diff options
author | dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com> | 2020-08-27 08:22:37 +0000 |
---|---|---|
committer | Daniel J Walsh <dwalsh@redhat.com> | 2020-08-28 05:45:35 -0400 |
commit | 90a86cad3a6f007c6708406d8a78528fbb302a0a (patch) | |
tree | 4c6546079346d0ff39f7c9a4d076913457a6a417 /vendor/golang.org/x/crypto | |
parent | d6b13d8a0993aced5e227e7a516aadbf37e14dbc (diff) | |
download | podman-90a86cad3a6f007c6708406d8a78528fbb302a0a.tar.gz podman-90a86cad3a6f007c6708406d8a78528fbb302a0a.tar.bz2 podman-90a86cad3a6f007c6708406d8a78528fbb302a0a.zip |
Bump k8s.io/apimachinery from 0.18.8 to 0.19.0
Bumps [k8s.io/apimachinery](https://github.com/kubernetes/apimachinery) from 0.18.8 to 0.19.0.
- [Release notes](https://github.com/kubernetes/apimachinery/releases)
- [Commits](https://github.com/kubernetes/apimachinery/compare/v0.18.8...v0.19.0)
Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
Signed-off-by: Daniel J Walsh <dwalsh@redhat.com>
Diffstat (limited to 'vendor/golang.org/x/crypto')
-rw-r--r-- | vendor/golang.org/x/crypto/poly1305/mac_noasm.go | 2 | ||||
-rw-r--r-- | vendor/golang.org/x/crypto/poly1305/poly1305.go | 4 | ||||
-rw-r--r-- | vendor/golang.org/x/crypto/poly1305/sum_generic.go | 3 | ||||
-rw-r--r-- | vendor/golang.org/x/crypto/poly1305/sum_noasm.go | 18 | ||||
-rw-r--r-- | vendor/golang.org/x/crypto/poly1305/sum_s390x.go | 72 | ||||
-rw-r--r-- | vendor/golang.org/x/crypto/poly1305/sum_s390x.s | 667 | ||||
-rw-r--r-- | vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s | 909 | ||||
-rw-r--r-- | vendor/golang.org/x/crypto/ssh/certs.go | 4 | ||||
-rw-r--r-- | vendor/golang.org/x/crypto/ssh/client_auth.go | 22 | ||||
-rw-r--r-- | vendor/golang.org/x/crypto/ssh/mux.go | 23 |
10 files changed, 492 insertions, 1232 deletions
diff --git a/vendor/golang.org/x/crypto/poly1305/mac_noasm.go b/vendor/golang.org/x/crypto/poly1305/mac_noasm.go index 347c8b15f..d118f30ed 100644 --- a/vendor/golang.org/x/crypto/poly1305/mac_noasm.go +++ b/vendor/golang.org/x/crypto/poly1305/mac_noasm.go @@ -2,7 +2,7 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build !amd64,!ppc64le gccgo purego +// +build !amd64,!ppc64le,!s390x gccgo purego package poly1305 diff --git a/vendor/golang.org/x/crypto/poly1305/poly1305.go b/vendor/golang.org/x/crypto/poly1305/poly1305.go index 3c75c2a67..9d7a6af09 100644 --- a/vendor/golang.org/x/crypto/poly1305/poly1305.go +++ b/vendor/golang.org/x/crypto/poly1305/poly1305.go @@ -26,7 +26,9 @@ const TagSize = 16 // 16-byte result into out. Authenticating two different messages with the same // key allows an attacker to forge messages at will. func Sum(out *[16]byte, m []byte, key *[32]byte) { - sum(out, m, key) + h := New(key) + h.Write(m) + h.Sum(out[:0]) } // Verify returns true if mac is a valid authenticator for m with the given key. diff --git a/vendor/golang.org/x/crypto/poly1305/sum_generic.go b/vendor/golang.org/x/crypto/poly1305/sum_generic.go index c77ff179d..c942a6590 100644 --- a/vendor/golang.org/x/crypto/poly1305/sum_generic.go +++ b/vendor/golang.org/x/crypto/poly1305/sum_generic.go @@ -41,7 +41,8 @@ func newMACGeneric(key *[32]byte) macGeneric { // the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸. type macState struct { // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but - // can grow larger during and after rounds. + // can grow larger during and after rounds. It must, however, remain below + // 2 * (2¹³⁰ - 5). h [3]uint64 // r and s are the private key components. r [2]uint64 diff --git a/vendor/golang.org/x/crypto/poly1305/sum_noasm.go b/vendor/golang.org/x/crypto/poly1305/sum_noasm.go deleted file mode 100644 index 2b55a29c5..000000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_noasm.go +++ /dev/null @@ -1,18 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// At this point only s390x has an assembly implementation of sum. All other -// platforms have assembly implementations of mac, and just define sum as using -// that through New. Once s390x is ported, this file can be deleted and the body -// of sum moved into Sum. - -// +build !go1.11 !s390x gccgo purego - -package poly1305 - -func sum(out *[TagSize]byte, msg []byte, key *[32]byte) { - h := New(key) - h.Write(msg) - h.Sum(out[:0]) -} diff --git a/vendor/golang.org/x/crypto/poly1305/sum_s390x.go b/vendor/golang.org/x/crypto/poly1305/sum_s390x.go index 5f91ff84a..958fedc07 100644 --- a/vendor/golang.org/x/crypto/poly1305/sum_s390x.go +++ b/vendor/golang.org/x/crypto/poly1305/sum_s390x.go @@ -2,7 +2,7 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build go1.11,!gccgo,!purego +// +build !gccgo,!purego package poly1305 @@ -10,30 +10,66 @@ import ( "golang.org/x/sys/cpu" ) -// poly1305vx is an assembly implementation of Poly1305 that uses vector +// updateVX is an assembly implementation of Poly1305 that uses vector // instructions. It must only be called if the vector facility (vx) is // available. //go:noescape -func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte) +func updateVX(state *macState, msg []byte) -// poly1305vmsl is an assembly implementation of Poly1305 that uses vector -// instructions, including VMSL. It must only be called if the vector facility (vx) is -// available and if VMSL is supported. -//go:noescape -func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte) +// mac is a replacement for macGeneric that uses a larger buffer and redirects +// calls that would have gone to updateGeneric to updateVX if the vector +// facility is installed. +// +// A larger buffer is required for good performance because the vector +// implementation has a higher fixed cost per call than the generic +// implementation. +type mac struct { + macState + + buffer [16 * TagSize]byte // size must be a multiple of block size (16) + offset int +} -func sum(out *[16]byte, m []byte, key *[32]byte) { - if cpu.S390X.HasVX { - var mPtr *byte - if len(m) > 0 { - mPtr = &m[0] +func (h *mac) Write(p []byte) (int, error) { + nn := len(p) + if h.offset > 0 { + n := copy(h.buffer[h.offset:], p) + if h.offset+n < len(h.buffer) { + h.offset += n + return nn, nil } - if cpu.S390X.HasVXE && len(m) > 256 { - poly1305vmsl(out, mPtr, uint64(len(m)), key) + p = p[n:] + h.offset = 0 + if cpu.S390X.HasVX { + updateVX(&h.macState, h.buffer[:]) } else { - poly1305vx(out, mPtr, uint64(len(m)), key) + updateGeneric(&h.macState, h.buffer[:]) } - } else { - sumGeneric(out, m, key) } + + tail := len(p) % len(h.buffer) // number of bytes to copy into buffer + body := len(p) - tail // number of bytes to process now + if body > 0 { + if cpu.S390X.HasVX { + updateVX(&h.macState, p[:body]) + } else { + updateGeneric(&h.macState, p[:body]) + } + } + h.offset = copy(h.buffer[:], p[body:]) // copy tail bytes - can be 0 + return nn, nil +} + +func (h *mac) Sum(out *[TagSize]byte) { + state := h.macState + remainder := h.buffer[:h.offset] + + // Use the generic implementation if we have 2 or fewer blocks left + // to sum. The vector implementation has a higher startup time. + if cpu.S390X.HasVX && len(remainder) > 2*TagSize { + updateVX(&state, remainder) + } else if len(remainder) > 0 { + updateGeneric(&state, remainder) + } + finalize(out, &state.h, &state.s) } diff --git a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s b/vendor/golang.org/x/crypto/poly1305/sum_s390x.s index 806d1694b..0fa9ee6e0 100644 --- a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s +++ b/vendor/golang.org/x/crypto/poly1305/sum_s390x.s @@ -2,115 +2,187 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build go1.11,!gccgo,!purego +// +build !gccgo,!purego #include "textflag.h" -// Implementation of Poly1305 using the vector facility (vx). - -// constants -#define MOD26 V0 -#define EX0 V1 -#define EX1 V2 -#define EX2 V3 - -// temporaries -#define T_0 V4 -#define T_1 V5 -#define T_2 V6 -#define T_3 V7 -#define T_4 V8 - -// key (r) -#define R_0 V9 -#define R_1 V10 -#define R_2 V11 -#define R_3 V12 -#define R_4 V13 -#define R5_1 V14 -#define R5_2 V15 -#define R5_3 V16 -#define R5_4 V17 -#define RSAVE_0 R5 -#define RSAVE_1 R6 -#define RSAVE_2 R7 -#define RSAVE_3 R8 -#define RSAVE_4 R9 -#define R5SAVE_1 V28 -#define R5SAVE_2 V29 -#define R5SAVE_3 V30 -#define R5SAVE_4 V31 - -// message block -#define F_0 V18 -#define F_1 V19 -#define F_2 V20 -#define F_3 V21 -#define F_4 V22 - -// accumulator -#define H_0 V23 -#define H_1 V24 -#define H_2 V25 -#define H_3 V26 -#define H_4 V27 - -GLOBL ·keyMask<>(SB), RODATA, $16 -DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f -DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f - -GLOBL ·bswapMask<>(SB), RODATA, $16 -DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 -DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 - -GLOBL ·constants<>(SB), RODATA, $64 -// MOD26 -DATA ·constants<>+0(SB)/8, $0x3ffffff -DATA ·constants<>+8(SB)/8, $0x3ffffff +// This implementation of Poly1305 uses the vector facility (vx) +// to process up to 2 blocks (32 bytes) per iteration using an +// algorithm based on the one described in: +// +// NEON crypto, Daniel J. Bernstein & Peter Schwabe +// https://cryptojedi.org/papers/neoncrypto-20120320.pdf +// +// This algorithm uses 5 26-bit limbs to represent a 130-bit +// value. These limbs are, for the most part, zero extended and +// placed into 64-bit vector register elements. Each vector +// register is 128-bits wide and so holds 2 of these elements. +// Using 26-bit limbs allows us plenty of headroom to accomodate +// accumulations before and after multiplication without +// overflowing either 32-bits (before multiplication) or 64-bits +// (after multiplication). +// +// In order to parallelise the operations required to calculate +// the sum we use two separate accumulators and then sum those +// in an extra final step. For compatibility with the generic +// implementation we perform this summation at the end of every +// updateVX call. +// +// To use two accumulators we must multiply the message blocks +// by r² rather than r. Only the final message block should be +// multiplied by r. +// +// Example: +// +// We want to calculate the sum (h) for a 64 byte message (m): +// +// h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r +// +// To do this we split the calculation into the even indices +// and odd indices of the message. These form our SIMD 'lanes': +// +// h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0 +// m[16:32]r³ + m[48:64]r <- lane 1 +// +// To calculate this iteratively we refactor so that both lanes +// are written in terms of r² and r: +// +// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0 +// (m[16:32]r² + m[48:64])r <- lane 1 +// ^ ^ +// | coefficients for second iteration +// coefficients for first iteration +// +// So in this case we would have two iterations. In the first +// both lanes are multiplied by r². In the second only the +// first lane is multiplied by r² and the second lane is +// instead multiplied by r. This gives use the odd and even +// powers of r that we need from the original equation. +// +// Notation: +// +// h - accumulator +// r - key +// m - message +// +// [a, b] - SIMD register holding two 64-bit values +// [a, b, c, d] - SIMD register holding four 32-bit values +// xᵢ[n] - limb n of variable x with bit width i +// +// Limbs are expressed in little endian order, so for 26-bit +// limbs x₂₆[4] will be the most significant limb and x₂₆[0] +// will be the least significant limb. + +// masking constants +#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits +#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits + +// expansion constants (see EXPAND macro) +#define EX0 V2 +#define EX1 V3 +#define EX2 V4 + +// key (r², r or 1 depending on context) +#define R_0 V5 +#define R_1 V6 +#define R_2 V7 +#define R_3 V8 +#define R_4 V9 + +// precalculated coefficients (5r², 5r or 0 depending on context) +#define R5_1 V10 +#define R5_2 V11 +#define R5_3 V12 +#define R5_4 V13 + +// message block (m) +#define M_0 V14 +#define M_1 V15 +#define M_2 V16 +#define M_3 V17 +#define M_4 V18 + +// accumulator (h) +#define H_0 V19 +#define H_1 V20 +#define H_2 V21 +#define H_3 V22 +#define H_4 V23 + +// temporary registers (for short-lived values) +#define T_0 V24 +#define T_1 V25 +#define T_2 V26 +#define T_3 V27 +#define T_4 V28 + +GLOBL ·constants<>(SB), RODATA, $0x30 // EX0 -DATA ·constants<>+16(SB)/8, $0x0006050403020100 -DATA ·constants<>+24(SB)/8, $0x1016151413121110 +DATA ·constants<>+0x00(SB)/8, $0x0006050403020100 +DATA ·constants<>+0x08(SB)/8, $0x1016151413121110 // EX1 -DATA ·constants<>+32(SB)/8, $0x060c0b0a09080706 -DATA ·constants<>+40(SB)/8, $0x161c1b1a19181716 +DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706 +DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716 // EX2 -DATA ·constants<>+48(SB)/8, $0x0d0d0d0d0d0f0e0d -DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d - -// h = (f*g) % (2**130-5) [partial reduction] +DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d +DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d + +// MULTIPLY multiplies each lane of f and g, partially reduced +// modulo 2¹³⁰ - 5. The result, h, consists of partial products +// in each lane that need to be reduced further to produce the +// final result. +// +// h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰ +// +// Note that the multiplication by 5 of the high bits is +// achieved by precalculating the multiplication of four of the +// g coefficients by 5. These are g51-g54. #define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \ VMLOF f0, g0, h0 \ - VMLOF f0, g1, h1 \ - VMLOF f0, g2, h2 \ VMLOF f0, g3, h3 \ + VMLOF f0, g1, h1 \ VMLOF f0, g4, h4 \ + VMLOF f0, g2, h2 \ VMLOF f1, g54, T_0 \ - VMLOF f1, g0, T_1 \ - VMLOF f1, g1, T_2 \ VMLOF f1, g2, T_3 \ + VMLOF f1, g0, T_1 \ VMLOF f1, g3, T_4 \ + VMLOF f1, g1, T_2 \ VMALOF f2, g53, h0, h0 \ - VMALOF f2, g54, h1, h1 \ - VMALOF f2, g0, h2, h2 \ VMALOF f2, g1, h3, h3 \ + VMALOF f2, g54, h1, h1 \ VMALOF f2, g2, h4, h4 \ + VMALOF f2, g0, h2, h2 \ VMALOF f3, g52, T_0, T_0 \ - VMALOF f3, g53, T_1, T_1 \ - VMALOF f3, g54, T_2, T_2 \ VMALOF f3, g0, T_3, T_3 \ + VMALOF f3, g53, T_1, T_1 \ VMALOF f3, g1, T_4, T_4 \ + VMALOF f3, g54, T_2, T_2 \ VMALOF f4, g51, h0, h0 \ - VMALOF f4, g52, h1, h1 \ - VMALOF f4, g53, h2, h2 \ VMALOF f4, g54, h3, h3 \ + VMALOF f4, g52, h1, h1 \ VMALOF f4, g0, h4, h4 \ + VMALOF f4, g53, h2, h2 \ VAG T_0, h0, h0 \ - VAG T_1, h1, h1 \ - VAG T_2, h2, h2 \ VAG T_3, h3, h3 \ - VAG T_4, h4, h4 - -// carry h0->h1 h3->h4, h1->h2 h4->h0, h0->h1 h2->h3, h3->h4 + VAG T_1, h1, h1 \ + VAG T_4, h4, h4 \ + VAG T_2, h2, h2 + +// REDUCE performs the following carry operations in four +// stages, as specified in Bernstein & Schwabe: +// +// 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4] +// 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0] +// 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3] +// 4: h₂₆[3]->h₂₆[4] +// +// The result is that all of the limbs are limited to 26-bits +// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits. +// +// Note that although each limb is aligned at 26-bit intervals +// they may contain values that exceed 2²⁶ - 1, hence the need +// to carry the excess bits in each limb. #define REDUCE(h0, h1, h2, h3, h4) \ VESRLG $26, h0, T_0 \ VESRLG $26, h3, T_1 \ @@ -136,144 +208,155 @@ DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d VN MOD26, h3, h3 \ VAG T_2, h4, h4 -// expand in0 into d[0] and in1 into d[1] +// EXPAND splits the 128-bit little-endian values in0 and in1 +// into 26-bit big-endian limbs and places the results into +// the first and second lane of d₂₆[0:4] respectively. +// +// The EX0, EX1 and EX2 constants are arrays of byte indices +// for permutation. The permutation both reverses the bytes +// in the input and ensures the bytes are copied into the +// destination limb ready to be shifted into their final +// position. #define EXPAND(in0, in1, d0, d1, d2, d3, d4) \ - VGBM $0x0707, d1 \ // d1=tmp - VPERM in0, in1, EX2, d4 \ VPERM in0, in1, EX0, d0 \ VPERM in0, in1, EX1, d2 \ - VN d1, d4, d4 \ + VPERM in0, in1, EX2, d4 \ VESRLG $26, d0, d1 \ VESRLG $30, d2, d3 \ VESRLG $4, d2, d2 \ - VN MOD26, d0, d0 \ - VN MOD26, d1, d1 \ - VN MOD26, d2, d2 \ - VN MOD26, d3, d3 - -// pack h4:h0 into h1:h0 (no carry) -#define PACK(h0, h1, h2, h3, h4) \ - VESLG $26, h1, h1 \ - VESLG $26, h3, h3 \ - VO h0, h1, h0 \ - VO h2, h3, h2 \ - VESLG $4, h2, h2 \ - VLEIB $7, $48, h1 \ - VSLB h1, h2, h2 \ - VO h0, h2, h0 \ - VLEIB $7, $104, h1 \ - VSLB h1, h4, h3 \ - VO h3, h0, h0 \ - VLEIB $7, $24, h1 \ - VSRLB h1, h4, h1 - -// if h > 2**130-5 then h -= 2**130-5 -#define MOD(h0, h1, t0, t1, t2) \ - VZERO t0 \ - VLEIG $1, $5, t0 \ - VACCQ h0, t0, t1 \ - VAQ h0, t0, t0 \ - VONE t2 \ - VLEIG $1, $-4, t2 \ - VAQ t2, t1, t1 \ - VACCQ h1, t1, t1 \ - VONE t2 \ - VAQ t2, t1, t1 \ - VN h0, t1, t2 \ - VNC t0, t1, t1 \ - VO t1, t2, h0 - -// func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]key) -TEXT ·poly1305vx(SB), $0-32 - // This code processes up to 2 blocks (32 bytes) per iteration - // using the algorithm described in: - // NEON crypto, Daniel J. Bernstein & Peter Schwabe - // https://cryptojedi.org/papers/neoncrypto-20120320.pdf - LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key - - // load MOD26, EX0, EX1 and EX2 + VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]] + VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]] + VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]] + VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]] + VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]] + +// func updateVX(state *macState, msg []byte) +TEXT ·updateVX(SB), NOSPLIT, $0 + MOVD state+0(FP), R1 + LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len + + // load EX0, EX1 and EX2 MOVD $·constants<>(SB), R5 - VLM (R5), MOD26, EX2 - - // setup r - VL (R4), T_0 - MOVD $·keyMask<>(SB), R6 - VL (R6), T_1 - VN T_0, T_1, T_0 - EXPAND(T_0, T_0, R_0, R_1, R_2, R_3, R_4) - - // setup r*5 - VLEIG $0, $5, T_0 - VLEIG $1, $5, T_0 - - // store r (for final block) - VMLOF T_0, R_1, R5SAVE_1 - VMLOF T_0, R_2, R5SAVE_2 - VMLOF T_0, R_3, R5SAVE_3 - VMLOF T_0, R_4, R5SAVE_4 - VLGVG $0, R_0, RSAVE_0 - VLGVG $0, R_1, RSAVE_1 - VLGVG $0, R_2, RSAVE_2 - VLGVG $0, R_3, RSAVE_3 - VLGVG $0, R_4, RSAVE_4 - - // skip r**2 calculation + VLM (R5), EX0, EX2 + + // generate masks + VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff] + VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff] + + // load h (accumulator) and r (key) from state + VZERO T_1 // [0, 0] + VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]] + VLEG $0, 16(R1), T_1 // [h₆₄[2], 0] + VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]] + VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]] + VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]] + + // unpack h and r into 26-bit limbs + // note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value + VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]] + VZERO H_1 // [0, 0] + VZERO H_3 // [0, 0] + VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out + VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0] + VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]] + VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only + VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]] + VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only + VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete + VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete + + // replicate r across all 4 vector elements + VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]] + VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]] + VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]] + VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]] + VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]] + + // zero out lane 1 of h + VLEIG $1, $0, H_0 // [h₂₆[0], 0] + VLEIG $1, $0, H_1 // [h₂₆[1], 0] + VLEIG $1, $0, H_2 // [h₂₆[2], 0] + VLEIG $1, $0, H_3 // [h₂₆[3], 0] + VLEIG $1, $0, H_4 // [h₂₆[4], 0] + + // calculate 5r (ignore least significant limb) + VREPIF $5, T_0 + VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]] + VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]] + VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]] + VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]] + + // skip r² calculation if we are only calculating one block CMPBLE R3, $16, skip - // calculate r**2 - MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5SAVE_1, R5SAVE_2, R5SAVE_3, R5SAVE_4, H_0, H_1, H_2, H_3, H_4) - REDUCE(H_0, H_1, H_2, H_3, H_4) - VLEIG $0, $5, T_0 - VLEIG $1, $5, T_0 - VMLOF T_0, H_1, R5_1 - VMLOF T_0, H_2, R5_2 - VMLOF T_0, H_3, R5_3 - VMLOF T_0, H_4, R5_4 - VLR H_0, R_0 - VLR H_1, R_1 - VLR H_2, R_2 - VLR H_3, R_3 - VLR H_4, R_4 - - // initialize h - VZERO H_0 - VZERO H_1 - VZERO H_2 - VZERO H_3 - VZERO H_4 + // calculate r² + MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4) + REDUCE(M_0, M_1, M_2, M_3, M_4) + VGBM $0x0f0f, T_0 + VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]] + VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]] + VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]] + VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]] + VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]] + + // calculate 5r² (ignore least significant limb) + VREPIF $5, T_0 + VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]] + VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]] + VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]] + VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]] loop: - CMPBLE R3, $32, b2 - VLM (R2), T_0, T_1 - SUB $32, R3 - MOVD $32(R2), R2 - EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) - VLEIB $4, $1, F_4 - VLEIB $12, $1, F_4 + CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients + + // load next 2 blocks from message + VLM (R2), T_0, T_1 + + // update message slice + SUB $32, R3 + MOVD $32(R2), R2 + + // unpack message blocks into 26-bit big-endian limbs + EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) + + // add 2¹²⁸ to each message block value + VLEIB $4, $1, M_4 + VLEIB $12, $1, M_4 multiply: - VAG H_0, F_0, F_0 - VAG H_1, F_1, F_1 - VAG H_2, F_2, F_2 - VAG H_3, F_3, F_3 - VAG H_4, F_4, F_4 - MULTIPLY(F_0, F_1, F_2, F_3, F_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) + // accumulate the incoming message + VAG H_0, M_0, M_0 + VAG H_3, M_3, M_3 + VAG H_1, M_1, M_1 + VAG H_4, M_4, M_4 + VAG H_2, M_2, M_2 + + // multiply the accumulator by the key coefficient + MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) + + // carry and partially reduce the partial products REDUCE(H_0, H_1, H_2, H_3, H_4) + CMPBNE R3, $0, loop finish: - // sum vectors + // sum lane 0 and lane 1 and put the result in lane 1 VZERO T_0 VSUMQG H_0, T_0, H_0 - VSUMQG H_1, T_0, H_1 - VSUMQG H_2, T_0, H_2 VSUMQG H_3, T_0, H_3 + VSUMQG H_1, T_0, H_1 VSUMQG H_4, T_0, H_4 + VSUMQG H_2, T_0, H_2 - // h may be >= 2*(2**130-5) so we need to reduce it again + // reduce again after summation + // TODO(mundaym): there might be a more efficient way to do this + // now that we only have 1 active lane. For example, we could + // simultaneously pack the values as we reduce them. REDUCE(H_0, H_1, H_2, H_3, H_4) - // carry h1->h4 + // carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1 + // TODO(mundaym): in testing this final carry was unnecessary. + // Needs a proof before it can be removed though. VESRLG $26, H_1, T_1 VN MOD26, H_1, H_1 VAQ T_1, H_2, H_2 @@ -284,95 +367,137 @@ finish: VN MOD26, H_3, H_3 VAQ T_3, H_4, H_4 - // h is now < 2*(2**130-5) - // pack h into h1 (hi) and h0 (lo) - PACK(H_0, H_1, H_2, H_3, H_4) - - // if h > 2**130-5 then h -= 2**130-5 - MOD(H_0, H_1, T_0, T_1, T_2) - - // h += s - MOVD $·bswapMask<>(SB), R5 - VL (R5), T_1 - VL 16(R4), T_0 - VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) - VAQ T_0, H_0, H_0 - VPERM H_0, H_0, T_1, H_0 // reverse bytes (to little) - VST H_0, (R1) - + // h is now < 2(2¹³⁰ - 5) + // Pack each lane in h₂₆[0:4] into h₁₂₈[0:1]. + VESLG $26, H_1, H_1 + VESLG $26, H_3, H_3 + VO H_0, H_1, H_0 + VO H_2, H_3, H_2 + VESLG $4, H_2, H_2 + VLEIB $7, $48, H_1 + VSLB H_1, H_2, H_2 + VO H_0, H_2, H_0 + VLEIB $7, $104, H_1 + VSLB H_1, H_4, H_3 + VO H_3, H_0, H_0 + VLEIB $7, $24, H_1 + VSRLB H_1, H_4, H_1 + + // update state + VSTEG $1, H_0, 0(R1) + VSTEG $0, H_0, 8(R1) + VSTEG $1, H_1, 16(R1) RET -b2: +b2: // 2 or fewer blocks remaining CMPBLE R3, $16, b1 - // 2 blocks remaining - SUB $17, R3 - VL (R2), T_0 - VLL R3, 16(R2), T_1 - ADD $1, R3 + // Load the 2 remaining blocks (17-32 bytes remaining). + MOVD $-17(R3), R0 // index of final byte to load modulo 16 + VL (R2), T_0 // load full 16 byte block + VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes + + // The Poly1305 algorithm requires that a 1 bit be appended to + // each message block. If the final block is less than 16 bytes + // long then it is easiest to insert the 1 before the message + // block is split into 26-bit limbs. If, on the other hand, the + // final message block is 16 bytes long then we append the 1 bit + // after expansion as normal. MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, T_1 - EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) + MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16) + CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long + VLVGB R3, R0, T_1 // insert 1 into the byte at index R3 + + // Split both blocks into 26-bit limbs in the appropriate lanes. + EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) + + // Append a 1 byte to the end of the second to last block. + VLEIB $4, $1, M_4 + + // Append a 1 byte to the end of the last block only if it is a + // full 16 byte block. CMPBNE R3, $16, 2(PC) - VLEIB $12, $1, F_4 - VLEIB $4, $1, F_4 - - // setup [r²,r] - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, RSAVE_3, R_3 - VLVGG $1, RSAVE_4, R_4 - VPDI $0, R5_1, R5SAVE_1, R5_1 - VPDI $0, R5_2, R5SAVE_2, R5_2 - VPDI $0, R5_3, R5SAVE_3, R5_3 - VPDI $0, R5_4, R5SAVE_4, R5_4 + VLEIB $12, $1, M_4 + + // Finally, set up the coefficients for the final multiplication. + // We have previously saved r and 5r in the 32-bit even indexes + // of the R_[0-4] and R5_[1-4] coefficient registers. + // + // We want lane 0 to be multiplied by r² so that can be kept the + // same. We want lane 1 to be multiplied by r so we need to move + // the saved r value into the 32-bit odd index in lane 1 by + // rotating the 64-bit lane by 32. + VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only + VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]] + VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]] + VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]] + VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]] + VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]] + VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]] + VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]] + VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]] + VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]] MOVD $0, R3 BR multiply skip: - VZERO H_0 - VZERO H_1 - VZERO H_2 - VZERO H_3 - VZERO H_4 - CMPBEQ R3, $0, finish -b1: - // 1 block remaining - SUB $1, R3 - VLL R3, (R2), T_0 - ADD $1, R3 +b1: // 1 block remaining + + // Load the final block (1-16 bytes). This will be placed into + // lane 0. + MOVD $-1(R3), R0 + VLL R0, (R2), T_0 // pad to 16 bytes with zeros + + // The Poly1305 algorithm requires that a 1 bit be appended to + // each message block. If the final block is less than 16 bytes + // long then it is easiest to insert the 1 before the message + // block is split into 26-bit limbs. If, on the other hand, the + // final message block is 16 bytes long then we append the 1 bit + // after expansion as normal. MOVBZ $1, R0 CMPBEQ R3, $16, 2(PC) VLVGB R3, R0, T_0 - VZERO T_1 - EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) + + // Set the message block in lane 1 to the value 0 so that it + // can be accumulated without affecting the final result. + VZERO T_1 + + // Split the final message block into 26-bit limbs in lane 0. + // Lane 1 will be contain 0. + EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) + + // Append a 1 byte to the end of the last block only if it is a + // full 16 byte block. CMPBNE R3, $16, 2(PC) - VLEIB $4, $1, F_4 - VLEIG $1, $1, R_0 - VZERO R_1 - VZERO R_2 - VZERO R_3 - VZERO R_4 - VZERO R5_1 - VZERO R5_2 - VZERO R5_3 - VZERO R5_4 - - // setup [r, 1] - VLVGG $0, RSAVE_0, R_0 - VLVGG $0, RSAVE_1, R_1 - VLVGG $0, RSAVE_2, R_2 - VLVGG $0, RSAVE_3, R_3 - VLVGG $0, RSAVE_4, R_4 - VPDI $0, R5SAVE_1, R5_1, R5_1 - VPDI $0, R5SAVE_2, R5_2, R5_2 - VPDI $0, R5SAVE_3, R5_3, R5_3 - VPDI $0, R5SAVE_4, R5_4, R5_4 + VLEIB $4, $1, M_4 + + // We have previously saved r and 5r in the 32-bit even indexes + // of the R_[0-4] and R5_[1-4] coefficient registers. + // + // We want lane 0 to be multiplied by r so we need to move the + // saved r value into the 32-bit odd index in lane 0. We want + // lane 1 to be set to the value 1. This makes multiplication + // a no-op. We do this by setting lane 1 in every register to 0 + // and then just setting the 32-bit index 3 in R_0 to 1. + VZERO T_0 + MOVD $0, R0 + MOVD $0x10111213, R12 + VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000] + VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0] + VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0] + VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0] + VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0] + VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0] + VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0] + VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0] + VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0] + VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0] + + // Set the value of lane 1 to be 1. + VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1] MOVD $0, R3 BR multiply diff --git a/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s b/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s deleted file mode 100644 index b439af936..000000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s +++ /dev/null @@ -1,909 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build go1.11,!gccgo,!purego - -#include "textflag.h" - -// Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction. - -// constants -#define EX0 V1 -#define EX1 V2 -#define EX2 V3 - -// temporaries -#define T_0 V4 -#define T_1 V5 -#define T_2 V6 -#define T_3 V7 -#define T_4 V8 -#define T_5 V9 -#define T_6 V10 -#define T_7 V11 -#define T_8 V12 -#define T_9 V13 -#define T_10 V14 - -// r**2 & r**4 -#define R_0 V15 -#define R_1 V16 -#define R_2 V17 -#define R5_1 V18 -#define R5_2 V19 -// key (r) -#define RSAVE_0 R7 -#define RSAVE_1 R8 -#define RSAVE_2 R9 -#define R5SAVE_1 R10 -#define R5SAVE_2 R11 - -// message block -#define M0 V20 -#define M1 V21 -#define M2 V22 -#define M3 V23 -#define M4 V24 -#define M5 V25 - -// accumulator -#define H0_0 V26 -#define H1_0 V27 -#define H2_0 V28 -#define H0_1 V29 -#define H1_1 V30 -#define H2_1 V31 - -GLOBL ·keyMask<>(SB), RODATA, $16 -DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f -DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f - -GLOBL ·bswapMask<>(SB), RODATA, $16 -DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 -DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 - -GLOBL ·constants<>(SB), RODATA, $48 -// EX0 -DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f -DATA ·constants<>+8(SB)/8, $0x0000050403020100 -// EX1 -DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f -DATA ·constants<>+24(SB)/8, $0x00000a0908070605 -// EX2 -DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f -DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b - -GLOBL ·c<>(SB), RODATA, $48 -// EX0 -DATA ·c<>+0(SB)/8, $0x0000050403020100 -DATA ·c<>+8(SB)/8, $0x0000151413121110 -// EX1 -DATA ·c<>+16(SB)/8, $0x00000a0908070605 -DATA ·c<>+24(SB)/8, $0x00001a1918171615 -// EX2 -DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b -DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b - -GLOBL ·reduce<>(SB), RODATA, $32 -// 44 bit -DATA ·reduce<>+0(SB)/8, $0x0 -DATA ·reduce<>+8(SB)/8, $0xfffffffffff -// 42 bit -DATA ·reduce<>+16(SB)/8, $0x0 -DATA ·reduce<>+24(SB)/8, $0x3ffffffffff - -// h = (f*g) % (2**130-5) [partial reduction] -// uses T_0...T_9 temporary registers -// input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2 -// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9 -// output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2 -#define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \ - \ // Eliminate the dependency for the last 2 VMSLs - VMSLG m02_0, r_2, m4_2, m4_2 \ - VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined - VMSLG m02_0, r_0, m4_0, m4_0 \ - VMSLG m02_1, r5_2, V0, T_0 \ - VMSLG m02_0, r_1, m4_1, m4_1 \ - VMSLG m02_1, r_0, V0, T_1 \ - VMSLG m02_1, r_1, V0, T_2 \ - VMSLG m02_2, r5_1, V0, T_3 \ - VMSLG m02_2, r5_2, V0, T_4 \ - VMSLG m13_0, r_0, m5_0, m5_0 \ - VMSLG m13_1, r5_2, V0, T_5 \ - VMSLG m13_0, r_1, m5_1, m5_1 \ - VMSLG m13_1, r_0, V0, T_6 \ - VMSLG m13_1, r_1, V0, T_7 \ - VMSLG m13_2, r5_1, V0, T_8 \ - VMSLG m13_2, r5_2, V0, T_9 \ - VMSLG m02_2, r_0, m4_2, m4_2 \ - VMSLG m13_2, r_0, m5_2, m5_2 \ - VAQ m4_0, T_0, m02_0 \ - VAQ m4_1, T_1, m02_1 \ - VAQ m5_0, T_5, m13_0 \ - VAQ m5_1, T_6, m13_1 \ - VAQ m02_0, T_3, m02_0 \ - VAQ m02_1, T_4, m02_1 \ - VAQ m13_0, T_8, m13_0 \ - VAQ m13_1, T_9, m13_1 \ - VAQ m4_2, T_2, m02_2 \ - VAQ m5_2, T_7, m13_2 \ - -// SQUARE uses three limbs of r and r_2*5 to output square of r -// uses T_1, T_5 and T_7 temporary registers -// input: r_0, r_1, r_2, r5_2 -// temp: TEMP0, TEMP1, TEMP2 -// output: p0, p1, p2 -#define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \ - VMSLG r_0, r_0, p0, p0 \ - VMSLG r_1, r5_2, V0, TEMP0 \ - VMSLG r_2, r5_2, p1, p1 \ - VMSLG r_0, r_1, V0, TEMP1 \ - VMSLG r_1, r_1, p2, p2 \ - VMSLG r_0, r_2, V0, TEMP2 \ - VAQ TEMP0, p0, p0 \ - VAQ TEMP1, p1, p1 \ - VAQ TEMP2, p2, p2 \ - VAQ TEMP0, p0, p0 \ - VAQ TEMP1, p1, p1 \ - VAQ TEMP2, p2, p2 \ - -// carry h0->h1->h2->h0 || h3->h4->h5->h3 -// uses T_2, T_4, T_5, T_7, T_8, T_9 -// t6, t7, t8, t9, t10, t11 -// input: h0, h1, h2, h3, h4, h5 -// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 -// output: h0, h1, h2, h3, h4, h5 -#define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \ - VLM (R12), t6, t7 \ // 44 and 42 bit clear mask - VLEIB $7, $0x28, t10 \ // 5 byte shift mask - VREPIB $4, t8 \ // 4 bit shift mask - VREPIB $2, t11 \ // 2 bit shift mask - VSRLB t10, h0, t0 \ // h0 byte shift - VSRLB t10, h1, t1 \ // h1 byte shift - VSRLB t10, h2, t2 \ // h2 byte shift - VSRLB t10, h3, t3 \ // h3 byte shift - VSRLB t10, h4, t4 \ // h4 byte shift - VSRLB t10, h5, t5 \ // h5 byte shift - VSRL t8, t0, t0 \ // h0 bit shift - VSRL t8, t1, t1 \ // h2 bit shift - VSRL t11, t2, t2 \ // h2 bit shift - VSRL t8, t3, t3 \ // h3 bit shift - VSRL t8, t4, t4 \ // h4 bit shift - VESLG $2, t2, t9 \ // h2 carry x5 - VSRL t11, t5, t5 \ // h5 bit shift - VN t6, h0, h0 \ // h0 clear carry - VAQ t2, t9, t2 \ // h2 carry x5 - VESLG $2, t5, t9 \ // h5 carry x5 - VN t6, h1, h1 \ // h1 clear carry - VN t7, h2, h2 \ // h2 clear carry - VAQ t5, t9, t5 \ // h5 carry x5 - VN t6, h3, h3 \ // h3 clear carry - VN t6, h4, h4 \ // h4 clear carry - VN t7, h5, h5 \ // h5 clear carry - VAQ t0, h1, h1 \ // h0->h1 - VAQ t3, h4, h4 \ // h3->h4 - VAQ t1, h2, h2 \ // h1->h2 - VAQ t4, h5, h5 \ // h4->h5 - VAQ t2, h0, h0 \ // h2->h0 - VAQ t5, h3, h3 \ // h5->h3 - VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves - VREPG $1, t7, t7 \ - VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5] - VSLDB $8, h1, h1, h1 \ - VSLDB $8, h2, h2, h2 \ - VO h0, h3, h3 \ - VO h1, h4, h4 \ - VO h2, h5, h5 \ - VESRLG $44, h3, t0 \ // 44 bit shift right - VESRLG $44, h4, t1 \ - VESRLG $42, h5, t2 \ - VN t6, h3, h3 \ // clear carry bits - VN t6, h4, h4 \ - VN t7, h5, h5 \ - VESLG $2, t2, t9 \ // multiply carry by 5 - VAQ t9, t2, t2 \ - VAQ t0, h4, h4 \ - VAQ t1, h5, h5 \ - VAQ t2, h3, h3 \ - -// carry h0->h1->h2->h0 -// input: h0, h1, h2 -// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8 -// output: h0, h1, h2 -#define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \ - VLEIB $7, $0x28, t3 \ // 5 byte shift mask - VREPIB $4, t4 \ // 4 bit shift mask - VREPIB $2, t7 \ // 2 bit shift mask - VGBM $0x003F, t5 \ // mask to clear carry bits - VSRLB t3, h0, t0 \ - VSRLB t3, h1, t1 \ - VSRLB t3, h2, t2 \ - VESRLG $4, t5, t5 \ // 44 bit clear mask - VSRL t4, t0, t0 \ - VSRL t4, t1, t1 \ - VSRL t7, t2, t2 \ - VESRLG $2, t5, t6 \ // 42 bit clear mask - VESLG $2, t2, t8 \ - VAQ t8, t2, t2 \ - VN t5, h0, h0 \ - VN t5, h1, h1 \ - VN t6, h2, h2 \ - VAQ t0, h1, h1 \ - VAQ t1, h2, h2 \ - VAQ t2, h0, h0 \ - VSRLB t3, h0, t0 \ - VSRLB t3, h1, t1 \ - VSRLB t3, h2, t2 \ - VSRL t4, t0, t0 \ - VSRL t4, t1, t1 \ - VSRL t7, t2, t2 \ - VN t5, h0, h0 \ - VN t5, h1, h1 \ - VESLG $2, t2, t8 \ - VN t6, h2, h2 \ - VAQ t0, h1, h1 \ - VAQ t8, t2, t2 \ - VAQ t1, h2, h2 \ - VAQ t2, h0, h0 \ - -// expands two message blocks into the lower halfs of the d registers -// moves the contents of the d registers into upper halfs -// input: in1, in2, d0, d1, d2, d3, d4, d5 -// temp: TEMP0, TEMP1, TEMP2, TEMP3 -// output: d0, d1, d2, d3, d4, d5 -#define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \ - VGBM $0xff3f, TEMP0 \ - VGBM $0xff1f, TEMP1 \ - VESLG $4, d1, TEMP2 \ - VESLG $4, d4, TEMP3 \ - VESRLG $4, TEMP0, TEMP0 \ - VPERM in1, d0, EX0, d0 \ - VPERM in2, d3, EX0, d3 \ - VPERM in1, d2, EX2, d2 \ - VPERM in2, d5, EX2, d5 \ - VPERM in1, TEMP2, EX1, d1 \ - VPERM in2, TEMP3, EX1, d4 \ - VN TEMP0, d0, d0 \ - VN TEMP0, d3, d3 \ - VESRLG $4, d1, d1 \ - VESRLG $4, d4, d4 \ - VN TEMP1, d2, d2 \ - VN TEMP1, d5, d5 \ - VN TEMP0, d1, d1 \ - VN TEMP0, d4, d4 \ - -// expands one message block into the lower halfs of the d registers -// moves the contents of the d registers into upper halfs -// input: in, d0, d1, d2 -// temp: TEMP0, TEMP1, TEMP2 -// output: d0, d1, d2 -#define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \ - VGBM $0xff3f, TEMP0 \ - VESLG $4, d1, TEMP2 \ - VGBM $0xff1f, TEMP1 \ - VPERM in, d0, EX0, d0 \ - VESRLG $4, TEMP0, TEMP0 \ - VPERM in, d2, EX2, d2 \ - VPERM in, TEMP2, EX1, d1 \ - VN TEMP0, d0, d0 \ - VN TEMP1, d2, d2 \ - VESRLG $4, d1, d1 \ - VN TEMP0, d1, d1 \ - -// pack h2:h0 into h1:h0 (no carry) -// input: h0, h1, h2 -// output: h0, h1, h2 -#define PACK(h0, h1, h2) \ - VMRLG h1, h2, h2 \ // copy h1 to upper half h2 - VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20 - VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1 - VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1 - VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1 - VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1) - VLEIG $0, $0, h2 \ // clear upper half of h2 - VESRLG $40, h2, h1 \ // h1 now has upper two bits of result - VLEIB $7, $88, h1 \ // for byte shift (11 bytes) - VSLB h1, h2, h2 \ // shift h2 11 bytes to the left - VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1 - VLEIG $0, $0, h1 \ // clear upper half of h1 - -// if h > 2**130-5 then h -= 2**130-5 -// input: h0, h1 -// temp: t0, t1, t2 -// output: h0 -#define MOD(h0, h1, t0, t1, t2) \ - VZERO t0 \ - VLEIG $1, $5, t0 \ - VACCQ h0, t0, t1 \ - VAQ h0, t0, t0 \ - VONE t2 \ - VLEIG $1, $-4, t2 \ - VAQ t2, t1, t1 \ - VACCQ h1, t1, t1 \ - VONE t2 \ - VAQ t2, t1, t1 \ - VN h0, t1, t2 \ - VNC t0, t1, t1 \ - VO t1, t2, h0 \ - -// func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key) -TEXT ·poly1305vmsl(SB), $0-32 - // This code processes 6 + up to 4 blocks (32 bytes) per iteration - // using the algorithm described in: - // NEON crypto, Daniel J. Bernstein & Peter Schwabe - // https://cryptojedi.org/papers/neoncrypto-20120320.pdf - // And as moddified for VMSL as described in - // Accelerating Poly1305 Cryptographic Message Authentication on the z14 - // O'Farrell et al, CASCON 2017, p48-55 - // https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht - - LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key - VZERO V0 // c - - // load EX0, EX1 and EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), EX0, EX2 // c - - // setup r - VL (R4), T_0 - MOVD $·keyMask<>(SB), R6 - VL (R6), T_1 - VN T_0, T_1, T_0 - VZERO T_2 // limbs for r - VZERO T_3 - VZERO T_4 - EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7) - - // T_2, T_3, T_4: [0, r] - - // setup r*20 - VLEIG $0, $0, T_0 - VLEIG $1, $20, T_0 // T_0: [0, 20] - VZERO T_5 - VZERO T_6 - VMSLG T_0, T_3, T_5, T_5 - VMSLG T_0, T_4, T_6, T_6 - - // store r for final block in GR - VLGVG $1, T_2, RSAVE_0 // c - VLGVG $1, T_3, RSAVE_1 // c - VLGVG $1, T_4, RSAVE_2 // c - VLGVG $1, T_5, R5SAVE_1 // c - VLGVG $1, T_6, R5SAVE_2 // c - - // initialize h - VZERO H0_0 - VZERO H1_0 - VZERO H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - // initialize pointer for reduce constants - MOVD $·reduce<>(SB), R12 - - // calculate r**2 and 20*(r**2) - VZERO R_0 - VZERO R_1 - VZERO R_2 - SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7) - REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1) - VZERO R5_1 - VZERO R5_2 - VMSLG T_0, R_1, R5_1, R5_1 - VMSLG T_0, R_2, R5_2, R5_2 - - // skip r**4 calculation if 3 blocks or less - CMPBLE R3, $48, b4 - - // calculate r**4 and 20*(r**4) - VZERO T_8 - VZERO T_9 - VZERO T_10 - SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7) - REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1) - VZERO T_2 - VZERO T_3 - VMSLG T_0, T_9, T_2, T_2 - VMSLG T_0, T_10, T_3, T_3 - - // put r**2 to the right and r**4 to the left of R_0, R_1, R_2 - VSLDB $8, T_8, T_8, T_8 - VSLDB $8, T_9, T_9, T_9 - VSLDB $8, T_10, T_10, T_10 - VSLDB $8, T_2, T_2, T_2 - VSLDB $8, T_3, T_3, T_3 - - VO T_8, R_0, R_0 - VO T_9, R_1, R_1 - VO T_10, R_2, R_2 - VO T_2, R5_1, R5_1 - VO T_3, R5_2, R5_2 - - CMPBLE R3, $80, load // less than or equal to 5 blocks in message - - // 6(or 5+1) blocks - SUB $81, R3 - VLM (R2), M0, M4 - VLL R3, 80(R2), M5 - ADD $1, R3 - MOVBZ $1, R0 - CMPBGE R3, $16, 2(PC) - VLVGB R3, R0, M5 - MOVD $96(R2), R2 - EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) - EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) - VLEIB $2, $1, H2_0 - VLEIB $2, $1, H2_1 - VLEIB $10, $1, H2_0 - VLEIB $10, $1, H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO T_4 - VZERO T_10 - EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3) - VLR T_4, M4 - VLEIB $10, $1, M2 - CMPBLT R3, $16, 2(PC) - VLEIB $10, $1, T_10 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - - SUB $16, R3 - CMPBLE R3, $0, square - -load: - // load EX0, EX1 and EX2 - MOVD $·c<>(SB), R5 - VLM (R5), EX0, EX2 - -loop: - CMPBLE R3, $64, add // b4 // last 4 or less blocks left - - // next 4 full blocks - VLM (R2), M2, M5 - SUB $64, R3 - MOVD $64(R2), R2 - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9) - - // expacc in-lined to create [m2, m3] limbs - VGBM $0x3f3f, T_0 // 44 bit clear mask - VGBM $0x1f1f, T_1 // 40 bit clear mask - VPERM M2, M3, EX0, T_3 - VESRLG $4, T_0, T_0 // 44 bit clear mask ready - VPERM M2, M3, EX1, T_4 - VPERM M2, M3, EX2, T_5 - VN T_0, T_3, T_3 - VESRLG $4, T_4, T_4 - VN T_1, T_5, T_5 - VN T_0, T_4, T_4 - VMRHG H0_1, T_3, H0_0 - VMRHG H1_1, T_4, H1_0 - VMRHG H2_1, T_5, H2_0 - VMRLG H0_1, T_3, H0_1 - VMRLG H1_1, T_4, H1_1 - VMRLG H2_1, T_5, H2_1 - VLEIB $10, $1, H2_0 - VLEIB $10, $1, H2_1 - VPERM M4, M5, EX0, T_3 - VPERM M4, M5, EX1, T_4 - VPERM M4, M5, EX2, T_5 - VN T_0, T_3, T_3 - VESRLG $4, T_4, T_4 - VN T_1, T_5, T_5 - VN T_0, T_4, T_4 - VMRHG V0, T_3, M0 - VMRHG V0, T_4, M1 - VMRHG V0, T_5, M2 - VMRLG V0, T_3, M3 - VMRLG V0, T_4, M4 - VMRLG V0, T_5, M5 - VLEIB $10, $1, M2 - VLEIB $10, $1, M5 - - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - CMPBNE R3, $0, loop - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - - // load EX0, EX1, EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), EX0, EX2 - - // sum vectors - VAQ H0_0, H0_1, H0_0 - VAQ H1_0, H1_1, H1_0 - VAQ H2_0, H2_1, H2_0 - - // h may be >= 2*(2**130-5) so we need to reduce it again - // M0...M4 are used as temps here - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - -next: // carry h1->h2 - VLEIB $7, $0x28, T_1 - VREPIB $4, T_2 - VGBM $0x003F, T_3 - VESRLG $4, T_3 - - // byte shift - VSRLB T_1, H1_0, T_4 - - // bit shift - VSRL T_2, T_4, T_4 - - // clear h1 carry bits - VN T_3, H1_0, H1_0 - - // add carry - VAQ T_4, H2_0, H2_0 - - // h is now < 2*(2**130-5) - // pack h into h1 (hi) and h0 (lo) - PACK(H0_0, H1_0, H2_0) - - // if h > 2**130-5 then h -= 2**130-5 - MOD(H0_0, H1_0, T_0, T_1, T_2) - - // h += s - MOVD $·bswapMask<>(SB), R5 - VL (R5), T_1 - VL 16(R4), T_0 - VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) - VAQ T_0, H0_0, H0_0 - VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little) - VST H0_0, (R1) - RET - -add: - // load EX0, EX1, EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), EX0, EX2 - - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - CMPBLE R3, $64, b4 - -b4: - CMPBLE R3, $48, b3 // 3 blocks or less - - // 4(3+1) blocks remaining - SUB $49, R3 - VLM (R2), M0, M2 - VLL R3, 48(R2), M3 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M3 - MOVD $64(R2), R2 - EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) - VLEIB $10, $1, H2_0 - VLEIB $10, $1, H2_1 - VZERO M0 - VZERO M1 - VZERO M4 - VZERO M5 - VZERO T_4 - VZERO T_10 - EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3) - VLR T_4, M2 - VLEIB $10, $1, M4 - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, T_10 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - SUB $16, R3 - CMPBLE R3, $0, square // this condition must always hold true! - -b3: - CMPBLE R3, $32, b2 - - // 3 blocks remaining - - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // H*[r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5) - - SUB $33, R3 - VLM (R2), M0, M1 - VLL R3, 32(R2), M2 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M2 - - // H += m0 - VZERO T_1 - VZERO T_2 - VZERO T_3 - EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6) - VLEIB $10, $1, T_3 - VAG H0_0, T_1, H0_0 - VAG H1_0, T_2, H1_0 - VAG H2_0, T_3, H2_0 - - VZERO M0 - VZERO M3 - VZERO M4 - VZERO M5 - VZERO T_10 - - // (H+m0)*r - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9) - - // H += m1 - VZERO V0 - VZERO T_1 - VZERO T_2 - VZERO T_3 - EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6) - VLEIB $10, $1, T_3 - VAQ H0_0, T_1, H0_0 - VAQ H1_0, T_2, H1_0 - VAQ H2_0, T_3, H2_0 - REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) - - // [H, m2] * [r**2, r] - EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3) - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, H2_0 - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10) - SUB $16, R3 - CMPBLE R3, $0, next // this condition must always hold true! - -b2: - CMPBLE R3, $16, b1 - - // 2 blocks remaining - - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // H*[r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - - // move h to the left and 0s at the right - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - - // get message blocks and append 1 to start - SUB $17, R3 - VL (R2), M0 - VLL R3, 16(R2), M1 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M1 - VZERO T_6 - VZERO T_7 - VZERO T_8 - EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3) - EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3) - VLEIB $2, $1, T_8 - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, T_8 - - // add [m0, m1] to h - VAG H0_0, T_6, H0_0 - VAG H1_0, T_7, H1_0 - VAG H2_0, T_8, H2_0 - - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - VZERO T_10 - VZERO M0 - - // at this point R_0 .. R5_2 look like [r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) - SUB $16, R3, R3 - CMPBLE R3, $0, next - -b1: - CMPBLE R3, $0, next - - // 1 block remaining - - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // H*[r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - - // set up [0, m0] limbs - SUB $1, R3 - VLL R3, (R2), M0 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M0 - VZERO T_1 - VZERO T_2 - VZERO T_3 - EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m] - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, T_3 - - // h+m0 - VAQ H0_0, T_1, H0_0 - VAQ H1_0, T_2, H1_0 - VAQ H2_0, T_3, H2_0 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - - BR next - -square: - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // (h0*r**2) + (h1*r) - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - BR next diff --git a/vendor/golang.org/x/crypto/ssh/certs.go b/vendor/golang.org/x/crypto/ssh/certs.go index 0f89aec1c..916c840b6 100644 --- a/vendor/golang.org/x/crypto/ssh/certs.go +++ b/vendor/golang.org/x/crypto/ssh/certs.go @@ -414,8 +414,8 @@ func (c *CertChecker) CheckCert(principal string, cert *Certificate) error { return nil } -// SignCert sets c.SignatureKey to the authority's public key and stores a -// Signature, by authority, in the certificate. +// SignCert signs the certificate with an authority, setting the Nonce, +// SignatureKey, and Signature fields. func (c *Certificate) SignCert(rand io.Reader, authority Signer) error { c.Nonce = make([]byte, 32) if _, err := io.ReadFull(rand, c.Nonce); err != nil { diff --git a/vendor/golang.org/x/crypto/ssh/client_auth.go b/vendor/golang.org/x/crypto/ssh/client_auth.go index 0590070e2..f3265655e 100644 --- a/vendor/golang.org/x/crypto/ssh/client_auth.go +++ b/vendor/golang.org/x/crypto/ssh/client_auth.go @@ -36,7 +36,7 @@ func (c *connection) clientAuthenticate(config *ClientConfig) error { // during the authentication phase the client first attempts the "none" method // then any untried methods suggested by the server. - tried := make(map[string]bool) + var tried []string var lastMethods []string sessionID := c.transport.getSessionID() @@ -49,7 +49,9 @@ func (c *connection) clientAuthenticate(config *ClientConfig) error { // success return nil } else if ok == authFailure { - tried[auth.method()] = true + if m := auth.method(); !contains(tried, m) { + tried = append(tried, m) + } } if methods == nil { methods = lastMethods @@ -61,7 +63,7 @@ func (c *connection) clientAuthenticate(config *ClientConfig) error { findNext: for _, a := range config.Auth { candidateMethod := a.method() - if tried[candidateMethod] { + if contains(tried, candidateMethod) { continue } for _, meth := range methods { @@ -72,16 +74,16 @@ func (c *connection) clientAuthenticate(config *ClientConfig) error { } } } - return fmt.Errorf("ssh: unable to authenticate, attempted methods %v, no supported methods remain", keys(tried)) + return fmt.Errorf("ssh: unable to authenticate, attempted methods %v, no supported methods remain", tried) } -func keys(m map[string]bool) []string { - s := make([]string, 0, len(m)) - - for key := range m { - s = append(s, key) +func contains(list []string, e string) bool { + for _, s := range list { + if s == e { + return true + } } - return s + return false } // An AuthMethod represents an instance of an RFC 4252 authentication method. diff --git a/vendor/golang.org/x/crypto/ssh/mux.go b/vendor/golang.org/x/crypto/ssh/mux.go index f19016270..9654c0186 100644 --- a/vendor/golang.org/x/crypto/ssh/mux.go +++ b/vendor/golang.org/x/crypto/ssh/mux.go @@ -240,7 +240,7 @@ func (m *mux) onePacket() error { id := binary.BigEndian.Uint32(packet[1:]) ch := m.chanList.getChan(id) if ch == nil { - return fmt.Errorf("ssh: invalid channel %d", id) + return m.handleUnknownChannelPacket(id, packet) } return ch.handlePacket(packet) @@ -328,3 +328,24 @@ func (m *mux) openChannel(chanType string, extra []byte) (*channel, error) { return nil, fmt.Errorf("ssh: unexpected packet in response to channel open: %T", msg) } } + +func (m *mux) handleUnknownChannelPacket(id uint32, packet []byte) error { + msg, err := decode(packet) + if err != nil { + return err + } + + switch msg := msg.(type) { + // RFC 4254 section 5.4 says unrecognized channel requests should + // receive a failure response. + case *channelRequestMsg: + if msg.WantReply { + return m.sendMessage(channelRequestFailureMsg{ + PeersID: msg.PeersID, + }) + } + return nil + default: + return fmt.Errorf("ssh: invalid channel %d", id) + } +} |