randSource, H)
+ if err != nil {
+ return nil, err
+ }
+
+ kexDHReply := kexDHReplyMsg{
+ HostKey: hostKeyBytes,
+ Y: Y,
+ Signature: sig,
+ }
+ packet = Marshal(&kexDHReply)
+
+ err = c.writePacket(packet)
+ return &kexResult{
+ H: H,
+ K: K,
+ HostKey: hostKeyBytes,
+ Signature: sig,
+ Hash: crypto.SHA1,
+ }, err
+}
+
+// ecdh performs Elliptic Curve Diffie-Hellman key exchange as
+// described in RFC 5656, section 4.
+type ecdh struct {
+ curve elliptic.Curve
+}
+
+func (kex *ecdh) Client(c packetConn, rand io.Reader, magics *handshakeMagics) (*kexResult, error) {
+ ephKey, err := ecdsa.GenerateKey(kex.curve, rand)
+ if err != nil {
+ return nil, err
+ }
+
+ kexInit := kexECDHInitMsg{
+ ClientPubKey: elliptic.Marshal(kex.curve, ephKey.PublicKey.X, ephKey.PublicKey.Y),
+ }
+
+ serialized := Marshal(&kexInit)
+ if err := c.writePacket(serialized); err != nil {
+ return nil, err
+ }
+
+ packet, err := c.readPacket()
+ if err != nil {
+ return nil, err
+ }
+
+ var reply kexECDHReplyMsg
+ if err = Unmarshal(packet, &reply); err != nil {
+ return nil, err
+ }
+
+ x, y, err := unmarshalECKey(kex.curve, reply.EphemeralPubKey)
+ if err != nil {
+ return nil, err
+ }
+
+ // generate shared secret
+ secret, _ := kex.curve.ScalarMult(x, y, ephKey.D.Bytes())
+
+ h := ecHash(kex.curve).New()
+ magics.write(h)
+ writeString(h, reply.HostKey)
+ writeString(h, kexInit.ClientPubKey)
+ writeString(h, reply.EphemeralPubKey)
+ K := make([]byte, intLength(secret))
+ marshalInt(K, secret)
+ h.Write(K)
+
+ return &kexResult{
+ H: h.Sum(nil),
+ K: K,
+ HostKey: reply.HostKey,
+ Signature: reply.Signature,
+ Hash: ecHash(kex.curve),
+ }, nil
+}
+
+// unmarshalECKey parses and checks an EC key.
+func unmarshalECKey(curve elliptic.Curve, pubkey []byte) (x, y *big.Int, err error) {
+ x, y = elliptic.Unmarshal(curve, pubkey)
+ if x == nil {
+ return nil, nil, errors.New("ssh: elliptic.Unmarshal failure")
+ }
+ if !validateECPublicKey(curve, x, y) {
+ return nil, nil, errors.New("ssh: public key not on curve")
+ }
+ return x, y, nil
+}
+
+// validateECPublicKey checks that the point is a valid public key for
+// the given curve. See [SEC1], 3.2.2
+func validateECPublicKey(curve elliptic.Curve, x, y *big.Int) bool {
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return false
+ }
+
+ if x.Cmp(curve.Params().P) >= 0 {
+ return false
+ }
+
+ if y.Cmp(curve.Params().P) >= 0 {
+ return false
+ }
+
+ if !curve.IsOnCurve(x, y) {
+ return false
+ }
+
+ // We don't check if N * PubKey == 0, since
+ //
+ // - the NIST curves have cofactor = 1, so this is implicit.
+ // (We don't foresee an implementation that supports non NIST
+ // curves)
+ //
+ // - for ephemeral keys, we don't need to worry about small
+ // subgroup attacks.
+ return true
+}
+
+func (kex *ecdh) Server(c packetConn, rand io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
+ packet, err := c.readPacket()
+ if err != nil {
+ return nil, err
+ }
+
+ var kexECDHInit kexECDHInitMsg
+ if err = Unmarshal(packet, &kexECDHInit); err != nil {
+ return nil, err
+ }
+
+ clientX, clientY, err := unmarshalECKey(kex.curve, kexECDHInit.ClientPubKey)
+ if err != nil {
+ return nil, err
+ }
+
+ // We could cache this key across multiple users/multiple
+ // connection attempts, but the benefit is small. OpenSSH
+ // generates a new key for each incoming connection.
+ ephKey, err := ecdsa.GenerateKey(kex.curve, rand)
+ if err != nil {
+ return nil, err
+ }
+
+ hostKeyBytes := priv.PublicKey().Marshal()
+
+ serializedEphKey := elliptic.Marshal(kex.curve, ephKey.PublicKey.X, ephKey.PublicKey.Y)
+
+ // generate shared secret
+ secret, _ := kex.curve.ScalarMult(clientX, clientY, ephKey.D.Bytes())
+
+ h := ecHash(kex.curve).New()
+ magics.write(h)
+ writeString(h, hostKeyBytes)
+ writeString(h, kexECDHInit.ClientPubKey)
+ writeString(h, serializedEphKey)
+
+ K := make([]byte, intLength(secret))
+ marshalInt(K, secret)
+ h.Write(K)
+
+ H := h.Sum(nil)
+
+ // H is already a hash, but the hostkey signing will apply its
+ // own key-specific hash algorithm.
+ sig, err := signAndMarshal(priv, rand, H)
+ if err != nil {
+ return nil, err
+ }
+
+ reply := kexECDHReplyMsg{
+ EphemeralPubKey: serializedEphKey,
+ HostKey: hostKeyBytes,
+ Signature: sig,
+ }
+
+ serialized := Marshal(&reply)
+ if err := c.writePacket(serialized); err != nil {
+ return nil, err
+ }
+
+ return &kexResult{
+ H: H,
+ K: K,
+ HostKey: reply.HostKey,
+ Signature: sig,
+ Hash: ecHash(kex.curve),
+ }, nil
+}
+
+var kexAlgoMap = map[string]kexAlgorithm{}
+
+func init() {
+ // This is the group called diffie-hellman-group1-sha1 in RFC
+ // 4253 and Oakley Group 2 in RFC 2409.
+ p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF", 16)
+ kexAlgoMap[kexAlgoDH1SHA1] = &dhGroup{
+ g: new(big.Int).SetInt64(2),
+ p: p,
+ pMinus1: new(big.Int).Sub(p, bigOne),
+ }
+
+ // This is the group called diffie-hellman-group14-sha1 in RFC
+ // 4253 and Oakley Group 14 in RFC 3526.
+ p, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF", 16)
+
+ kexAlgoMap[kexAlgoDH14SHA1] = &dhGroup{
+ g: new(big.Int).SetInt64(2),
+ p: p,
+ pMinus1: new(big.Int).Sub(p, bigOne),
+ }
+
+ kexAlgoMap[kexAlgoECDH521] = &ecdh{elliptic.P521()}
+ kexAlgoMap[kexAlgoECDH384] = &ecdh{elliptic.P384()}
+ kexAlgoMap[kexAlgoECDH256] = &ecdh{elliptic.P256()}
+ kexAlgoMap[kexAlgoCurve25519SHA256] = &curve25519sha256{}
+ kexAlgoMap[kexAlgoDHGEXSHA1] = &dhGEXSHA{hashFunc: crypto.SHA1}
+ kexAlgoMap[kexAlgoDHGEXSHA256] = &dhGEXSHA{hashFunc: crypto.SHA256}
+}
+
+// curve25519sha256 implements the curve25519-sha256@libssh.org key
+// agreement protocol, as described in
+// https://git.libssh.org/projects/libssh.git/tree/doc/curve25519-sha256@libssh.org.txt
+type curve25519sha256 struct{}
+
+type curve25519KeyPair struct {
+ priv [32]byte
+ pub [32]byte
+}
+
+func (kp *curve25519KeyPair) generate(rand io.Reader) error {
+ if _, err := io.ReadFull(rand, kp.priv[:]); err != nil {
+ return err
+ }
+ curve25519.ScalarBaseMult(&kp.pub, &kp.priv)
+ return nil
+}
+
+// curve25519Zeros is just an array of 32 zero bytes so that we have something
+// convenient to compare against in order to reject curve25519 points with the
+// wrong order.
+var curve25519Zeros [32]byte
+
+func (kex *curve25519sha256) Client(c packetConn, rand io.Reader, magics *handshakeMagics) (*kexResult, error) {
+ var kp curve25519KeyPair
+ if err := kp.generate(rand); err != nil {
+ return nil, err
+ }
+ if err := c.writePacket(Marshal(&kexECDHInitMsg{kp.pub[:]})); err != nil {
+ return nil, err
+ }
+
+ packet, err := c.readPacket()
+ if err != nil {
+ return nil, err
+ }
+
+ var reply kexECDHReplyMsg
+ if err = Unmarshal(packet, &reply); err != nil {
+ return nil, err
+ }
+ if len(reply.EphemeralPubKey) != 32 {
+ return nil, errors.New("ssh: peer's curve25519 public value has wrong length")
+ }
+
+ var servPub, secret [32]byte
+ copy(servPub[:], reply.EphemeralPubKey)
+ curve25519.ScalarMult(&secret, &kp.priv, &servPub)
+ if subtle.ConstantTimeCompare(secret[:], curve25519Zeros[:]) == 1 {
+ return nil, errors.New("ssh: peer's curve25519 public value has wrong order")
+ }
+
+ h := crypto.SHA256.New()
+ magics.write(h)
+ writeString(h, reply.HostKey)
+ writeString(h, kp.pub[:])
+ writeString(h, reply.EphemeralPubKey)
+
+ ki := new(big.Int).SetBytes(secret[:])
+ K := make([]byte, intLength(ki))
+ marshalInt(K, ki)
+ h.Write(K)
+
+ return &kexResult{
+ H: h.Sum(nil),
+ K: K,
+ HostKey: reply.HostKey,
+ Signature: reply.Signature,
+ Hash: crypto.SHA256,
+ }, nil
+}
+
+func (kex *curve25519sha256) Server(c packetConn, rand io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
+ packet, err := c.readPacket()
+ if err != nil {
+ return
+ }
+ var kexInit kexECDHInitMsg
+ if err = Unmarshal(packet, &kexInit); err != nil {
+ return
+ }
+
+ if len(kexInit.ClientPubKey) != 32 {
+ return nil, errors.New("ssh: peer's curve25519 public value has wrong length")
+ }
+
+ var kp curve25519KeyPair
+ if err := kp.generate(rand); err != nil {
+ return nil, err
+ }
+
+ var clientPub, secret [32]byte
+ copy(clientPub[:], kexInit.ClientPubKey)
+ curve25519.ScalarMult(&secret, &kp.priv, &clientPub)
+ if subtle.ConstantTimeCompare(secret[:], curve25519Zeros[:]) == 1 {
+ return nil, errors.New("ssh: peer's curve25519 public value has wrong order")
+ }
+
+ hostKeyBytes := priv.PublicKey().Marshal()
+
+ h := crypto.SHA256.New()
+ magics.write(h)
+ writeString(h, hostKeyBytes)
+ writeString(h, kexInit.ClientPubKey)
+ writeString(h, kp.pub[:])
+
+ ki := new(big.Int).SetBytes(secret[:])
+ K := make([]byte, intLength(ki))
+ marshalInt(K, ki)
+ h.Write(K)
+
+ H := h.Sum(nil)
+
+ sig, err := signAndMarshal(priv, rand, H)
+ if err != nil {
+ return nil, err
+ }
+
+ reply := kexECDHReplyMsg{
+ EphemeralPubKey: kp.pub[:],
+ HostKey: hostKeyBytes,
+ Signature: sig,
+ }
+ if err := c.writePacket(Marshal(&reply)); err != nil {
+ return nil, err
+ }
+ return &kexResult{
+ H: H,
+ K: K,
+ HostKey: hostKeyBytes,
+ Signature: sig,
+ Hash: crypto.SHA256,
+ }, nil
+}
+
+// dhGEXSHA implements the diffie-hellman-group-exchange-sha1 and
+// diffie-hellman-group-exchange-sha256 key agreement protocols,
+// as described in RFC 4419
+type dhGEXSHA struct {
+ g, p *big.Int
+ hashFunc crypto.Hash
+}
+
+const numMRTests = 64
+
+const (
+ dhGroupExchangeMinimumBits = 2048
+ dhGroupExchangePreferredBits = 2048
+ dhGroupExchangeMaximumBits = 8192
+)
+
+func (gex *dhGEXSHA) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, error) {
+ if theirPublic.Sign() <= 0 || theirPublic.Cmp(gex.p) >= 0 {
+ return nil, fmt.Errorf("ssh: DH parameter out of bounds")
+ }
+ return new(big.Int).Exp(theirPublic, myPrivate, gex.p), nil
+}
+
+func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
+ // Send GexRequest
+ kexDHGexRequest := kexDHGexRequestMsg{
+ MinBits: dhGroupExchangeMinimumBits,
+ PreferedBits: dhGroupExchangePreferredBits,
+ MaxBits: dhGroupExchangeMaximumBits,
+ }
+ if err := c.writePacket(Marshal(&kexDHGexRequest)); err != nil {
+ return nil, err
+ }
+
+ // Receive GexGroup
+ packet, err := c.readPacket()
+ if err != nil {
+ return nil, err
+ }
+
+ var kexDHGexGroup kexDHGexGroupMsg
+ if err = Unmarshal(packet, &kexDHGexGroup); err != nil {
+ return nil, err
+ }
+
+ // reject if p's bit length < dhGroupExchangeMinimumBits or > dhGroupExchangeMaximumBits
+ if kexDHGexGroup.P.BitLen() < dhGroupExchangeMinimumBits || kexDHGexGroup.P.BitLen() > dhGroupExchangeMaximumBits {
+ return nil, fmt.Errorf("ssh: server-generated gex p is out of range (%d bits)", kexDHGexGroup.P.BitLen())
+ }
+
+ gex.p = kexDHGexGroup.P
+ gex.g = kexDHGexGroup.G
+
+ // Check if p is safe by verifing that p and (p-1)/2 are primes
+ one := big.NewInt(1)
+ var pHalf = &big.Int{}
+ pHalf.Rsh(gex.p, 1)
+ if !gex.p.ProbablyPrime(numMRTests) || !pHalf.ProbablyPrime(numMRTests) {
+ return nil, fmt.Errorf("ssh: server provided gex p is not safe")
+ }
+
+ // Check if g is safe by verifing that g > 1 and g < p - 1
+ var pMinusOne = &big.Int{}
+ pMinusOne.Sub(gex.p, one)
+ if gex.g.Cmp(one) != 1 && gex.g.Cmp(pMinusOne) != -1 {
+ return nil, fmt.Errorf("ssh: server provided gex g is not safe")
+ }
+
+ // Send GexInit
+ x, err := rand.Int(randSource, pHalf)
+ if err != nil {
+ return nil, err
+ }
+ X := new(big.Int).Exp(gex.g, x, gex.p)
+ kexDHGexInit := kexDHGexInitMsg{
+ X: X,
+ }
+ if err := c.writePacket(Marshal(&kexDHGexInit)); err != nil {
+ return nil, err
+ }
+
+ // Receive GexReply
+ packet, err = c.readPacket()
+ if err != nil {
+ return nil, err
+ }
+
+ var kexDHGexReply kexDHGexReplyMsg
+ if err = Unmarshal(packet, &kexDHGexReply); err != nil {
+ return nil, err
+ }
+
+ kInt, err := gex.diffieHellman(kexDHGexReply.Y, x)
+ if err != nil {
+ return nil, err
+ }
+
+ // Check if k is safe by verifing that k > 1 and k < p - 1
+ if kInt.Cmp(one) != 1 && kInt.Cmp(pMinusOne) != -1 {
+ return nil, fmt.Errorf("ssh: derived k is not safe")
+ }
+
+ h := gex.hashFunc.New()
+ magics.write(h)
+ writeString(h, kexDHGexReply.HostKey)
+ binary.Write(h, binary.BigEndian, uint32(dhGroupExchangeMinimumBits))
+ binary.Write(h, binary.BigEndian, uint32(dhGroupExchangePreferredBits))
+ binary.Write(h, binary.BigEndian, uint32(dhGroupExchangeMaximumBits))
+ writeInt(h, gex.p)
+ writeInt(h, gex.g)
+ writeInt(h, X)
+ writeInt(h, kexDHGexReply.Y)
+ K := make([]byte, intLength(kInt))
+ marshalInt(K, kInt)
+ h.Write(K)
+
+ return &kexResult{
+ H: h.Sum(nil),
+ K: K,
+ HostKey: kexDHGexReply.HostKey,
+ Signature: kexDHGexReply.Signature,
+ Hash: gex.hashFunc,
+ }, nil
+}
+
+// Server half implementation of the Diffie Hellman Key Exchange with SHA1 and SHA256.
+//
+// This is a minimal implementation to satisfy the automated tests.
+func (gex *dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
+ // Receive GexRequest
+ packet, err := c.readPacket()
+ if err != nil {
+ return
+ }
+ var kexDHGexRequest kexDHGexRequestMsg
+ if err = Unmarshal(packet, &kexDHGexRequest); err != nil {
+ return
+ }
+
+ // smoosh the user's preferred size into our own limits
+ if kexDHGexRequest.PreferedBits > dhGroupExchangeMaximumBits {
+ kexDHGexRequest.PreferedBits = dhGroupExchangeMaximumBits
+ }
+ if kexDHGexRequest.PreferedBits < dhGroupExchangeMinimumBits {
+ kexDHGexRequest.PreferedBits = dhGroupExchangeMinimumBits
+ }
+ // fix min/max if they're inconsistent. technically, we could just pout
+ // and hang up, but there's no harm in giving them the benefit of the
+ // doubt and just picking a bitsize for them.
+ if kexDHGexRequest.MinBits > kexDHGexRequest.PreferedBits {
+ kexDHGexRequest.MinBits = kexDHGexRequest.PreferedBits
+ }
+ if kexDHGexRequest.MaxBits < kexDHGexRequest.PreferedBits {
+ kexDHGexRequest.MaxBits = kexDHGexRequest.PreferedBits
+ }
+
+ // Send GexGroup
+ // This is the group called diffie-hellman-group14-sha1 in RFC
+ // 4253 and Oakley Group 14 in RFC 3526.
+ p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF", 16)
+ gex.p = p
+ gex.g = big.NewInt(2)
+
+ kexDHGexGroup := kexDHGexGroupMsg{
+ P: gex.p,
+ G: gex.g,
+ }
+ if err := c.writePacket(Marshal(&kexDHGexGroup)); err != nil {
+ return nil, err
+ }
+
+ // Receive GexInit
+ packet, err = c.readPacket()
+ if err != nil {
+ return
+ }
+ var kexDHGexInit kexDHGexInitMsg
+ if err = Unmarshal(packet, &kexDHGexInit); err != nil {
+ return
+ }
+
+ var pHalf = &big.Int{}
+ pHalf.Rsh(gex.p, 1)
+
+ y, err := rand.Int(randSource, pHalf)
+ if err != nil {
+ return
+ }
+
+ Y := new(big.Int).Exp(gex.g, y, gex.p)
+ kInt, err := gex.diffieHellman(kexDHGexInit.X, y)
+ if err != nil {
+ return nil, err
+ }
+
+ hostKeyBytes := priv.PublicKey().Marshal()
+
+ h := gex.hashFunc.New()
+ magics.write(h)
+ writeString(h, hostKeyBytes)
+ binary.Write(h, binary.BigEndian, uint32(dhGroupExchangeMinimumBits))
+ binary.Write(h, binary.BigEndian, uint32(dhGroupExchangePreferredBits))
+ binary.Write(h, binary.BigEndian, uint32(dhGroupExchangeMaximumBits))
+ writeInt(h, gex.p)
+ writeInt(h, gex.g)
+ writeInt(h, kexDHGexInit.X)
+ writeInt(h, Y)
+
+ K := make([]byte, intLength(kInt))
+ marshalInt(K, kInt)
+ h.Write(K)
+
+ H := h.Sum(nil)
+
+ // H is already a hash, but the hostkey signing will apply its
+ // own key-specific hash algorithm.
+ sig, err := signAndMarshal(priv, randSource, H)
+ if err != nil {
+ return nil, err
+ }
+
+ kexDHGexReply := kexDHGexReplyMsg{
+ HostKey: hostKeyBytes,
+ Y: Y,
+ Signature: sig,
+ }
+ packet = Marshal(&kexDHGexReply)
+
+ err = c.writePacket(packet)
+
+ return &kexResult{
+ H: H,
+ K: K,
+ HostKey: hostKeyBytes,
+ Signature: sig,
+ Hash: gex.hashFunc,
+ }, err
+}