summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x
diff options
context:
space:
mode:
authordependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>2020-08-27 08:22:37 +0000
committerDaniel J Walsh <dwalsh@redhat.com>2020-08-28 05:45:35 -0400
commit90a86cad3a6f007c6708406d8a78528fbb302a0a (patch)
tree4c6546079346d0ff39f7c9a4d076913457a6a417 /vendor/golang.org/x
parentd6b13d8a0993aced5e227e7a516aadbf37e14dbc (diff)
downloadpodman-90a86cad3a6f007c6708406d8a78528fbb302a0a.tar.gz
podman-90a86cad3a6f007c6708406d8a78528fbb302a0a.tar.bz2
podman-90a86cad3a6f007c6708406d8a78528fbb302a0a.zip
Bump k8s.io/apimachinery from 0.18.8 to 0.19.0
Bumps [k8s.io/apimachinery](https://github.com/kubernetes/apimachinery) from 0.18.8 to 0.19.0. - [Release notes](https://github.com/kubernetes/apimachinery/releases) - [Commits](https://github.com/kubernetes/apimachinery/compare/v0.18.8...v0.19.0) Signed-off-by: dependabot-preview[bot] <support@dependabot.com> Signed-off-by: Daniel J Walsh <dwalsh@redhat.com>
Diffstat (limited to 'vendor/golang.org/x')
-rw-r--r--vendor/golang.org/x/crypto/poly1305/mac_noasm.go2
-rw-r--r--vendor/golang.org/x/crypto/poly1305/poly1305.go4
-rw-r--r--vendor/golang.org/x/crypto/poly1305/sum_generic.go3
-rw-r--r--vendor/golang.org/x/crypto/poly1305/sum_noasm.go18
-rw-r--r--vendor/golang.org/x/crypto/poly1305/sum_s390x.go72
-rw-r--r--vendor/golang.org/x/crypto/poly1305/sum_s390x.s667
-rw-r--r--vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s909
-rw-r--r--vendor/golang.org/x/crypto/ssh/certs.go4
-rw-r--r--vendor/golang.org/x/crypto/ssh/client_auth.go22
-rw-r--r--vendor/golang.org/x/crypto/ssh/mux.go23
-rw-r--r--vendor/golang.org/x/net/http2/transport.go66
11 files changed, 553 insertions, 1237 deletions
diff --git a/vendor/golang.org/x/crypto/poly1305/mac_noasm.go b/vendor/golang.org/x/crypto/poly1305/mac_noasm.go
index 347c8b15f..d118f30ed 100644
--- a/vendor/golang.org/x/crypto/poly1305/mac_noasm.go
+++ b/vendor/golang.org/x/crypto/poly1305/mac_noasm.go
@@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
-// +build !amd64,!ppc64le gccgo purego
+// +build !amd64,!ppc64le,!s390x gccgo purego
package poly1305
diff --git a/vendor/golang.org/x/crypto/poly1305/poly1305.go b/vendor/golang.org/x/crypto/poly1305/poly1305.go
index 3c75c2a67..9d7a6af09 100644
--- a/vendor/golang.org/x/crypto/poly1305/poly1305.go
+++ b/vendor/golang.org/x/crypto/poly1305/poly1305.go
@@ -26,7 +26,9 @@ const TagSize = 16
// 16-byte result into out. Authenticating two different messages with the same
// key allows an attacker to forge messages at will.
func Sum(out *[16]byte, m []byte, key *[32]byte) {
- sum(out, m, key)
+ h := New(key)
+ h.Write(m)
+ h.Sum(out[:0])
}
// Verify returns true if mac is a valid authenticator for m with the given key.
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_generic.go b/vendor/golang.org/x/crypto/poly1305/sum_generic.go
index c77ff179d..c942a6590 100644
--- a/vendor/golang.org/x/crypto/poly1305/sum_generic.go
+++ b/vendor/golang.org/x/crypto/poly1305/sum_generic.go
@@ -41,7 +41,8 @@ func newMACGeneric(key *[32]byte) macGeneric {
// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
type macState struct {
// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
- // can grow larger during and after rounds.
+ // can grow larger during and after rounds. It must, however, remain below
+ // 2 * (2¹³⁰ - 5).
h [3]uint64
// r and s are the private key components.
r [2]uint64
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_noasm.go b/vendor/golang.org/x/crypto/poly1305/sum_noasm.go
deleted file mode 100644
index 2b55a29c5..000000000
--- a/vendor/golang.org/x/crypto/poly1305/sum_noasm.go
+++ /dev/null
@@ -1,18 +0,0 @@
-// Copyright 2018 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// At this point only s390x has an assembly implementation of sum. All other
-// platforms have assembly implementations of mac, and just define sum as using
-// that through New. Once s390x is ported, this file can be deleted and the body
-// of sum moved into Sum.
-
-// +build !go1.11 !s390x gccgo purego
-
-package poly1305
-
-func sum(out *[TagSize]byte, msg []byte, key *[32]byte) {
- h := New(key)
- h.Write(msg)
- h.Sum(out[:0])
-}
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_s390x.go b/vendor/golang.org/x/crypto/poly1305/sum_s390x.go
index 5f91ff84a..958fedc07 100644
--- a/vendor/golang.org/x/crypto/poly1305/sum_s390x.go
+++ b/vendor/golang.org/x/crypto/poly1305/sum_s390x.go
@@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
-// +build go1.11,!gccgo,!purego
+// +build !gccgo,!purego
package poly1305
@@ -10,30 +10,66 @@ import (
"golang.org/x/sys/cpu"
)
-// poly1305vx is an assembly implementation of Poly1305 that uses vector
+// updateVX is an assembly implementation of Poly1305 that uses vector
// instructions. It must only be called if the vector facility (vx) is
// available.
//go:noescape
-func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
+func updateVX(state *macState, msg []byte)
-// poly1305vmsl is an assembly implementation of Poly1305 that uses vector
-// instructions, including VMSL. It must only be called if the vector facility (vx) is
-// available and if VMSL is supported.
-//go:noescape
-func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
+// mac is a replacement for macGeneric that uses a larger buffer and redirects
+// calls that would have gone to updateGeneric to updateVX if the vector
+// facility is installed.
+//
+// A larger buffer is required for good performance because the vector
+// implementation has a higher fixed cost per call than the generic
+// implementation.
+type mac struct {
+ macState
+
+ buffer [16 * TagSize]byte // size must be a multiple of block size (16)
+ offset int
+}
-func sum(out *[16]byte, m []byte, key *[32]byte) {
- if cpu.S390X.HasVX {
- var mPtr *byte
- if len(m) > 0 {
- mPtr = &m[0]
+func (h *mac) Write(p []byte) (int, error) {
+ nn := len(p)
+ if h.offset > 0 {
+ n := copy(h.buffer[h.offset:], p)
+ if h.offset+n < len(h.buffer) {
+ h.offset += n
+ return nn, nil
}
- if cpu.S390X.HasVXE && len(m) > 256 {
- poly1305vmsl(out, mPtr, uint64(len(m)), key)
+ p = p[n:]
+ h.offset = 0
+ if cpu.S390X.HasVX {
+ updateVX(&h.macState, h.buffer[:])
} else {
- poly1305vx(out, mPtr, uint64(len(m)), key)
+ updateGeneric(&h.macState, h.buffer[:])
}
- } else {
- sumGeneric(out, m, key)
}
+
+ tail := len(p) % len(h.buffer) // number of bytes to copy into buffer
+ body := len(p) - tail // number of bytes to process now
+ if body > 0 {
+ if cpu.S390X.HasVX {
+ updateVX(&h.macState, p[:body])
+ } else {
+ updateGeneric(&h.macState, p[:body])
+ }
+ }
+ h.offset = copy(h.buffer[:], p[body:]) // copy tail bytes - can be 0
+ return nn, nil
+}
+
+func (h *mac) Sum(out *[TagSize]byte) {
+ state := h.macState
+ remainder := h.buffer[:h.offset]
+
+ // Use the generic implementation if we have 2 or fewer blocks left
+ // to sum. The vector implementation has a higher startup time.
+ if cpu.S390X.HasVX && len(remainder) > 2*TagSize {
+ updateVX(&state, remainder)
+ } else if len(remainder) > 0 {
+ updateGeneric(&state, remainder)
+ }
+ finalize(out, &state.h, &state.s)
}
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s b/vendor/golang.org/x/crypto/poly1305/sum_s390x.s
index 806d1694b..0fa9ee6e0 100644
--- a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s
+++ b/vendor/golang.org/x/crypto/poly1305/sum_s390x.s
@@ -2,115 +2,187 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
-// +build go1.11,!gccgo,!purego
+// +build !gccgo,!purego
#include "textflag.h"
-// Implementation of Poly1305 using the vector facility (vx).
-
-// constants
-#define MOD26 V0
-#define EX0 V1
-#define EX1 V2
-#define EX2 V3
-
-// temporaries
-#define T_0 V4
-#define T_1 V5
-#define T_2 V6
-#define T_3 V7
-#define T_4 V8
-
-// key (r)
-#define R_0 V9
-#define R_1 V10
-#define R_2 V11
-#define R_3 V12
-#define R_4 V13
-#define R5_1 V14
-#define R5_2 V15
-#define R5_3 V16
-#define R5_4 V17
-#define RSAVE_0 R5
-#define RSAVE_1 R6
-#define RSAVE_2 R7
-#define RSAVE_3 R8
-#define RSAVE_4 R9
-#define R5SAVE_1 V28
-#define R5SAVE_2 V29
-#define R5SAVE_3 V30
-#define R5SAVE_4 V31
-
-// message block
-#define F_0 V18
-#define F_1 V19
-#define F_2 V20
-#define F_3 V21
-#define F_4 V22
-
-// accumulator
-#define H_0 V23
-#define H_1 V24
-#define H_2 V25
-#define H_3 V26
-#define H_4 V27
-
-GLOBL ·keyMask<>(SB), RODATA, $16
-DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f
-DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f
-
-GLOBL ·bswapMask<>(SB), RODATA, $16
-DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908
-DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100
-
-GLOBL ·constants<>(SB), RODATA, $64
-// MOD26
-DATA ·constants<>+0(SB)/8, $0x3ffffff
-DATA ·constants<>+8(SB)/8, $0x3ffffff
+// This implementation of Poly1305 uses the vector facility (vx)
+// to process up to 2 blocks (32 bytes) per iteration using an
+// algorithm based on the one described in:
+//
+// NEON crypto, Daniel J. Bernstein & Peter Schwabe
+// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
+//
+// This algorithm uses 5 26-bit limbs to represent a 130-bit
+// value. These limbs are, for the most part, zero extended and
+// placed into 64-bit vector register elements. Each vector
+// register is 128-bits wide and so holds 2 of these elements.
+// Using 26-bit limbs allows us plenty of headroom to accomodate
+// accumulations before and after multiplication without
+// overflowing either 32-bits (before multiplication) or 64-bits
+// (after multiplication).
+//
+// In order to parallelise the operations required to calculate
+// the sum we use two separate accumulators and then sum those
+// in an extra final step. For compatibility with the generic
+// implementation we perform this summation at the end of every
+// updateVX call.
+//
+// To use two accumulators we must multiply the message blocks
+// by r² rather than r. Only the final message block should be
+// multiplied by r.
+//
+// Example:
+//
+// We want to calculate the sum (h) for a 64 byte message (m):
+//
+// h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r
+//
+// To do this we split the calculation into the even indices
+// and odd indices of the message. These form our SIMD 'lanes':
+//
+// h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0
+// m[16:32]r³ + m[48:64]r <- lane 1
+//
+// To calculate this iteratively we refactor so that both lanes
+// are written in terms of r² and r:
+//
+// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0
+// (m[16:32]r² + m[48:64])r <- lane 1
+// ^ ^
+// | coefficients for second iteration
+// coefficients for first iteration
+//
+// So in this case we would have two iterations. In the first
+// both lanes are multiplied by r². In the second only the
+// first lane is multiplied by r² and the second lane is
+// instead multiplied by r. This gives use the odd and even
+// powers of r that we need from the original equation.
+//
+// Notation:
+//
+// h - accumulator
+// r - key
+// m - message
+//
+// [a, b] - SIMD register holding two 64-bit values
+// [a, b, c, d] - SIMD register holding four 32-bit values
+// xᵢ[n] - limb n of variable x with bit width i
+//
+// Limbs are expressed in little endian order, so for 26-bit
+// limbs x₂₆[4] will be the most significant limb and x₂₆[0]
+// will be the least significant limb.
+
+// masking constants
+#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits
+#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits
+
+// expansion constants (see EXPAND macro)
+#define EX0 V2
+#define EX1 V3
+#define EX2 V4
+
+// key (r², r or 1 depending on context)
+#define R_0 V5
+#define R_1 V6
+#define R_2 V7
+#define R_3 V8
+#define R_4 V9
+
+// precalculated coefficients (5r², 5r or 0 depending on context)
+#define R5_1 V10
+#define R5_2 V11
+#define R5_3 V12
+#define R5_4 V13
+
+// message block (m)
+#define M_0 V14
+#define M_1 V15
+#define M_2 V16
+#define M_3 V17
+#define M_4 V18
+
+// accumulator (h)
+#define H_0 V19
+#define H_1 V20
+#define H_2 V21
+#define H_3 V22
+#define H_4 V23
+
+// temporary registers (for short-lived values)
+#define T_0 V24
+#define T_1 V25
+#define T_2 V26
+#define T_3 V27
+#define T_4 V28
+
+GLOBL ·constants<>(SB), RODATA, $0x30
// EX0
-DATA ·constants<>+16(SB)/8, $0x0006050403020100
-DATA ·constants<>+24(SB)/8, $0x1016151413121110
+DATA ·constants<>+0x00(SB)/8, $0x0006050403020100
+DATA ·constants<>+0x08(SB)/8, $0x1016151413121110
// EX1
-DATA ·constants<>+32(SB)/8, $0x060c0b0a09080706
-DATA ·constants<>+40(SB)/8, $0x161c1b1a19181716
+DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706
+DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716
// EX2
-DATA ·constants<>+48(SB)/8, $0x0d0d0d0d0d0f0e0d
-DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d
-
-// h = (f*g) % (2**130-5) [partial reduction]
+DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d
+DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d
+
+// MULTIPLY multiplies each lane of f and g, partially reduced
+// modulo 2¹³⁰ - 5. The result, h, consists of partial products
+// in each lane that need to be reduced further to produce the
+// final result.
+//
+// h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰
+//
+// Note that the multiplication by 5 of the high bits is
+// achieved by precalculating the multiplication of four of the
+// g coefficients by 5. These are g51-g54.
#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \
VMLOF f0, g0, h0 \
- VMLOF f0, g1, h1 \
- VMLOF f0, g2, h2 \
VMLOF f0, g3, h3 \
+ VMLOF f0, g1, h1 \
VMLOF f0, g4, h4 \
+ VMLOF f0, g2, h2 \
VMLOF f1, g54, T_0 \
- VMLOF f1, g0, T_1 \
- VMLOF f1, g1, T_2 \
VMLOF f1, g2, T_3 \
+ VMLOF f1, g0, T_1 \
VMLOF f1, g3, T_4 \
+ VMLOF f1, g1, T_2 \
VMALOF f2, g53, h0, h0 \
- VMALOF f2, g54, h1, h1 \
- VMALOF f2, g0, h2, h2 \
VMALOF f2, g1, h3, h3 \
+ VMALOF f2, g54, h1, h1 \
VMALOF f2, g2, h4, h4 \
+ VMALOF f2, g0, h2, h2 \
VMALOF f3, g52, T_0, T_0 \
- VMALOF f3, g53, T_1, T_1 \
- VMALOF f3, g54, T_2, T_2 \
VMALOF f3, g0, T_3, T_3 \
+ VMALOF f3, g53, T_1, T_1 \
VMALOF f3, g1, T_4, T_4 \
+ VMALOF f3, g54, T_2, T_2 \
VMALOF f4, g51, h0, h0 \
- VMALOF f4, g52, h1, h1 \
- VMALOF f4, g53, h2, h2 \
VMALOF f4, g54, h3, h3 \
+ VMALOF f4, g52, h1, h1 \
VMALOF f4, g0, h4, h4 \
+ VMALOF f4, g53, h2, h2 \
VAG T_0, h0, h0 \
- VAG T_1, h1, h1 \
- VAG T_2, h2, h2 \
VAG T_3, h3, h3 \
- VAG T_4, h4, h4
-
-// carry h0->h1 h3->h4, h1->h2 h4->h0, h0->h1 h2->h3, h3->h4
+ VAG T_1, h1, h1 \
+ VAG T_4, h4, h4 \
+ VAG T_2, h2, h2
+
+// REDUCE performs the following carry operations in four
+// stages, as specified in Bernstein & Schwabe:
+//
+// 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4]
+// 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0]
+// 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3]
+// 4: h₂₆[3]->h₂₆[4]
+//
+// The result is that all of the limbs are limited to 26-bits
+// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits.
+//
+// Note that although each limb is aligned at 26-bit intervals
+// they may contain values that exceed 2²⁶ - 1, hence the need
+// to carry the excess bits in each limb.
#define REDUCE(h0, h1, h2, h3, h4) \
VESRLG $26, h0, T_0 \
VESRLG $26, h3, T_1 \
@@ -136,144 +208,155 @@ DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d
VN MOD26, h3, h3 \
VAG T_2, h4, h4
-// expand in0 into d[0] and in1 into d[1]
+// EXPAND splits the 128-bit little-endian values in0 and in1
+// into 26-bit big-endian limbs and places the results into
+// the first and second lane of d₂₆[0:4] respectively.
+//
+// The EX0, EX1 and EX2 constants are arrays of byte indices
+// for permutation. The permutation both reverses the bytes
+// in the input and ensures the bytes are copied into the
+// destination limb ready to be shifted into their final
+// position.
#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \
- VGBM $0x0707, d1 \ // d1=tmp
- VPERM in0, in1, EX2, d4 \
VPERM in0, in1, EX0, d0 \
VPERM in0, in1, EX1, d2 \
- VN d1, d4, d4 \
+ VPERM in0, in1, EX2, d4 \
VESRLG $26, d0, d1 \
VESRLG $30, d2, d3 \
VESRLG $4, d2, d2 \
- VN MOD26, d0, d0 \
- VN MOD26, d1, d1 \
- VN MOD26, d2, d2 \
- VN MOD26, d3, d3
-
-// pack h4:h0 into h1:h0 (no carry)
-#define PACK(h0, h1, h2, h3, h4) \
- VESLG $26, h1, h1 \
- VESLG $26, h3, h3 \
- VO h0, h1, h0 \
- VO h2, h3, h2 \
- VESLG $4, h2, h2 \
- VLEIB $7, $48, h1 \
- VSLB h1, h2, h2 \
- VO h0, h2, h0 \
- VLEIB $7, $104, h1 \
- VSLB h1, h4, h3 \
- VO h3, h0, h0 \
- VLEIB $7, $24, h1 \
- VSRLB h1, h4, h1
-
-// if h > 2**130-5 then h -= 2**130-5
-#define MOD(h0, h1, t0, t1, t2) \
- VZERO t0 \
- VLEIG $1, $5, t0 \
- VACCQ h0, t0, t1 \
- VAQ h0, t0, t0 \
- VONE t2 \
- VLEIG $1, $-4, t2 \
- VAQ t2, t1, t1 \
- VACCQ h1, t1, t1 \
- VONE t2 \
- VAQ t2, t1, t1 \
- VN h0, t1, t2 \
- VNC t0, t1, t1 \
- VO t1, t2, h0
-
-// func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]key)
-TEXT ·poly1305vx(SB), $0-32
- // This code processes up to 2 blocks (32 bytes) per iteration
- // using the algorithm described in:
- // NEON crypto, Daniel J. Bernstein & Peter Schwabe
- // https://cryptojedi.org/papers/neoncrypto-20120320.pdf
- LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key
-
- // load MOD26, EX0, EX1 and EX2
+ VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]]
+ VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]]
+ VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]]
+ VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]]
+ VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]]
+
+// func updateVX(state *macState, msg []byte)
+TEXT ·updateVX(SB), NOSPLIT, $0
+ MOVD state+0(FP), R1
+ LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len
+
+ // load EX0, EX1 and EX2
MOVD $·constants<>(SB), R5
- VLM (R5), MOD26, EX2
-
- // setup r
- VL (R4), T_0
- MOVD $·keyMask<>(SB), R6
- VL (R6), T_1
- VN T_0, T_1, T_0
- EXPAND(T_0, T_0, R_0, R_1, R_2, R_3, R_4)
-
- // setup r*5
- VLEIG $0, $5, T_0
- VLEIG $1, $5, T_0
-
- // store r (for final block)
- VMLOF T_0, R_1, R5SAVE_1
- VMLOF T_0, R_2, R5SAVE_2
- VMLOF T_0, R_3, R5SAVE_3
- VMLOF T_0, R_4, R5SAVE_4
- VLGVG $0, R_0, RSAVE_0
- VLGVG $0, R_1, RSAVE_1
- VLGVG $0, R_2, RSAVE_2
- VLGVG $0, R_3, RSAVE_3
- VLGVG $0, R_4, RSAVE_4
-
- // skip r**2 calculation
+ VLM (R5), EX0, EX2
+
+ // generate masks
+ VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff]
+ VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff]
+
+ // load h (accumulator) and r (key) from state
+ VZERO T_1 // [0, 0]
+ VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]]
+ VLEG $0, 16(R1), T_1 // [h₆₄[2], 0]
+ VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]]
+ VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]]
+ VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]]
+
+ // unpack h and r into 26-bit limbs
+ // note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value
+ VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]]
+ VZERO H_1 // [0, 0]
+ VZERO H_3 // [0, 0]
+ VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out
+ VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0]
+ VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]]
+ VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only
+ VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]]
+ VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only
+ VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete
+ VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete
+
+ // replicate r across all 4 vector elements
+ VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]]
+ VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]]
+ VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]]
+ VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]]
+ VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]]
+
+ // zero out lane 1 of h
+ VLEIG $1, $0, H_0 // [h₂₆[0], 0]
+ VLEIG $1, $0, H_1 // [h₂₆[1], 0]
+ VLEIG $1, $0, H_2 // [h₂₆[2], 0]
+ VLEIG $1, $0, H_3 // [h₂₆[3], 0]
+ VLEIG $1, $0, H_4 // [h₂₆[4], 0]
+
+ // calculate 5r (ignore least significant limb)
+ VREPIF $5, T_0
+ VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]]
+ VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]]
+ VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]]
+ VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]]
+
+ // skip r² calculation if we are only calculating one block
CMPBLE R3, $16, skip
- // calculate r**2
- MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5SAVE_1, R5SAVE_2, R5SAVE_3, R5SAVE_4, H_0, H_1, H_2, H_3, H_4)
- REDUCE(H_0, H_1, H_2, H_3, H_4)
- VLEIG $0, $5, T_0
- VLEIG $1, $5, T_0
- VMLOF T_0, H_1, R5_1
- VMLOF T_0, H_2, R5_2
- VMLOF T_0, H_3, R5_3
- VMLOF T_0, H_4, R5_4
- VLR H_0, R_0
- VLR H_1, R_1
- VLR H_2, R_2
- VLR H_3, R_3
- VLR H_4, R_4
-
- // initialize h
- VZERO H_0
- VZERO H_1
- VZERO H_2
- VZERO H_3
- VZERO H_4
+ // calculate r²
+ MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4)
+ REDUCE(M_0, M_1, M_2, M_3, M_4)
+ VGBM $0x0f0f, T_0
+ VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]]
+ VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]]
+ VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]]
+ VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]]
+ VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]]
+
+ // calculate 5r² (ignore least significant limb)
+ VREPIF $5, T_0
+ VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]]
+ VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]]
+ VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]]
+ VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]]
loop:
- CMPBLE R3, $32, b2
- VLM (R2), T_0, T_1
- SUB $32, R3
- MOVD $32(R2), R2
- EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
- VLEIB $4, $1, F_4
- VLEIB $12, $1, F_4
+ CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients
+
+ // load next 2 blocks from message
+ VLM (R2), T_0, T_1
+
+ // update message slice
+ SUB $32, R3
+ MOVD $32(R2), R2
+
+ // unpack message blocks into 26-bit big-endian limbs
+ EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
+
+ // add 2¹²⁸ to each message block value
+ VLEIB $4, $1, M_4
+ VLEIB $12, $1, M_4
multiply:
- VAG H_0, F_0, F_0
- VAG H_1, F_1, F_1
- VAG H_2, F_2, F_2
- VAG H_3, F_3, F_3
- VAG H_4, F_4, F_4
- MULTIPLY(F_0, F_1, F_2, F_3, F_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
+ // accumulate the incoming message
+ VAG H_0, M_0, M_0
+ VAG H_3, M_3, M_3
+ VAG H_1, M_1, M_1
+ VAG H_4, M_4, M_4
+ VAG H_2, M_2, M_2
+
+ // multiply the accumulator by the key coefficient
+ MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
+
+ // carry and partially reduce the partial products
REDUCE(H_0, H_1, H_2, H_3, H_4)
+
CMPBNE R3, $0, loop
finish:
- // sum vectors
+ // sum lane 0 and lane 1 and put the result in lane 1
VZERO T_0
VSUMQG H_0, T_0, H_0
- VSUMQG H_1, T_0, H_1
- VSUMQG H_2, T_0, H_2
VSUMQG H_3, T_0, H_3
+ VSUMQG H_1, T_0, H_1
VSUMQG H_4, T_0, H_4
+ VSUMQG H_2, T_0, H_2
- // h may be >= 2*(2**130-5) so we need to reduce it again
+ // reduce again after summation
+ // TODO(mundaym): there might be a more efficient way to do this
+ // now that we only have 1 active lane. For example, we could
+ // simultaneously pack the values as we reduce them.
REDUCE(H_0, H_1, H_2, H_3, H_4)
- // carry h1->h4
+ // carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1
+ // TODO(mundaym): in testing this final carry was unnecessary.
+ // Needs a proof before it can be removed though.
VESRLG $26, H_1, T_1
VN MOD26, H_1, H_1
VAQ T_1, H_2, H_2
@@ -284,95 +367,137 @@ finish:
VN MOD26, H_3, H_3
VAQ T_3, H_4, H_4
- // h is now < 2*(2**130-5)
- // pack h into h1 (hi) and h0 (lo)
- PACK(H_0, H_1, H_2, H_3, H_4)
-
- // if h > 2**130-5 then h -= 2**130-5
- MOD(H_0, H_1, T_0, T_1, T_2)
-
- // h += s
- MOVD $·bswapMask<>(SB), R5
- VL (R5), T_1
- VL 16(R4), T_0
- VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big)
- VAQ T_0, H_0, H_0
- VPERM H_0, H_0, T_1, H_0 // reverse bytes (to little)
- VST H_0, (R1)
-
+ // h is now < 2(2¹³⁰ - 5)
+ // Pack each lane in h₂₆[0:4] into h₁₂₈[0:1].
+ VESLG $26, H_1, H_1
+ VESLG $26, H_3, H_3
+ VO H_0, H_1, H_0
+ VO H_2, H_3, H_2
+ VESLG $4, H_2, H_2
+ VLEIB $7, $48, H_1
+ VSLB H_1, H_2, H_2
+ VO H_0, H_2, H_0
+ VLEIB $7, $104, H_1
+ VSLB H_1, H_4, H_3
+ VO H_3, H_0, H_0
+ VLEIB $7, $24, H_1
+ VSRLB H_1, H_4, H_1
+
+ // update state
+ VSTEG $1, H_0, 0(R1)
+ VSTEG $0, H_0, 8(R1)
+ VSTEG $1, H_1, 16(R1)
RET
-b2:
+b2: // 2 or fewer blocks remaining
CMPBLE R3, $16, b1
- // 2 blocks remaining
- SUB $17, R3
- VL (R2), T_0
- VLL R3, 16(R2), T_1
- ADD $1, R3
+ // Load the 2 remaining blocks (17-32 bytes remaining).
+ MOVD $-17(R3), R0 // index of final byte to load modulo 16
+ VL (R2), T_0 // load full 16 byte block
+ VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes
+
+ // The Poly1305 algorithm requires that a 1 bit be appended to
+ // each message block. If the final block is less than 16 bytes
+ // long then it is easiest to insert the 1 before the message
+ // block is split into 26-bit limbs. If, on the other hand, the
+ // final message block is 16 bytes long then we append the 1 bit
+ // after expansion as normal.
MOVBZ $1, R0
- CMPBEQ R3, $16, 2(PC)
- VLVGB R3, R0, T_1
- EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
+ MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16)
+ CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long
+ VLVGB R3, R0, T_1 // insert 1 into the byte at index R3
+
+ // Split both blocks into 26-bit limbs in the appropriate lanes.
+ EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
+
+ // Append a 1 byte to the end of the second to last block.
+ VLEIB $4, $1, M_4
+
+ // Append a 1 byte to the end of the last block only if it is a
+ // full 16 byte block.
CMPBNE R3, $16, 2(PC)
- VLEIB $12, $1, F_4
- VLEIB $4, $1, F_4
-
- // setup [r²,r]
- VLVGG $1, RSAVE_0, R_0
- VLVGG $1, RSAVE_1, R_1
- VLVGG $1, RSAVE_2, R_2
- VLVGG $1, RSAVE_3, R_3
- VLVGG $1, RSAVE_4, R_4
- VPDI $0, R5_1, R5SAVE_1, R5_1
- VPDI $0, R5_2, R5SAVE_2, R5_2
- VPDI $0, R5_3, R5SAVE_3, R5_3
- VPDI $0, R5_4, R5SAVE_4, R5_4
+ VLEIB $12, $1, M_4
+
+ // Finally, set up the coefficients for the final multiplication.
+ // We have previously saved r and 5r in the 32-bit even indexes
+ // of the R_[0-4] and R5_[1-4] coefficient registers.
+ //
+ // We want lane 0 to be multiplied by r² so that can be kept the
+ // same. We want lane 1 to be multiplied by r so we need to move
+ // the saved r value into the 32-bit odd index in lane 1 by
+ // rotating the 64-bit lane by 32.
+ VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only
+ VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]]
+ VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]]
+ VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]]
+ VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]]
+ VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]]
+ VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]]
+ VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]]
+ VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]]
+ VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]]
MOVD $0, R3
BR multiply
skip:
- VZERO H_0
- VZERO H_1
- VZERO H_2
- VZERO H_3
- VZERO H_4
-
CMPBEQ R3, $0, finish
-b1:
- // 1 block remaining
- SUB $1, R3
- VLL R3, (R2), T_0
- ADD $1, R3
+b1: // 1 block remaining
+
+ // Load the final block (1-16 bytes). This will be placed into
+ // lane 0.
+ MOVD $-1(R3), R0
+ VLL R0, (R2), T_0 // pad to 16 bytes with zeros
+
+ // The Poly1305 algorithm requires that a 1 bit be appended to
+ // each message block. If the final block is less than 16 bytes
+ // long then it is easiest to insert the 1 before the message
+ // block is split into 26-bit limbs. If, on the other hand, the
+ // final message block is 16 bytes long then we append the 1 bit
+ // after expansion as normal.
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, T_0
- VZERO T_1
- EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
+
+ // Set the message block in lane 1 to the value 0 so that it
+ // can be accumulated without affecting the final result.
+ VZERO T_1
+
+ // Split the final message block into 26-bit limbs in lane 0.
+ // Lane 1 will be contain 0.
+ EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
+
+ // Append a 1 byte to the end of the last block only if it is a
+ // full 16 byte block.
CMPBNE R3, $16, 2(PC)
- VLEIB $4, $1, F_4
- VLEIG $1, $1, R_0
- VZERO R_1
- VZERO R_2
- VZERO R_3
- VZERO R_4
- VZERO R5_1
- VZERO R5_2
- VZERO R5_3
- VZERO R5_4
-
- // setup [r, 1]
- VLVGG $0, RSAVE_0, R_0
- VLVGG $0, RSAVE_1, R_1
- VLVGG $0, RSAVE_2, R_2
- VLVGG $0, RSAVE_3, R_3
- VLVGG $0, RSAVE_4, R_4
- VPDI $0, R5SAVE_1, R5_1, R5_1
- VPDI $0, R5SAVE_2, R5_2, R5_2
- VPDI $0, R5SAVE_3, R5_3, R5_3
- VPDI $0, R5SAVE_4, R5_4, R5_4
+ VLEIB $4, $1, M_4
+
+ // We have previously saved r and 5r in the 32-bit even indexes
+ // of the R_[0-4] and R5_[1-4] coefficient registers.
+ //
+ // We want lane 0 to be multiplied by r so we need to move the
+ // saved r value into the 32-bit odd index in lane 0. We want
+ // lane 1 to be set to the value 1. This makes multiplication
+ // a no-op. We do this by setting lane 1 in every register to 0
+ // and then just setting the 32-bit index 3 in R_0 to 1.
+ VZERO T_0
+ MOVD $0, R0
+ MOVD $0x10111213, R12
+ VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000]
+ VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0]
+ VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0]
+ VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0]
+ VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0]
+ VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0]
+ VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0]
+ VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0]
+ VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0]
+ VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0]
+
+ // Set the value of lane 1 to be 1.
+ VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1]
MOVD $0, R3
BR multiply
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s b/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s
deleted file mode 100644
index b439af936..000000000
--- a/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s
+++ /dev/null
@@ -1,909 +0,0 @@
-// Copyright 2018 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build go1.11,!gccgo,!purego
-
-#include "textflag.h"
-
-// Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction.
-
-// constants
-#define EX0 V1
-#define EX1 V2
-#define EX2 V3
-
-// temporaries
-#define T_0 V4
-#define T_1 V5
-#define T_2 V6
-#define T_3 V7
-#define T_4 V8
-#define T_5 V9
-#define T_6 V10
-#define T_7 V11
-#define T_8 V12
-#define T_9 V13
-#define T_10 V14
-
-// r**2 & r**4
-#define R_0 V15
-#define R_1 V16
-#define R_2 V17
-#define R5_1 V18
-#define R5_2 V19
-// key (r)
-#define RSAVE_0 R7
-#define RSAVE_1 R8
-#define RSAVE_2 R9
-#define R5SAVE_1 R10
-#define R5SAVE_2 R11
-
-// message block
-#define M0 V20
-#define M1 V21
-#define M2 V22
-#define M3 V23
-#define M4 V24
-#define M5 V25
-
-// accumulator
-#define H0_0 V26
-#define H1_0 V27
-#define H2_0 V28
-#define H0_1 V29
-#define H1_1 V30
-#define H2_1 V31
-
-GLOBL ·keyMask<>(SB), RODATA, $16
-DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f
-DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f
-
-GLOBL ·bswapMask<>(SB), RODATA, $16
-DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908
-DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100
-
-GLOBL ·constants<>(SB), RODATA, $48
-// EX0
-DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f
-DATA ·constants<>+8(SB)/8, $0x0000050403020100
-// EX1
-DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f
-DATA ·constants<>+24(SB)/8, $0x00000a0908070605
-// EX2
-DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f
-DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b
-
-GLOBL ·c<>(SB), RODATA, $48
-// EX0
-DATA ·c<>+0(SB)/8, $0x0000050403020100
-DATA ·c<>+8(SB)/8, $0x0000151413121110
-// EX1
-DATA ·c<>+16(SB)/8, $0x00000a0908070605
-DATA ·c<>+24(SB)/8, $0x00001a1918171615
-// EX2
-DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b
-DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b
-
-GLOBL ·reduce<>(SB), RODATA, $32
-// 44 bit
-DATA ·reduce<>+0(SB)/8, $0x0
-DATA ·reduce<>+8(SB)/8, $0xfffffffffff
-// 42 bit
-DATA ·reduce<>+16(SB)/8, $0x0
-DATA ·reduce<>+24(SB)/8, $0x3ffffffffff
-
-// h = (f*g) % (2**130-5) [partial reduction]
-// uses T_0...T_9 temporary registers
-// input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2
-// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
-// output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2
-#define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \
- \ // Eliminate the dependency for the last 2 VMSLs
- VMSLG m02_0, r_2, m4_2, m4_2 \
- VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined
- VMSLG m02_0, r_0, m4_0, m4_0 \
- VMSLG m02_1, r5_2, V0, T_0 \
- VMSLG m02_0, r_1, m4_1, m4_1 \
- VMSLG m02_1, r_0, V0, T_1 \
- VMSLG m02_1, r_1, V0, T_2 \
- VMSLG m02_2, r5_1, V0, T_3 \
- VMSLG m02_2, r5_2, V0, T_4 \
- VMSLG m13_0, r_0, m5_0, m5_0 \
- VMSLG m13_1, r5_2, V0, T_5 \
- VMSLG m13_0, r_1, m5_1, m5_1 \
- VMSLG m13_1, r_0, V0, T_6 \
- VMSLG m13_1, r_1, V0, T_7 \
- VMSLG m13_2, r5_1, V0, T_8 \
- VMSLG m13_2, r5_2, V0, T_9 \
- VMSLG m02_2, r_0, m4_2, m4_2 \
- VMSLG m13_2, r_0, m5_2, m5_2 \
- VAQ m4_0, T_0, m02_0 \
- VAQ m4_1, T_1, m02_1 \
- VAQ m5_0, T_5, m13_0 \
- VAQ m5_1, T_6, m13_1 \
- VAQ m02_0, T_3, m02_0 \
- VAQ m02_1, T_4, m02_1 \
- VAQ m13_0, T_8, m13_0 \
- VAQ m13_1, T_9, m13_1 \
- VAQ m4_2, T_2, m02_2 \
- VAQ m5_2, T_7, m13_2 \
-
-// SQUARE uses three limbs of r and r_2*5 to output square of r
-// uses T_1, T_5 and T_7 temporary registers
-// input: r_0, r_1, r_2, r5_2
-// temp: TEMP0, TEMP1, TEMP2
-// output: p0, p1, p2
-#define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \
- VMSLG r_0, r_0, p0, p0 \
- VMSLG r_1, r5_2, V0, TEMP0 \
- VMSLG r_2, r5_2, p1, p1 \
- VMSLG r_0, r_1, V0, TEMP1 \
- VMSLG r_1, r_1, p2, p2 \
- VMSLG r_0, r_2, V0, TEMP2 \
- VAQ TEMP0, p0, p0 \
- VAQ TEMP1, p1, p1 \
- VAQ TEMP2, p2, p2 \
- VAQ TEMP0, p0, p0 \
- VAQ TEMP1, p1, p1 \
- VAQ TEMP2, p2, p2 \
-
-// carry h0->h1->h2->h0 || h3->h4->h5->h3
-// uses T_2, T_4, T_5, T_7, T_8, T_9
-// t6, t7, t8, t9, t10, t11
-// input: h0, h1, h2, h3, h4, h5
-// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11
-// output: h0, h1, h2, h3, h4, h5
-#define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \
- VLM (R12), t6, t7 \ // 44 and 42 bit clear mask
- VLEIB $7, $0x28, t10 \ // 5 byte shift mask
- VREPIB $4, t8 \ // 4 bit shift mask
- VREPIB $2, t11 \ // 2 bit shift mask
- VSRLB t10, h0, t0 \ // h0 byte shift
- VSRLB t10, h1, t1 \ // h1 byte shift
- VSRLB t10, h2, t2 \ // h2 byte shift
- VSRLB t10, h3, t3 \ // h3 byte shift
- VSRLB t10, h4, t4 \ // h4 byte shift
- VSRLB t10, h5, t5 \ // h5 byte shift
- VSRL t8, t0, t0 \ // h0 bit shift
- VSRL t8, t1, t1 \ // h2 bit shift
- VSRL t11, t2, t2 \ // h2 bit shift
- VSRL t8, t3, t3 \ // h3 bit shift
- VSRL t8, t4, t4 \ // h4 bit shift
- VESLG $2, t2, t9 \ // h2 carry x5
- VSRL t11, t5, t5 \ // h5 bit shift
- VN t6, h0, h0 \ // h0 clear carry
- VAQ t2, t9, t2 \ // h2 carry x5
- VESLG $2, t5, t9 \ // h5 carry x5
- VN t6, h1, h1 \ // h1 clear carry
- VN t7, h2, h2 \ // h2 clear carry
- VAQ t5, t9, t5 \ // h5 carry x5
- VN t6, h3, h3 \ // h3 clear carry
- VN t6, h4, h4 \ // h4 clear carry
- VN t7, h5, h5 \ // h5 clear carry
- VAQ t0, h1, h1 \ // h0->h1
- VAQ t3, h4, h4 \ // h3->h4
- VAQ t1, h2, h2 \ // h1->h2
- VAQ t4, h5, h5 \ // h4->h5
- VAQ t2, h0, h0 \ // h2->h0
- VAQ t5, h3, h3 \ // h5->h3
- VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves
- VREPG $1, t7, t7 \
- VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5]
- VSLDB $8, h1, h1, h1 \
- VSLDB $8, h2, h2, h2 \
- VO h0, h3, h3 \
- VO h1, h4, h4 \
- VO h2, h5, h5 \
- VESRLG $44, h3, t0 \ // 44 bit shift right
- VESRLG $44, h4, t1 \
- VESRLG $42, h5, t2 \
- VN t6, h3, h3 \ // clear carry bits
- VN t6, h4, h4 \
- VN t7, h5, h5 \
- VESLG $2, t2, t9 \ // multiply carry by 5
- VAQ t9, t2, t2 \
- VAQ t0, h4, h4 \
- VAQ t1, h5, h5 \
- VAQ t2, h3, h3 \
-
-// carry h0->h1->h2->h0
-// input: h0, h1, h2
-// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8
-// output: h0, h1, h2
-#define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \
- VLEIB $7, $0x28, t3 \ // 5 byte shift mask
- VREPIB $4, t4 \ // 4 bit shift mask
- VREPIB $2, t7 \ // 2 bit shift mask
- VGBM $0x003F, t5 \ // mask to clear carry bits
- VSRLB t3, h0, t0 \
- VSRLB t3, h1, t1 \
- VSRLB t3, h2, t2 \
- VESRLG $4, t5, t5 \ // 44 bit clear mask
- VSRL t4, t0, t0 \
- VSRL t4, t1, t1 \
- VSRL t7, t2, t2 \
- VESRLG $2, t5, t6 \ // 42 bit clear mask
- VESLG $2, t2, t8 \
- VAQ t8, t2, t2 \
- VN t5, h0, h0 \
- VN t5, h1, h1 \
- VN t6, h2, h2 \
- VAQ t0, h1, h1 \
- VAQ t1, h2, h2 \
- VAQ t2, h0, h0 \
- VSRLB t3, h0, t0 \
- VSRLB t3, h1, t1 \
- VSRLB t3, h2, t2 \
- VSRL t4, t0, t0 \
- VSRL t4, t1, t1 \
- VSRL t7, t2, t2 \
- VN t5, h0, h0 \
- VN t5, h1, h1 \
- VESLG $2, t2, t8 \
- VN t6, h2, h2 \
- VAQ t0, h1, h1 \
- VAQ t8, t2, t2 \
- VAQ t1, h2, h2 \
- VAQ t2, h0, h0 \
-
-// expands two message blocks into the lower halfs of the d registers
-// moves the contents of the d registers into upper halfs
-// input: in1, in2, d0, d1, d2, d3, d4, d5
-// temp: TEMP0, TEMP1, TEMP2, TEMP3
-// output: d0, d1, d2, d3, d4, d5
-#define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \
- VGBM $0xff3f, TEMP0 \
- VGBM $0xff1f, TEMP1 \
- VESLG $4, d1, TEMP2 \
- VESLG $4, d4, TEMP3 \
- VESRLG $4, TEMP0, TEMP0 \
- VPERM in1, d0, EX0, d0 \
- VPERM in2, d3, EX0, d3 \
- VPERM in1, d2, EX2, d2 \
- VPERM in2, d5, EX2, d5 \
- VPERM in1, TEMP2, EX1, d1 \
- VPERM in2, TEMP3, EX1, d4 \
- VN TEMP0, d0, d0 \
- VN TEMP0, d3, d3 \
- VESRLG $4, d1, d1 \
- VESRLG $4, d4, d4 \
- VN TEMP1, d2, d2 \
- VN TEMP1, d5, d5 \
- VN TEMP0, d1, d1 \
- VN TEMP0, d4, d4 \
-
-// expands one message block into the lower halfs of the d registers
-// moves the contents of the d registers into upper halfs
-// input: in, d0, d1, d2
-// temp: TEMP0, TEMP1, TEMP2
-// output: d0, d1, d2
-#define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \
- VGBM $0xff3f, TEMP0 \
- VESLG $4, d1, TEMP2 \
- VGBM $0xff1f, TEMP1 \
- VPERM in, d0, EX0, d0 \
- VESRLG $4, TEMP0, TEMP0 \
- VPERM in, d2, EX2, d2 \
- VPERM in, TEMP2, EX1, d1 \
- VN TEMP0, d0, d0 \
- VN TEMP1, d2, d2 \
- VESRLG $4, d1, d1 \
- VN TEMP0, d1, d1 \
-
-// pack h2:h0 into h1:h0 (no carry)
-// input: h0, h1, h2
-// output: h0, h1, h2
-#define PACK(h0, h1, h2) \
- VMRLG h1, h2, h2 \ // copy h1 to upper half h2
- VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20
- VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1
- VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1
- VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1
- VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1)
- VLEIG $0, $0, h2 \ // clear upper half of h2
- VESRLG $40, h2, h1 \ // h1 now has upper two bits of result
- VLEIB $7, $88, h1 \ // for byte shift (11 bytes)
- VSLB h1, h2, h2 \ // shift h2 11 bytes to the left
- VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1
- VLEIG $0, $0, h1 \ // clear upper half of h1
-
-// if h > 2**130-5 then h -= 2**130-5
-// input: h0, h1
-// temp: t0, t1, t2
-// output: h0
-#define MOD(h0, h1, t0, t1, t2) \
- VZERO t0 \
- VLEIG $1, $5, t0 \
- VACCQ h0, t0, t1 \
- VAQ h0, t0, t0 \
- VONE t2 \
- VLEIG $1, $-4, t2 \
- VAQ t2, t1, t1 \
- VACCQ h1, t1, t1 \
- VONE t2 \
- VAQ t2, t1, t1 \
- VN h0, t1, t2 \
- VNC t0, t1, t1 \
- VO t1, t2, h0 \
-
-// func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key)
-TEXT ·poly1305vmsl(SB), $0-32
- // This code processes 6 + up to 4 blocks (32 bytes) per iteration
- // using the algorithm described in:
- // NEON crypto, Daniel J. Bernstein & Peter Schwabe
- // https://cryptojedi.org/papers/neoncrypto-20120320.pdf
- // And as moddified for VMSL as described in
- // Accelerating Poly1305 Cryptographic Message Authentication on the z14
- // O'Farrell et al, CASCON 2017, p48-55
- // https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht
-
- LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key
- VZERO V0 // c
-
- // load EX0, EX1 and EX2
- MOVD $·constants<>(SB), R5
- VLM (R5), EX0, EX2 // c
-
- // setup r
- VL (R4), T_0
- MOVD $·keyMask<>(SB), R6
- VL (R6), T_1
- VN T_0, T_1, T_0
- VZERO T_2 // limbs for r
- VZERO T_3
- VZERO T_4
- EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7)
-
- // T_2, T_3, T_4: [0, r]
-
- // setup r*20
- VLEIG $0, $0, T_0
- VLEIG $1, $20, T_0 // T_0: [0, 20]
- VZERO T_5
- VZERO T_6
- VMSLG T_0, T_3, T_5, T_5
- VMSLG T_0, T_4, T_6, T_6
-
- // store r for final block in GR
- VLGVG $1, T_2, RSAVE_0 // c
- VLGVG $1, T_3, RSAVE_1 // c
- VLGVG $1, T_4, RSAVE_2 // c
- VLGVG $1, T_5, R5SAVE_1 // c
- VLGVG $1, T_6, R5SAVE_2 // c
-
- // initialize h
- VZERO H0_0
- VZERO H1_0
- VZERO H2_0
- VZERO H0_1
- VZERO H1_1
- VZERO H2_1
-
- // initialize pointer for reduce constants
- MOVD $·reduce<>(SB), R12
-
- // calculate r**2 and 20*(r**2)
- VZERO R_0
- VZERO R_1
- VZERO R_2
- SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7)
- REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1)
- VZERO R5_1
- VZERO R5_2
- VMSLG T_0, R_1, R5_1, R5_1
- VMSLG T_0, R_2, R5_2, R5_2
-
- // skip r**4 calculation if 3 blocks or less
- CMPBLE R3, $48, b4
-
- // calculate r**4 and 20*(r**4)
- VZERO T_8
- VZERO T_9
- VZERO T_10
- SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7)
- REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1)
- VZERO T_2
- VZERO T_3
- VMSLG T_0, T_9, T_2, T_2
- VMSLG T_0, T_10, T_3, T_3
-
- // put r**2 to the right and r**4 to the left of R_0, R_1, R_2
- VSLDB $8, T_8, T_8, T_8
- VSLDB $8, T_9, T_9, T_9
- VSLDB $8, T_10, T_10, T_10
- VSLDB $8, T_2, T_2, T_2
- VSLDB $8, T_3, T_3, T_3
-
- VO T_8, R_0, R_0
- VO T_9, R_1, R_1
- VO T_10, R_2, R_2
- VO T_2, R5_1, R5_1
- VO T_3, R5_2, R5_2
-
- CMPBLE R3, $80, load // less than or equal to 5 blocks in message
-
- // 6(or 5+1) blocks
- SUB $81, R3
- VLM (R2), M0, M4
- VLL R3, 80(R2), M5
- ADD $1, R3
- MOVBZ $1, R0
- CMPBGE R3, $16, 2(PC)
- VLVGB R3, R0, M5
- MOVD $96(R2), R2
- EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
- EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
- VLEIB $2, $1, H2_0
- VLEIB $2, $1, H2_1
- VLEIB $10, $1, H2_0
- VLEIB $10, $1, H2_1
-
- VZERO M0
- VZERO M1
- VZERO M2
- VZERO M3
- VZERO T_4
- VZERO T_10
- EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3)
- VLR T_4, M4
- VLEIB $10, $1, M2
- CMPBLT R3, $16, 2(PC)
- VLEIB $10, $1, T_10
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9)
- VMRHG V0, H0_1, H0_0
- VMRHG V0, H1_1, H1_0
- VMRHG V0, H2_1, H2_0
- VMRLG V0, H0_1, H0_1
- VMRLG V0, H1_1, H1_1
- VMRLG V0, H2_1, H2_1
-
- SUB $16, R3
- CMPBLE R3, $0, square
-
-load:
- // load EX0, EX1 and EX2
- MOVD $·c<>(SB), R5
- VLM (R5), EX0, EX2
-
-loop:
- CMPBLE R3, $64, add // b4 // last 4 or less blocks left
-
- // next 4 full blocks
- VLM (R2), M2, M5
- SUB $64, R3
- MOVD $64(R2), R2
- REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9)
-
- // expacc in-lined to create [m2, m3] limbs
- VGBM $0x3f3f, T_0 // 44 bit clear mask
- VGBM $0x1f1f, T_1 // 40 bit clear mask
- VPERM M2, M3, EX0, T_3
- VESRLG $4, T_0, T_0 // 44 bit clear mask ready
- VPERM M2, M3, EX1, T_4
- VPERM M2, M3, EX2, T_5
- VN T_0, T_3, T_3
- VESRLG $4, T_4, T_4
- VN T_1, T_5, T_5
- VN T_0, T_4, T_4
- VMRHG H0_1, T_3, H0_0
- VMRHG H1_1, T_4, H1_0
- VMRHG H2_1, T_5, H2_0
- VMRLG H0_1, T_3, H0_1
- VMRLG H1_1, T_4, H1_1
- VMRLG H2_1, T_5, H2_1
- VLEIB $10, $1, H2_0
- VLEIB $10, $1, H2_1
- VPERM M4, M5, EX0, T_3
- VPERM M4, M5, EX1, T_4
- VPERM M4, M5, EX2, T_5
- VN T_0, T_3, T_3
- VESRLG $4, T_4, T_4
- VN T_1, T_5, T_5
- VN T_0, T_4, T_4
- VMRHG V0, T_3, M0
- VMRHG V0, T_4, M1
- VMRHG V0, T_5, M2
- VMRLG V0, T_3, M3
- VMRLG V0, T_4, M4
- VMRLG V0, T_5, M5
- VLEIB $10, $1, M2
- VLEIB $10, $1, M5
-
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- CMPBNE R3, $0, loop
- REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
- VMRHG V0, H0_1, H0_0
- VMRHG V0, H1_1, H1_0
- VMRHG V0, H2_1, H2_0
- VMRLG V0, H0_1, H0_1
- VMRLG V0, H1_1, H1_1
- VMRLG V0, H2_1, H2_1
-
- // load EX0, EX1, EX2
- MOVD $·constants<>(SB), R5
- VLM (R5), EX0, EX2
-
- // sum vectors
- VAQ H0_0, H0_1, H0_0
- VAQ H1_0, H1_1, H1_0
- VAQ H2_0, H2_1, H2_0
-
- // h may be >= 2*(2**130-5) so we need to reduce it again
- // M0...M4 are used as temps here
- REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
-
-next: // carry h1->h2
- VLEIB $7, $0x28, T_1
- VREPIB $4, T_2
- VGBM $0x003F, T_3
- VESRLG $4, T_3
-
- // byte shift
- VSRLB T_1, H1_0, T_4
-
- // bit shift
- VSRL T_2, T_4, T_4
-
- // clear h1 carry bits
- VN T_3, H1_0, H1_0
-
- // add carry
- VAQ T_4, H2_0, H2_0
-
- // h is now < 2*(2**130-5)
- // pack h into h1 (hi) and h0 (lo)
- PACK(H0_0, H1_0, H2_0)
-
- // if h > 2**130-5 then h -= 2**130-5
- MOD(H0_0, H1_0, T_0, T_1, T_2)
-
- // h += s
- MOVD $·bswapMask<>(SB), R5
- VL (R5), T_1
- VL 16(R4), T_0
- VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big)
- VAQ T_0, H0_0, H0_0
- VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little)
- VST H0_0, (R1)
- RET
-
-add:
- // load EX0, EX1, EX2
- MOVD $·constants<>(SB), R5
- VLM (R5), EX0, EX2
-
- REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
- VMRHG V0, H0_1, H0_0
- VMRHG V0, H1_1, H1_0
- VMRHG V0, H2_1, H2_0
- VMRLG V0, H0_1, H0_1
- VMRLG V0, H1_1, H1_1
- VMRLG V0, H2_1, H2_1
- CMPBLE R3, $64, b4
-
-b4:
- CMPBLE R3, $48, b3 // 3 blocks or less
-
- // 4(3+1) blocks remaining
- SUB $49, R3
- VLM (R2), M0, M2
- VLL R3, 48(R2), M3
- ADD $1, R3
- MOVBZ $1, R0
- CMPBEQ R3, $16, 2(PC)
- VLVGB R3, R0, M3
- MOVD $64(R2), R2
- EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
- VLEIB $10, $1, H2_0
- VLEIB $10, $1, H2_1
- VZERO M0
- VZERO M1
- VZERO M4
- VZERO M5
- VZERO T_4
- VZERO T_10
- EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3)
- VLR T_4, M2
- VLEIB $10, $1, M4
- CMPBNE R3, $16, 2(PC)
- VLEIB $10, $1, T_10
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
- VMRHG V0, H0_1, H0_0
- VMRHG V0, H1_1, H1_0
- VMRHG V0, H2_1, H2_0
- VMRLG V0, H0_1, H0_1
- VMRLG V0, H1_1, H1_1
- VMRLG V0, H2_1, H2_1
- SUB $16, R3
- CMPBLE R3, $0, square // this condition must always hold true!
-
-b3:
- CMPBLE R3, $32, b2
-
- // 3 blocks remaining
-
- // setup [r²,r]
- VSLDB $8, R_0, R_0, R_0
- VSLDB $8, R_1, R_1, R_1
- VSLDB $8, R_2, R_2, R_2
- VSLDB $8, R5_1, R5_1, R5_1
- VSLDB $8, R5_2, R5_2, R5_2
-
- VLVGG $1, RSAVE_0, R_0
- VLVGG $1, RSAVE_1, R_1
- VLVGG $1, RSAVE_2, R_2
- VLVGG $1, R5SAVE_1, R5_1
- VLVGG $1, R5SAVE_2, R5_2
-
- // setup [h0, h1]
- VSLDB $8, H0_0, H0_0, H0_0
- VSLDB $8, H1_0, H1_0, H1_0
- VSLDB $8, H2_0, H2_0, H2_0
- VO H0_1, H0_0, H0_0
- VO H1_1, H1_0, H1_0
- VO H2_1, H2_0, H2_0
- VZERO H0_1
- VZERO H1_1
- VZERO H2_1
-
- VZERO M0
- VZERO M1
- VZERO M2
- VZERO M3
- VZERO M4
- VZERO M5
-
- // H*[r**2, r]
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5)
-
- SUB $33, R3
- VLM (R2), M0, M1
- VLL R3, 32(R2), M2
- ADD $1, R3
- MOVBZ $1, R0
- CMPBEQ R3, $16, 2(PC)
- VLVGB R3, R0, M2
-
- // H += m0
- VZERO T_1
- VZERO T_2
- VZERO T_3
- EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)
- VLEIB $10, $1, T_3
- VAG H0_0, T_1, H0_0
- VAG H1_0, T_2, H1_0
- VAG H2_0, T_3, H2_0
-
- VZERO M0
- VZERO M3
- VZERO M4
- VZERO M5
- VZERO T_10
-
- // (H+m0)*r
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9)
-
- // H += m1
- VZERO V0
- VZERO T_1
- VZERO T_2
- VZERO T_3
- EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6)
- VLEIB $10, $1, T_3
- VAQ H0_0, T_1, H0_0
- VAQ H1_0, T_2, H1_0
- VAQ H2_0, T_3, H2_0
- REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10)
-
- // [H, m2] * [r**2, r]
- EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3)
- CMPBNE R3, $16, 2(PC)
- VLEIB $10, $1, H2_0
- VZERO M0
- VZERO M1
- VZERO M2
- VZERO M3
- VZERO M4
- VZERO M5
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10)
- SUB $16, R3
- CMPBLE R3, $0, next // this condition must always hold true!
-
-b2:
- CMPBLE R3, $16, b1
-
- // 2 blocks remaining
-
- // setup [r²,r]
- VSLDB $8, R_0, R_0, R_0
- VSLDB $8, R_1, R_1, R_1
- VSLDB $8, R_2, R_2, R_2
- VSLDB $8, R5_1, R5_1, R5_1
- VSLDB $8, R5_2, R5_2, R5_2
-
- VLVGG $1, RSAVE_0, R_0
- VLVGG $1, RSAVE_1, R_1
- VLVGG $1, RSAVE_2, R_2
- VLVGG $1, R5SAVE_1, R5_1
- VLVGG $1, R5SAVE_2, R5_2
-
- // setup [h0, h1]
- VSLDB $8, H0_0, H0_0, H0_0
- VSLDB $8, H1_0, H1_0, H1_0
- VSLDB $8, H2_0, H2_0, H2_0
- VO H0_1, H0_0, H0_0
- VO H1_1, H1_0, H1_0
- VO H2_1, H2_0, H2_0
- VZERO H0_1
- VZERO H1_1
- VZERO H2_1
-
- VZERO M0
- VZERO M1
- VZERO M2
- VZERO M3
- VZERO M4
- VZERO M5
-
- // H*[r**2, r]
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9)
- VMRHG V0, H0_1, H0_0
- VMRHG V0, H1_1, H1_0
- VMRHG V0, H2_1, H2_0
- VMRLG V0, H0_1, H0_1
- VMRLG V0, H1_1, H1_1
- VMRLG V0, H2_1, H2_1
-
- // move h to the left and 0s at the right
- VSLDB $8, H0_0, H0_0, H0_0
- VSLDB $8, H1_0, H1_0, H1_0
- VSLDB $8, H2_0, H2_0, H2_0
-
- // get message blocks and append 1 to start
- SUB $17, R3
- VL (R2), M0
- VLL R3, 16(R2), M1
- ADD $1, R3
- MOVBZ $1, R0
- CMPBEQ R3, $16, 2(PC)
- VLVGB R3, R0, M1
- VZERO T_6
- VZERO T_7
- VZERO T_8
- EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3)
- EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3)
- VLEIB $2, $1, T_8
- CMPBNE R3, $16, 2(PC)
- VLEIB $10, $1, T_8
-
- // add [m0, m1] to h
- VAG H0_0, T_6, H0_0
- VAG H1_0, T_7, H1_0
- VAG H2_0, T_8, H2_0
-
- VZERO M2
- VZERO M3
- VZERO M4
- VZERO M5
- VZERO T_10
- VZERO M0
-
- // at this point R_0 .. R5_2 look like [r**2, r]
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10)
- SUB $16, R3, R3
- CMPBLE R3, $0, next
-
-b1:
- CMPBLE R3, $0, next
-
- // 1 block remaining
-
- // setup [r²,r]
- VSLDB $8, R_0, R_0, R_0
- VSLDB $8, R_1, R_1, R_1
- VSLDB $8, R_2, R_2, R_2
- VSLDB $8, R5_1, R5_1, R5_1
- VSLDB $8, R5_2, R5_2, R5_2
-
- VLVGG $1, RSAVE_0, R_0
- VLVGG $1, RSAVE_1, R_1
- VLVGG $1, RSAVE_2, R_2
- VLVGG $1, R5SAVE_1, R5_1
- VLVGG $1, R5SAVE_2, R5_2
-
- // setup [h0, h1]
- VSLDB $8, H0_0, H0_0, H0_0
- VSLDB $8, H1_0, H1_0, H1_0
- VSLDB $8, H2_0, H2_0, H2_0
- VO H0_1, H0_0, H0_0
- VO H1_1, H1_0, H1_0
- VO H2_1, H2_0, H2_0
- VZERO H0_1
- VZERO H1_1
- VZERO H2_1
-
- VZERO M0
- VZERO M1
- VZERO M2
- VZERO M3
- VZERO M4
- VZERO M5
-
- // H*[r**2, r]
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
-
- // set up [0, m0] limbs
- SUB $1, R3
- VLL R3, (R2), M0
- ADD $1, R3
- MOVBZ $1, R0
- CMPBEQ R3, $16, 2(PC)
- VLVGB R3, R0, M0
- VZERO T_1
- VZERO T_2
- VZERO T_3
- EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m]
- CMPBNE R3, $16, 2(PC)
- VLEIB $10, $1, T_3
-
- // h+m0
- VAQ H0_0, T_1, H0_0
- VAQ H1_0, T_2, H1_0
- VAQ H2_0, T_3, H2_0
-
- VZERO M0
- VZERO M1
- VZERO M2
- VZERO M3
- VZERO M4
- VZERO M5
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
-
- BR next
-
-square:
- // setup [r²,r]
- VSLDB $8, R_0, R_0, R_0
- VSLDB $8, R_1, R_1, R_1
- VSLDB $8, R_2, R_2, R_2
- VSLDB $8, R5_1, R5_1, R5_1
- VSLDB $8, R5_2, R5_2, R5_2
-
- VLVGG $1, RSAVE_0, R_0
- VLVGG $1, RSAVE_1, R_1
- VLVGG $1, RSAVE_2, R_2
- VLVGG $1, R5SAVE_1, R5_1
- VLVGG $1, R5SAVE_2, R5_2
-
- // setup [h0, h1]
- VSLDB $8, H0_0, H0_0, H0_0
- VSLDB $8, H1_0, H1_0, H1_0
- VSLDB $8, H2_0, H2_0, H2_0
- VO H0_1, H0_0, H0_0
- VO H1_1, H1_0, H1_0
- VO H2_1, H2_0, H2_0
- VZERO H0_1
- VZERO H1_1
- VZERO H2_1
-
- VZERO M0
- VZERO M1
- VZERO M2
- VZERO M3
- VZERO M4
- VZERO M5
-
- // (h0*r**2) + (h1*r)
- MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
- REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
- BR next
diff --git a/vendor/golang.org/x/crypto/ssh/certs.go b/vendor/golang.org/x/crypto/ssh/certs.go
index 0f89aec1c..916c840b6 100644
--- a/vendor/golang.org/x/crypto/ssh/certs.go
+++ b/vendor/golang.org/x/crypto/ssh/certs.go
@@ -414,8 +414,8 @@ func (c *CertChecker) CheckCert(principal string, cert *Certificate) error {
return nil
}
-// SignCert sets c.SignatureKey to the authority's public key and stores a
-// Signature, by authority, in the certificate.
+// SignCert signs the certificate with an authority, setting the Nonce,
+// SignatureKey, and Signature fields.
func (c *Certificate) SignCert(rand io.Reader, authority Signer) error {
c.Nonce = make([]byte, 32)
if _, err := io.ReadFull(rand, c.Nonce); err != nil {
diff --git a/vendor/golang.org/x/crypto/ssh/client_auth.go b/vendor/golang.org/x/crypto/ssh/client_auth.go
index 0590070e2..f3265655e 100644
--- a/vendor/golang.org/x/crypto/ssh/client_auth.go
+++ b/vendor/golang.org/x/crypto/ssh/client_auth.go
@@ -36,7 +36,7 @@ func (c *connection) clientAuthenticate(config *ClientConfig) error {
// during the authentication phase the client first attempts the "none" method
// then any untried methods suggested by the server.
- tried := make(map[string]bool)
+ var tried []string
var lastMethods []string
sessionID := c.transport.getSessionID()
@@ -49,7 +49,9 @@ func (c *connection) clientAuthenticate(config *ClientConfig) error {
// success
return nil
} else if ok == authFailure {
- tried[auth.method()] = true
+ if m := auth.method(); !contains(tried, m) {
+ tried = append(tried, m)
+ }
}
if methods == nil {
methods = lastMethods
@@ -61,7 +63,7 @@ func (c *connection) clientAuthenticate(config *ClientConfig) error {
findNext:
for _, a := range config.Auth {
candidateMethod := a.method()
- if tried[candidateMethod] {
+ if contains(tried, candidateMethod) {
continue
}
for _, meth := range methods {
@@ -72,16 +74,16 @@ func (c *connection) clientAuthenticate(config *ClientConfig) error {
}
}
}
- return fmt.Errorf("ssh: unable to authenticate, attempted methods %v, no supported methods remain", keys(tried))
+ return fmt.Errorf("ssh: unable to authenticate, attempted methods %v, no supported methods remain", tried)
}
-func keys(m map[string]bool) []string {
- s := make([]string, 0, len(m))
-
- for key := range m {
- s = append(s, key)
+func contains(list []string, e string) bool {
+ for _, s := range list {
+ if s == e {
+ return true
+ }
}
- return s
+ return false
}
// An AuthMethod represents an instance of an RFC 4252 authentication method.
diff --git a/vendor/golang.org/x/crypto/ssh/mux.go b/vendor/golang.org/x/crypto/ssh/mux.go
index f19016270..9654c0186 100644
--- a/vendor/golang.org/x/crypto/ssh/mux.go
+++ b/vendor/golang.org/x/crypto/ssh/mux.go
@@ -240,7 +240,7 @@ func (m *mux) onePacket() error {
id := binary.BigEndian.Uint32(packet[1:])
ch := m.chanList.getChan(id)
if ch == nil {
- return fmt.Errorf("ssh: invalid channel %d", id)
+ return m.handleUnknownChannelPacket(id, packet)
}
return ch.handlePacket(packet)
@@ -328,3 +328,24 @@ func (m *mux) openChannel(chanType string, extra []byte) (*channel, error) {
return nil, fmt.Errorf("ssh: unexpected packet in response to channel open: %T", msg)
}
}
+
+func (m *mux) handleUnknownChannelPacket(id uint32, packet []byte) error {
+ msg, err := decode(packet)
+ if err != nil {
+ return err
+ }
+
+ switch msg := msg.(type) {
+ // RFC 4254 section 5.4 says unrecognized channel requests should
+ // receive a failure response.
+ case *channelRequestMsg:
+ if msg.WantReply {
+ return m.sendMessage(channelRequestFailureMsg{
+ PeersID: msg.PeersID,
+ })
+ }
+ return nil
+ default:
+ return fmt.Errorf("ssh: invalid channel %d", id)
+ }
+}
diff --git a/vendor/golang.org/x/net/http2/transport.go b/vendor/golang.org/x/net/http2/transport.go
index 54acc1e36..76a92e0ca 100644
--- a/vendor/golang.org/x/net/http2/transport.go
+++ b/vendor/golang.org/x/net/http2/transport.go
@@ -108,6 +108,19 @@ type Transport struct {
// waiting for their turn.
StrictMaxConcurrentStreams bool
+ // ReadIdleTimeout is the timeout after which a health check using ping
+ // frame will be carried out if no frame is received on the connection.
+ // Note that a ping response will is considered a received frame, so if
+ // there is no other traffic on the connection, the health check will
+ // be performed every ReadIdleTimeout interval.
+ // If zero, no health check is performed.
+ ReadIdleTimeout time.Duration
+
+ // PingTimeout is the timeout after which the connection will be closed
+ // if a response to Ping is not received.
+ // Defaults to 15s.
+ PingTimeout time.Duration
+
// t1, if non-nil, is the standard library Transport using
// this transport. Its settings are used (but not its
// RoundTrip method, etc).
@@ -131,6 +144,14 @@ func (t *Transport) disableCompression() bool {
return t.DisableCompression || (t.t1 != nil && t.t1.DisableCompression)
}
+func (t *Transport) pingTimeout() time.Duration {
+ if t.PingTimeout == 0 {
+ return 15 * time.Second
+ }
+ return t.PingTimeout
+
+}
+
// ConfigureTransport configures a net/http HTTP/1 Transport to use HTTP/2.
// It returns an error if t1 has already been HTTP/2-enabled.
func ConfigureTransport(t1 *http.Transport) error {
@@ -675,6 +696,20 @@ func (t *Transport) newClientConn(c net.Conn, singleUse bool) (*ClientConn, erro
return cc, nil
}
+func (cc *ClientConn) healthCheck() {
+ pingTimeout := cc.t.pingTimeout()
+ // We don't need to periodically ping in the health check, because the readLoop of ClientConn will
+ // trigger the healthCheck again if there is no frame received.
+ ctx, cancel := context.WithTimeout(context.Background(), pingTimeout)
+ defer cancel()
+ err := cc.Ping(ctx)
+ if err != nil {
+ cc.closeForLostPing()
+ cc.t.connPool().MarkDead(cc)
+ return
+ }
+}
+
func (cc *ClientConn) setGoAway(f *GoAwayFrame) {
cc.mu.Lock()
defer cc.mu.Unlock()
@@ -846,14 +881,12 @@ func (cc *ClientConn) sendGoAway() error {
return nil
}
-// Close closes the client connection immediately.
-//
-// In-flight requests are interrupted. For a graceful shutdown, use Shutdown instead.
-func (cc *ClientConn) Close() error {
+// closes the client connection immediately. In-flight requests are interrupted.
+// err is sent to streams.
+func (cc *ClientConn) closeForError(err error) error {
cc.mu.Lock()
defer cc.cond.Broadcast()
defer cc.mu.Unlock()
- err := errors.New("http2: client connection force closed via ClientConn.Close")
for id, cs := range cc.streams {
select {
case cs.resc <- resAndError{err: err}:
@@ -866,6 +899,20 @@ func (cc *ClientConn) Close() error {
return cc.tconn.Close()
}
+// Close closes the client connection immediately.
+//
+// In-flight requests are interrupted. For a graceful shutdown, use Shutdown instead.
+func (cc *ClientConn) Close() error {
+ err := errors.New("http2: client connection force closed via ClientConn.Close")
+ return cc.closeForError(err)
+}
+
+// closes the client connection immediately. In-flight requests are interrupted.
+func (cc *ClientConn) closeForLostPing() error {
+ err := errors.New("http2: client connection lost")
+ return cc.closeForError(err)
+}
+
const maxAllocFrameSize = 512 << 10
// frameBuffer returns a scratch buffer suitable for writing DATA frames.
@@ -1737,8 +1784,17 @@ func (rl *clientConnReadLoop) run() error {
rl.closeWhenIdle = cc.t.disableKeepAlives() || cc.singleUse
gotReply := false // ever saw a HEADERS reply
gotSettings := false
+ readIdleTimeout := cc.t.ReadIdleTimeout
+ var t *time.Timer
+ if readIdleTimeout != 0 {
+ t = time.AfterFunc(readIdleTimeout, cc.healthCheck)
+ defer t.Stop()
+ }
for {
f, err := cc.fr.ReadFrame()
+ if t != nil {
+ t.Reset(readIdleTimeout)
+ }
if err != nil {
cc.vlogf("http2: Transport readFrame error on conn %p: (%T) %v", cc, err, err)
}