diff options
Diffstat (limited to 'vendor/github.com/BurntSushi/toml')
-rw-r--r-- | vendor/github.com/BurntSushi/toml/COPYING | 14 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/README.md | 220 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/decode.go | 505 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/decode_meta.go | 122 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/doc.go | 27 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/encode.go | 549 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/encoding_types.go | 19 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/encoding_types_1.1.go | 18 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/lex.go | 871 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/parse.go | 493 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/type_check.go | 91 | ||||
-rw-r--r-- | vendor/github.com/BurntSushi/toml/type_fields.go | 241 |
12 files changed, 3170 insertions, 0 deletions
diff --git a/vendor/github.com/BurntSushi/toml/COPYING b/vendor/github.com/BurntSushi/toml/COPYING new file mode 100644 index 000000000..5a8e33254 --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/COPYING @@ -0,0 +1,14 @@ + DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE + Version 2, December 2004 + + Copyright (C) 2004 Sam Hocevar <sam@hocevar.net> + + Everyone is permitted to copy and distribute verbatim or modified + copies of this license document, and changing it is allowed as long + as the name is changed. + + DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE + TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + + 0. You just DO WHAT THE FUCK YOU WANT TO. + diff --git a/vendor/github.com/BurntSushi/toml/README.md b/vendor/github.com/BurntSushi/toml/README.md new file mode 100644 index 000000000..5a5df6370 --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/README.md @@ -0,0 +1,220 @@ +## TOML parser and encoder for Go with reflection + +TOML stands for Tom's Obvious, Minimal Language. This Go package provides a +reflection interface similar to Go's standard library `json` and `xml` +packages. This package also supports the `encoding.TextUnmarshaler` and +`encoding.TextMarshaler` interfaces so that you can define custom data +representations. (There is an example of this below.) + +Spec: https://github.com/mojombo/toml + +Compatible with TOML version +[v0.2.0](https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.2.0.md) + +Documentation: http://godoc.org/github.com/BurntSushi/toml + +Installation: + +```bash +go get github.com/BurntSushi/toml +``` + +Try the toml validator: + +```bash +go get github.com/BurntSushi/toml/cmd/tomlv +tomlv some-toml-file.toml +``` + +[![Build status](https://api.travis-ci.org/BurntSushi/toml.png)](https://travis-ci.org/BurntSushi/toml) + + +### Testing + +This package passes all tests in +[toml-test](https://github.com/BurntSushi/toml-test) for both the decoder +and the encoder. + +### Examples + +This package works similarly to how the Go standard library handles `XML` +and `JSON`. Namely, data is loaded into Go values via reflection. + +For the simplest example, consider some TOML file as just a list of keys +and values: + +```toml +Age = 25 +Cats = [ "Cauchy", "Plato" ] +Pi = 3.14 +Perfection = [ 6, 28, 496, 8128 ] +DOB = 1987-07-05T05:45:00Z +``` + +Which could be defined in Go as: + +```go +type Config struct { + Age int + Cats []string + Pi float64 + Perfection []int + DOB time.Time // requires `import time` +} +``` + +And then decoded with: + +```go +var conf Config +if _, err := toml.Decode(tomlData, &conf); err != nil { + // handle error +} +``` + +You can also use struct tags if your struct field name doesn't map to a TOML +key value directly: + +```toml +some_key_NAME = "wat" +``` + +```go +type TOML struct { + ObscureKey string `toml:"some_key_NAME"` +} +``` + +### Using the `encoding.TextUnmarshaler` interface + +Here's an example that automatically parses duration strings into +`time.Duration` values: + +```toml +[[song]] +name = "Thunder Road" +duration = "4m49s" + +[[song]] +name = "Stairway to Heaven" +duration = "8m03s" +``` + +Which can be decoded with: + +```go +type song struct { + Name string + Duration duration +} +type songs struct { + Song []song +} +var favorites songs +if _, err := toml.Decode(blob, &favorites); err != nil { + log.Fatal(err) +} + +for _, s := range favorites.Song { + fmt.Printf("%s (%s)\n", s.Name, s.Duration) +} +``` + +And you'll also need a `duration` type that satisfies the +`encoding.TextUnmarshaler` interface: + +```go +type duration struct { + time.Duration +} + +func (d *duration) UnmarshalText(text []byte) error { + var err error + d.Duration, err = time.ParseDuration(string(text)) + return err +} +``` + +### More complex usage + +Here's an example of how to load the example from the official spec page: + +```toml +# This is a TOML document. Boom. + +title = "TOML Example" + +[owner] +name = "Tom Preston-Werner" +organization = "GitHub" +bio = "GitHub Cofounder & CEO\nLikes tater tots and beer." +dob = 1979-05-27T07:32:00Z # First class dates? Why not? + +[database] +server = "192.168.1.1" +ports = [ 8001, 8001, 8002 ] +connection_max = 5000 +enabled = true + +[servers] + + # You can indent as you please. Tabs or spaces. TOML don't care. + [servers.alpha] + ip = "10.0.0.1" + dc = "eqdc10" + + [servers.beta] + ip = "10.0.0.2" + dc = "eqdc10" + +[clients] +data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it + +# Line breaks are OK when inside arrays +hosts = [ + "alpha", + "omega" +] +``` + +And the corresponding Go types are: + +```go +type tomlConfig struct { + Title string + Owner ownerInfo + DB database `toml:"database"` + Servers map[string]server + Clients clients +} + +type ownerInfo struct { + Name string + Org string `toml:"organization"` + Bio string + DOB time.Time +} + +type database struct { + Server string + Ports []int + ConnMax int `toml:"connection_max"` + Enabled bool +} + +type server struct { + IP string + DC string +} + +type clients struct { + Data [][]interface{} + Hosts []string +} +``` + +Note that a case insensitive match will be tried if an exact match can't be +found. + +A working example of the above can be found in `_examples/example.{go,toml}`. + diff --git a/vendor/github.com/BurntSushi/toml/decode.go b/vendor/github.com/BurntSushi/toml/decode.go new file mode 100644 index 000000000..c26b00c01 --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/decode.go @@ -0,0 +1,505 @@ +package toml + +import ( + "fmt" + "io" + "io/ioutil" + "math" + "reflect" + "strings" + "time" +) + +var e = fmt.Errorf + +// Unmarshaler is the interface implemented by objects that can unmarshal a +// TOML description of themselves. +type Unmarshaler interface { + UnmarshalTOML(interface{}) error +} + +// Unmarshal decodes the contents of `p` in TOML format into a pointer `v`. +func Unmarshal(p []byte, v interface{}) error { + _, err := Decode(string(p), v) + return err +} + +// Primitive is a TOML value that hasn't been decoded into a Go value. +// When using the various `Decode*` functions, the type `Primitive` may +// be given to any value, and its decoding will be delayed. +// +// A `Primitive` value can be decoded using the `PrimitiveDecode` function. +// +// The underlying representation of a `Primitive` value is subject to change. +// Do not rely on it. +// +// N.B. Primitive values are still parsed, so using them will only avoid +// the overhead of reflection. They can be useful when you don't know the +// exact type of TOML data until run time. +type Primitive struct { + undecoded interface{} + context Key +} + +// DEPRECATED! +// +// Use MetaData.PrimitiveDecode instead. +func PrimitiveDecode(primValue Primitive, v interface{}) error { + md := MetaData{decoded: make(map[string]bool)} + return md.unify(primValue.undecoded, rvalue(v)) +} + +// PrimitiveDecode is just like the other `Decode*` functions, except it +// decodes a TOML value that has already been parsed. Valid primitive values +// can *only* be obtained from values filled by the decoder functions, +// including this method. (i.e., `v` may contain more `Primitive` +// values.) +// +// Meta data for primitive values is included in the meta data returned by +// the `Decode*` functions with one exception: keys returned by the Undecoded +// method will only reflect keys that were decoded. Namely, any keys hidden +// behind a Primitive will be considered undecoded. Executing this method will +// update the undecoded keys in the meta data. (See the example.) +func (md *MetaData) PrimitiveDecode(primValue Primitive, v interface{}) error { + md.context = primValue.context + defer func() { md.context = nil }() + return md.unify(primValue.undecoded, rvalue(v)) +} + +// Decode will decode the contents of `data` in TOML format into a pointer +// `v`. +// +// TOML hashes correspond to Go structs or maps. (Dealer's choice. They can be +// used interchangeably.) +// +// TOML arrays of tables correspond to either a slice of structs or a slice +// of maps. +// +// TOML datetimes correspond to Go `time.Time` values. +// +// All other TOML types (float, string, int, bool and array) correspond +// to the obvious Go types. +// +// An exception to the above rules is if a type implements the +// encoding.TextUnmarshaler interface. In this case, any primitive TOML value +// (floats, strings, integers, booleans and datetimes) will be converted to +// a byte string and given to the value's UnmarshalText method. See the +// Unmarshaler example for a demonstration with time duration strings. +// +// Key mapping +// +// TOML keys can map to either keys in a Go map or field names in a Go +// struct. The special `toml` struct tag may be used to map TOML keys to +// struct fields that don't match the key name exactly. (See the example.) +// A case insensitive match to struct names will be tried if an exact match +// can't be found. +// +// The mapping between TOML values and Go values is loose. That is, there +// may exist TOML values that cannot be placed into your representation, and +// there may be parts of your representation that do not correspond to +// TOML values. This loose mapping can be made stricter by using the IsDefined +// and/or Undecoded methods on the MetaData returned. +// +// This decoder will not handle cyclic types. If a cyclic type is passed, +// `Decode` will not terminate. +func Decode(data string, v interface{}) (MetaData, error) { + p, err := parse(data) + if err != nil { + return MetaData{}, err + } + md := MetaData{ + p.mapping, p.types, p.ordered, + make(map[string]bool, len(p.ordered)), nil, + } + return md, md.unify(p.mapping, rvalue(v)) +} + +// DecodeFile is just like Decode, except it will automatically read the +// contents of the file at `fpath` and decode it for you. +func DecodeFile(fpath string, v interface{}) (MetaData, error) { + bs, err := ioutil.ReadFile(fpath) + if err != nil { + return MetaData{}, err + } + return Decode(string(bs), v) +} + +// DecodeReader is just like Decode, except it will consume all bytes +// from the reader and decode it for you. +func DecodeReader(r io.Reader, v interface{}) (MetaData, error) { + bs, err := ioutil.ReadAll(r) + if err != nil { + return MetaData{}, err + } + return Decode(string(bs), v) +} + +// unify performs a sort of type unification based on the structure of `rv`, +// which is the client representation. +// +// Any type mismatch produces an error. Finding a type that we don't know +// how to handle produces an unsupported type error. +func (md *MetaData) unify(data interface{}, rv reflect.Value) error { + + // Special case. Look for a `Primitive` value. + if rv.Type() == reflect.TypeOf((*Primitive)(nil)).Elem() { + // Save the undecoded data and the key context into the primitive + // value. + context := make(Key, len(md.context)) + copy(context, md.context) + rv.Set(reflect.ValueOf(Primitive{ + undecoded: data, + context: context, + })) + return nil + } + + // Special case. Unmarshaler Interface support. + if rv.CanAddr() { + if v, ok := rv.Addr().Interface().(Unmarshaler); ok { + return v.UnmarshalTOML(data) + } + } + + // Special case. Handle time.Time values specifically. + // TODO: Remove this code when we decide to drop support for Go 1.1. + // This isn't necessary in Go 1.2 because time.Time satisfies the encoding + // interfaces. + if rv.Type().AssignableTo(rvalue(time.Time{}).Type()) { + return md.unifyDatetime(data, rv) + } + + // Special case. Look for a value satisfying the TextUnmarshaler interface. + if v, ok := rv.Interface().(TextUnmarshaler); ok { + return md.unifyText(data, v) + } + // BUG(burntsushi) + // The behavior here is incorrect whenever a Go type satisfies the + // encoding.TextUnmarshaler interface but also corresponds to a TOML + // hash or array. In particular, the unmarshaler should only be applied + // to primitive TOML values. But at this point, it will be applied to + // all kinds of values and produce an incorrect error whenever those values + // are hashes or arrays (including arrays of tables). + + k := rv.Kind() + + // laziness + if k >= reflect.Int && k <= reflect.Uint64 { + return md.unifyInt(data, rv) + } + switch k { + case reflect.Ptr: + elem := reflect.New(rv.Type().Elem()) + err := md.unify(data, reflect.Indirect(elem)) + if err != nil { + return err + } + rv.Set(elem) + return nil + case reflect.Struct: + return md.unifyStruct(data, rv) + case reflect.Map: + return md.unifyMap(data, rv) + case reflect.Array: + return md.unifyArray(data, rv) + case reflect.Slice: + return md.unifySlice(data, rv) + case reflect.String: + return md.unifyString(data, rv) + case reflect.Bool: + return md.unifyBool(data, rv) + case reflect.Interface: + // we only support empty interfaces. + if rv.NumMethod() > 0 { + return e("Unsupported type '%s'.", rv.Kind()) + } + return md.unifyAnything(data, rv) + case reflect.Float32: + fallthrough + case reflect.Float64: + return md.unifyFloat64(data, rv) + } + return e("Unsupported type '%s'.", rv.Kind()) +} + +func (md *MetaData) unifyStruct(mapping interface{}, rv reflect.Value) error { + tmap, ok := mapping.(map[string]interface{}) + if !ok { + if mapping == nil { + return nil + } + return mismatch(rv, "map", mapping) + } + + for key, datum := range tmap { + var f *field + fields := cachedTypeFields(rv.Type()) + for i := range fields { + ff := &fields[i] + if ff.name == key { + f = ff + break + } + if f == nil && strings.EqualFold(ff.name, key) { + f = ff + } + } + if f != nil { + subv := rv + for _, i := range f.index { + subv = indirect(subv.Field(i)) + } + if isUnifiable(subv) { + md.decoded[md.context.add(key).String()] = true + md.context = append(md.context, key) + if err := md.unify(datum, subv); err != nil { + return e("Type mismatch for '%s.%s': %s", + rv.Type().String(), f.name, err) + } + md.context = md.context[0 : len(md.context)-1] + } else if f.name != "" { + // Bad user! No soup for you! + return e("Field '%s.%s' is unexported, and therefore cannot "+ + "be loaded with reflection.", rv.Type().String(), f.name) + } + } + } + return nil +} + +func (md *MetaData) unifyMap(mapping interface{}, rv reflect.Value) error { + tmap, ok := mapping.(map[string]interface{}) + if !ok { + if tmap == nil { + return nil + } + return badtype("map", mapping) + } + if rv.IsNil() { + rv.Set(reflect.MakeMap(rv.Type())) + } + for k, v := range tmap { + md.decoded[md.context.add(k).String()] = true + md.context = append(md.context, k) + + rvkey := indirect(reflect.New(rv.Type().Key())) + rvval := reflect.Indirect(reflect.New(rv.Type().Elem())) + if err := md.unify(v, rvval); err != nil { + return err + } + md.context = md.context[0 : len(md.context)-1] + + rvkey.SetString(k) + rv.SetMapIndex(rvkey, rvval) + } + return nil +} + +func (md *MetaData) unifyArray(data interface{}, rv reflect.Value) error { + datav := reflect.ValueOf(data) + if datav.Kind() != reflect.Slice { + if !datav.IsValid() { + return nil + } + return badtype("slice", data) + } + sliceLen := datav.Len() + if sliceLen != rv.Len() { + return e("expected array length %d; got TOML array of length %d", + rv.Len(), sliceLen) + } + return md.unifySliceArray(datav, rv) +} + +func (md *MetaData) unifySlice(data interface{}, rv reflect.Value) error { + datav := reflect.ValueOf(data) + if datav.Kind() != reflect.Slice { + if !datav.IsValid() { + return nil + } + return badtype("slice", data) + } + n := datav.Len() + if rv.IsNil() || rv.Cap() < n { + rv.Set(reflect.MakeSlice(rv.Type(), n, n)) + } + rv.SetLen(n) + return md.unifySliceArray(datav, rv) +} + +func (md *MetaData) unifySliceArray(data, rv reflect.Value) error { + sliceLen := data.Len() + for i := 0; i < sliceLen; i++ { + v := data.Index(i).Interface() + sliceval := indirect(rv.Index(i)) + if err := md.unify(v, sliceval); err != nil { + return err + } + } + return nil +} + +func (md *MetaData) unifyDatetime(data interface{}, rv reflect.Value) error { + if _, ok := data.(time.Time); ok { + rv.Set(reflect.ValueOf(data)) + return nil + } + return badtype("time.Time", data) +} + +func (md *MetaData) unifyString(data interface{}, rv reflect.Value) error { + if s, ok := data.(string); ok { + rv.SetString(s) + return nil + } + return badtype("string", data) +} + +func (md *MetaData) unifyFloat64(data interface{}, rv reflect.Value) error { + if num, ok := data.(float64); ok { + switch rv.Kind() { + case reflect.Float32: + fallthrough + case reflect.Float64: + rv.SetFloat(num) + default: + panic("bug") + } + return nil + } + return badtype("float", data) +} + +func (md *MetaData) unifyInt(data interface{}, rv reflect.Value) error { + if num, ok := data.(int64); ok { + if rv.Kind() >= reflect.Int && rv.Kind() <= reflect.Int64 { + switch rv.Kind() { + case reflect.Int, reflect.Int64: + // No bounds checking necessary. + case reflect.Int8: + if num < math.MinInt8 || num > math.MaxInt8 { + return e("Value '%d' is out of range for int8.", num) + } + case reflect.Int16: + if num < math.MinInt16 || num > math.MaxInt16 { + return e("Value '%d' is out of range for int16.", num) + } + case reflect.Int32: + if num < math.MinInt32 || num > math.MaxInt32 { + return e("Value '%d' is out of range for int32.", num) + } + } + rv.SetInt(num) + } else if rv.Kind() >= reflect.Uint && rv.Kind() <= reflect.Uint64 { + unum := uint64(num) + switch rv.Kind() { + case reflect.Uint, reflect.Uint64: + // No bounds checking necessary. + case reflect.Uint8: + if num < 0 || unum > math.MaxUint8 { + return e("Value '%d' is out of range for uint8.", num) + } + case reflect.Uint16: + if num < 0 || unum > math.MaxUint16 { + return e("Value '%d' is out of range for uint16.", num) + } + case reflect.Uint32: + if num < 0 || unum > math.MaxUint32 { + return e("Value '%d' is out of range for uint32.", num) + } + } + rv.SetUint(unum) + } else { + panic("unreachable") + } + return nil + } + return badtype("integer", data) +} + +func (md *MetaData) unifyBool(data interface{}, rv reflect.Value) error { + if b, ok := data.(bool); ok { + rv.SetBool(b) + return nil + } + return badtype("boolean", data) +} + +func (md *MetaData) unifyAnything(data interface{}, rv reflect.Value) error { + rv.Set(reflect.ValueOf(data)) + return nil +} + +func (md *MetaData) unifyText(data interface{}, v TextUnmarshaler) error { + var s string + switch sdata := data.(type) { + case TextMarshaler: + text, err := sdata.MarshalText() + if err != nil { + return err + } + s = string(text) + case fmt.Stringer: + s = sdata.String() + case string: + s = sdata + case bool: + s = fmt.Sprintf("%v", sdata) + case int64: + s = fmt.Sprintf("%d", sdata) + case float64: + s = fmt.Sprintf("%f", sdata) + default: + return badtype("primitive (string-like)", data) + } + if err := v.UnmarshalText([]byte(s)); err != nil { + return err + } + return nil +} + +// rvalue returns a reflect.Value of `v`. All pointers are resolved. +func rvalue(v interface{}) reflect.Value { + return indirect(reflect.ValueOf(v)) +} + +// indirect returns the value pointed to by a pointer. +// Pointers are followed until the value is not a pointer. +// New values are allocated for each nil pointer. +// +// An exception to this rule is if the value satisfies an interface of +// interest to us (like encoding.TextUnmarshaler). +func indirect(v reflect.Value) reflect.Value { + if v.Kind() != reflect.Ptr { + if v.CanAddr() { + pv := v.Addr() + if _, ok := pv.Interface().(TextUnmarshaler); ok { + return pv + } + } + return v + } + if v.IsNil() { + v.Set(reflect.New(v.Type().Elem())) + } + return indirect(reflect.Indirect(v)) +} + +func isUnifiable(rv reflect.Value) bool { + if rv.CanSet() { + return true + } + if _, ok := rv.Interface().(TextUnmarshaler); ok { + return true + } + return false +} + +func badtype(expected string, data interface{}) error { + return e("Expected %s but found '%T'.", expected, data) +} + +func mismatch(user reflect.Value, expected string, data interface{}) error { + return e("Type mismatch for %s. Expected %s but found '%T'.", + user.Type().String(), expected, data) +} diff --git a/vendor/github.com/BurntSushi/toml/decode_meta.go b/vendor/github.com/BurntSushi/toml/decode_meta.go new file mode 100644 index 000000000..ef6f545fa --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/decode_meta.go @@ -0,0 +1,122 @@ +package toml + +import "strings" + +// MetaData allows access to meta information about TOML data that may not +// be inferrable via reflection. In particular, whether a key has been defined +// and the TOML type of a key. +type MetaData struct { + mapping map[string]interface{} + types map[string]tomlType + keys []Key + decoded map[string]bool + context Key // Used only during decoding. +} + +// IsDefined returns true if the key given exists in the TOML data. The key +// should be specified hierarchially. e.g., +// +// // access the TOML key 'a.b.c' +// IsDefined("a", "b", "c") +// +// IsDefined will return false if an empty key given. Keys are case sensitive. +func (md *MetaData) IsDefined(key ...string) bool { + if len(key) == 0 { + return false + } + + var hash map[string]interface{} + var ok bool + var hashOrVal interface{} = md.mapping + for _, k := range key { + if hash, ok = hashOrVal.(map[string]interface{}); !ok { + return false + } + if hashOrVal, ok = hash[k]; !ok { + return false + } + } + return true +} + +// Type returns a string representation of the type of the key specified. +// +// Type will return the empty string if given an empty key or a key that +// does not exist. Keys are case sensitive. +func (md *MetaData) Type(key ...string) string { + fullkey := strings.Join(key, ".") + if typ, ok := md.types[fullkey]; ok { + return typ.typeString() + } + return "" +} + +// Key is the type of any TOML key, including key groups. Use (MetaData).Keys +// to get values of this type. +type Key []string + +func (k Key) String() string { + return strings.Join(k, ".") +} + +func (k Key) maybeQuotedAll() string { + var ss []string + for i := range k { + ss = append(ss, k.maybeQuoted(i)) + } + return strings.Join(ss, ".") +} + +func (k Key) maybeQuoted(i int) string { + quote := false + for _, c := range k[i] { + if !isBareKeyChar(c) { + quote = true + break + } + } + if quote { + return "\"" + strings.Replace(k[i], "\"", "\\\"", -1) + "\"" + } else { + return k[i] + } +} + +func (k Key) add(piece string) Key { + newKey := make(Key, len(k)+1) + copy(newKey, k) + newKey[len(k)] = piece + return newKey +} + +// Keys returns a slice of every key in the TOML data, including key groups. +// Each key is itself a slice, where the first element is the top of the +// hierarchy and the last is the most specific. +// +// The list will have the same order as the keys appeared in the TOML data. +// +// All keys returned are non-empty. +func (md *MetaData) Keys() []Key { + return md.keys +} + +// Undecoded returns all keys that have not been decoded in the order in which +// they appear in the original TOML document. +// +// This includes keys that haven't been decoded because of a Primitive value. +// Once the Primitive value is decoded, the keys will be considered decoded. +// +// Also note that decoding into an empty interface will result in no decoding, +// and so no keys will be considered decoded. +// +// In this sense, the Undecoded keys correspond to keys in the TOML document +// that do not have a concrete type in your representation. +func (md *MetaData) Undecoded() []Key { + undecoded := make([]Key, 0, len(md.keys)) + for _, key := range md.keys { + if !md.decoded[key.String()] { + undecoded = append(undecoded, key) + } + } + return undecoded +} diff --git a/vendor/github.com/BurntSushi/toml/doc.go b/vendor/github.com/BurntSushi/toml/doc.go new file mode 100644 index 000000000..fe2680004 --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/doc.go @@ -0,0 +1,27 @@ +/* +Package toml provides facilities for decoding and encoding TOML configuration +files via reflection. There is also support for delaying decoding with +the Primitive type, and querying the set of keys in a TOML document with the +MetaData type. + +The specification implemented: https://github.com/mojombo/toml + +The sub-command github.com/BurntSushi/toml/cmd/tomlv can be used to verify +whether a file is a valid TOML document. It can also be used to print the +type of each key in a TOML document. + +Testing + +There are two important types of tests used for this package. The first is +contained inside '*_test.go' files and uses the standard Go unit testing +framework. These tests are primarily devoted to holistically testing the +decoder and encoder. + +The second type of testing is used to verify the implementation's adherence +to the TOML specification. These tests have been factored into their own +project: https://github.com/BurntSushi/toml-test + +The reason the tests are in a separate project is so that they can be used by +any implementation of TOML. Namely, it is language agnostic. +*/ +package toml diff --git a/vendor/github.com/BurntSushi/toml/encode.go b/vendor/github.com/BurntSushi/toml/encode.go new file mode 100644 index 000000000..4e4c97aed --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/encode.go @@ -0,0 +1,549 @@ +package toml + +import ( + "bufio" + "errors" + "fmt" + "io" + "reflect" + "sort" + "strconv" + "strings" + "time" +) + +type tomlEncodeError struct{ error } + +var ( + errArrayMixedElementTypes = errors.New( + "can't encode array with mixed element types") + errArrayNilElement = errors.New( + "can't encode array with nil element") + errNonString = errors.New( + "can't encode a map with non-string key type") + errAnonNonStruct = errors.New( + "can't encode an anonymous field that is not a struct") + errArrayNoTable = errors.New( + "TOML array element can't contain a table") + errNoKey = errors.New( + "top-level values must be a Go map or struct") + errAnything = errors.New("") // used in testing +) + +var quotedReplacer = strings.NewReplacer( + "\t", "\\t", + "\n", "\\n", + "\r", "\\r", + "\"", "\\\"", + "\\", "\\\\", +) + +// Encoder controls the encoding of Go values to a TOML document to some +// io.Writer. +// +// The indentation level can be controlled with the Indent field. +type Encoder struct { + // A single indentation level. By default it is two spaces. + Indent string + + // hasWritten is whether we have written any output to w yet. + hasWritten bool + w *bufio.Writer +} + +// NewEncoder returns a TOML encoder that encodes Go values to the io.Writer +// given. By default, a single indentation level is 2 spaces. +func NewEncoder(w io.Writer) *Encoder { + return &Encoder{ + w: bufio.NewWriter(w), + Indent: " ", + } +} + +// Encode writes a TOML representation of the Go value to the underlying +// io.Writer. If the value given cannot be encoded to a valid TOML document, +// then an error is returned. +// +// The mapping between Go values and TOML values should be precisely the same +// as for the Decode* functions. Similarly, the TextMarshaler interface is +// supported by encoding the resulting bytes as strings. (If you want to write +// arbitrary binary data then you will need to use something like base64 since +// TOML does not have any binary types.) +// +// When encoding TOML hashes (i.e., Go maps or structs), keys without any +// sub-hashes are encoded first. +// +// If a Go map is encoded, then its keys are sorted alphabetically for +// deterministic output. More control over this behavior may be provided if +// there is demand for it. +// +// Encoding Go values without a corresponding TOML representation---like map +// types with non-string keys---will cause an error to be returned. Similarly +// for mixed arrays/slices, arrays/slices with nil elements, embedded +// non-struct types and nested slices containing maps or structs. +// (e.g., [][]map[string]string is not allowed but []map[string]string is OK +// and so is []map[string][]string.) +func (enc *Encoder) Encode(v interface{}) error { + rv := eindirect(reflect.ValueOf(v)) + if err := enc.safeEncode(Key([]string{}), rv); err != nil { + return err + } + return enc.w.Flush() +} + +func (enc *Encoder) safeEncode(key Key, rv reflect.Value) (err error) { + defer func() { + if r := recover(); r != nil { + if terr, ok := r.(tomlEncodeError); ok { + err = terr.error + return + } + panic(r) + } + }() + enc.encode(key, rv) + return nil +} + +func (enc *Encoder) encode(key Key, rv reflect.Value) { + // Special case. Time needs to be in ISO8601 format. + // Special case. If we can marshal the type to text, then we used that. + // Basically, this prevents the encoder for handling these types as + // generic structs (or whatever the underlying type of a TextMarshaler is). + switch rv.Interface().(type) { + case time.Time, TextMarshaler: + enc.keyEqElement(key, rv) + return + } + + k := rv.Kind() + switch k { + case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, + reflect.Int64, + reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, + reflect.Uint64, + reflect.Float32, reflect.Float64, reflect.String, reflect.Bool: + enc.keyEqElement(key, rv) + case reflect.Array, reflect.Slice: + if typeEqual(tomlArrayHash, tomlTypeOfGo(rv)) { + enc.eArrayOfTables(key, rv) + } else { + enc.keyEqElement(key, rv) + } + case reflect.Interface: + if rv.IsNil() { + return + } + enc.encode(key, rv.Elem()) + case reflect.Map: + if rv.IsNil() { + return + } + enc.eTable(key, rv) + case reflect.Ptr: + if rv.IsNil() { + return + } + enc.encode(key, rv.Elem()) + case reflect.Struct: + enc.eTable(key, rv) + default: + panic(e("Unsupported type for key '%s': %s", key, k)) + } +} + +// eElement encodes any value that can be an array element (primitives and +// arrays). +func (enc *Encoder) eElement(rv reflect.Value) { + switch v := rv.Interface().(type) { + case time.Time: + // Special case time.Time as a primitive. Has to come before + // TextMarshaler below because time.Time implements + // encoding.TextMarshaler, but we need to always use UTC. + enc.wf(v.In(time.FixedZone("UTC", 0)).Format("2006-01-02T15:04:05Z")) + return + case TextMarshaler: + // Special case. Use text marshaler if it's available for this value. + if s, err := v.MarshalText(); err != nil { + encPanic(err) + } else { + enc.writeQuoted(string(s)) + } + return + } + switch rv.Kind() { + case reflect.Bool: + enc.wf(strconv.FormatBool(rv.Bool())) + case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, + reflect.Int64: + enc.wf(strconv.FormatInt(rv.Int(), 10)) + case reflect.Uint, reflect.Uint8, reflect.Uint16, + reflect.Uint32, reflect.Uint64: + enc.wf(strconv.FormatUint(rv.Uint(), 10)) + case reflect.Float32: + enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 32))) + case reflect.Float64: + enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 64))) + case reflect.Array, reflect.Slice: + enc.eArrayOrSliceElement(rv) + case reflect.Interface: + enc.eElement(rv.Elem()) + case reflect.String: + enc.writeQuoted(rv.String()) + default: + panic(e("Unexpected primitive type: %s", rv.Kind())) + } +} + +// By the TOML spec, all floats must have a decimal with at least one +// number on either side. +func floatAddDecimal(fstr string) string { + if !strings.Contains(fstr, ".") { + return fstr + ".0" + } + return fstr +} + +func (enc *Encoder) writeQuoted(s string) { + enc.wf("\"%s\"", quotedReplacer.Replace(s)) +} + +func (enc *Encoder) eArrayOrSliceElement(rv reflect.Value) { + length := rv.Len() + enc.wf("[") + for i := 0; i < length; i++ { + elem := rv.Index(i) + enc.eElement(elem) + if i != length-1 { + enc.wf(", ") + } + } + enc.wf("]") +} + +func (enc *Encoder) eArrayOfTables(key Key, rv reflect.Value) { + if len(key) == 0 { + encPanic(errNoKey) + } + for i := 0; i < rv.Len(); i++ { + trv := rv.Index(i) + if isNil(trv) { + continue + } + panicIfInvalidKey(key) + enc.newline() + enc.wf("%s[[%s]]", enc.indentStr(key), key.maybeQuotedAll()) + enc.newline() + enc.eMapOrStruct(key, trv) + } +} + +func (enc *Encoder) eTable(key Key, rv reflect.Value) { + panicIfInvalidKey(key) + if len(key) == 1 { + // Output an extra new line between top-level tables. + // (The newline isn't written if nothing else has been written though.) + enc.newline() + } + if len(key) > 0 { + enc.wf("%s[%s]", enc.indentStr(key), key.maybeQuotedAll()) + enc.newline() + } + enc.eMapOrStruct(key, rv) +} + +func (enc *Encoder) eMapOrStruct(key Key, rv reflect.Value) { + switch rv := eindirect(rv); rv.Kind() { + case reflect.Map: + enc.eMap(key, rv) + case reflect.Struct: + enc.eStruct(key, rv) + default: + panic("eTable: unhandled reflect.Value Kind: " + rv.Kind().String()) + } +} + +func (enc *Encoder) eMap(key Key, rv reflect.Value) { + rt := rv.Type() + if rt.Key().Kind() != reflect.String { + encPanic(errNonString) + } + + // Sort keys so that we have deterministic output. And write keys directly + // underneath this key first, before writing sub-structs or sub-maps. + var mapKeysDirect, mapKeysSub []string + for _, mapKey := range rv.MapKeys() { + k := mapKey.String() + if typeIsHash(tomlTypeOfGo(rv.MapIndex(mapKey))) { + mapKeysSub = append(mapKeysSub, k) + } else { + mapKeysDirect = append(mapKeysDirect, k) + } + } + + var writeMapKeys = func(mapKeys []string) { + sort.Strings(mapKeys) + for _, mapKey := range mapKeys { + mrv := rv.MapIndex(reflect.ValueOf(mapKey)) + if isNil(mrv) { + // Don't write anything for nil fields. + continue + } + enc.encode(key.add(mapKey), mrv) + } + } + writeMapKeys(mapKeysDirect) + writeMapKeys(mapKeysSub) +} + +func (enc *Encoder) eStruct(key Key, rv reflect.Value) { + // Write keys for fields directly under this key first, because if we write + // a field that creates a new table, then all keys under it will be in that + // table (not the one we're writing here). + rt := rv.Type() + var fieldsDirect, fieldsSub [][]int + var addFields func(rt reflect.Type, rv reflect.Value, start []int) + addFields = func(rt reflect.Type, rv reflect.Value, start []int) { + for i := 0; i < rt.NumField(); i++ { + f := rt.Field(i) + // skip unexported fields + if f.PkgPath != "" && !f.Anonymous { + continue + } + frv := rv.Field(i) + if f.Anonymous { + t := f.Type + switch t.Kind() { + case reflect.Struct: + addFields(t, frv, f.Index) + continue + case reflect.Ptr: + if t.Elem().Kind() == reflect.Struct { + if !frv.IsNil() { + addFields(t.Elem(), frv.Elem(), f.Index) + } + continue + } + // Fall through to the normal field encoding logic below + // for non-struct anonymous fields. + } + } + + if typeIsHash(tomlTypeOfGo(frv)) { + fieldsSub = append(fieldsSub, append(start, f.Index...)) + } else { + fieldsDirect = append(fieldsDirect, append(start, f.Index...)) + } + } + } + addFields(rt, rv, nil) + + var writeFields = func(fields [][]int) { + for _, fieldIndex := range fields { + sft := rt.FieldByIndex(fieldIndex) + sf := rv.FieldByIndex(fieldIndex) + if isNil(sf) { + // Don't write anything for nil fields. + continue + } + + tag := sft.Tag.Get("toml") + if tag == "-" { + continue + } + keyName, opts := getOptions(tag) + if keyName == "" { + keyName = sft.Name + } + if _, ok := opts["omitempty"]; ok && isEmpty(sf) { + continue + } else if _, ok := opts["omitzero"]; ok && isZero(sf) { + continue + } + + enc.encode(key.add(keyName), sf) + } + } + writeFields(fieldsDirect) + writeFields(fieldsSub) +} + +// tomlTypeName returns the TOML type name of the Go value's type. It is +// used to determine whether the types of array elements are mixed (which is +// forbidden). If the Go value is nil, then it is illegal for it to be an array +// element, and valueIsNil is returned as true. + +// Returns the TOML type of a Go value. The type may be `nil`, which means +// no concrete TOML type could be found. +func tomlTypeOfGo(rv reflect.Value) tomlType { + if isNil(rv) || !rv.IsValid() { + return nil + } + switch rv.Kind() { + case reflect.Bool: + return tomlBool + case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, + reflect.Int64, + reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, + reflect.Uint64: + return tomlInteger + case reflect.Float32, reflect.Float64: + return tomlFloat + case reflect.Array, reflect.Slice: + if typeEqual(tomlHash, tomlArrayType(rv)) { + return tomlArrayHash + } else { + return tomlArray + } + case reflect.Ptr, reflect.Interface: + return tomlTypeOfGo(rv.Elem()) + case reflect.String: + return tomlString + case reflect.Map: + return tomlHash + case reflect.Struct: + switch rv.Interface().(type) { + case time.Time: + return tomlDatetime + case TextMarshaler: + return tomlString + default: + return tomlHash + } + default: + panic("unexpected reflect.Kind: " + rv.Kind().String()) + } +} + +// tomlArrayType returns the element type of a TOML array. The type returned +// may be nil if it cannot be determined (e.g., a nil slice or a zero length +// slize). This function may also panic if it finds a type that cannot be +// expressed in TOML (such as nil elements, heterogeneous arrays or directly +// nested arrays of tables). +func tomlArrayType(rv reflect.Value) tomlType { + if isNil(rv) || !rv.IsValid() || rv.Len() == 0 { + return nil + } + firstType := tomlTypeOfGo(rv.Index(0)) + if firstType == nil { + encPanic(errArrayNilElement) + } + + rvlen := rv.Len() + for i := 1; i < rvlen; i++ { + elem := rv.Index(i) + switch elemType := tomlTypeOfGo(elem); { + case elemType == nil: + encPanic(errArrayNilElement) + case !typeEqual(firstType, elemType): + encPanic(errArrayMixedElementTypes) + } + } + // If we have a nested array, then we must make sure that the nested + // array contains ONLY primitives. + // This checks arbitrarily nested arrays. + if typeEqual(firstType, tomlArray) || typeEqual(firstType, tomlArrayHash) { + nest := tomlArrayType(eindirect(rv.Index(0))) + if typeEqual(nest, tomlHash) || typeEqual(nest, tomlArrayHash) { + encPanic(errArrayNoTable) + } + } + return firstType +} + +func getOptions(keyName string) (string, map[string]struct{}) { + opts := make(map[string]struct{}) + ss := strings.Split(keyName, ",") + name := ss[0] + if len(ss) > 1 { + for _, opt := range ss { + opts[opt] = struct{}{} + } + } + + return name, opts +} + +func isZero(rv reflect.Value) bool { + switch rv.Kind() { + case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: + return rv.Int() == 0 + case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: + return rv.Uint() == 0 + case reflect.Float32, reflect.Float64: + return rv.Float() == 0.0 + } + return false +} + +func isEmpty(rv reflect.Value) bool { + switch rv.Kind() { + case reflect.Array, reflect.Slice, reflect.Map, reflect.String: + return rv.Len() == 0 + case reflect.Bool: + return !rv.Bool() + } + return false +} + +func (enc *Encoder) newline() { + if enc.hasWritten { + enc.wf("\n") + } +} + +func (enc *Encoder) keyEqElement(key Key, val reflect.Value) { + if len(key) == 0 { + encPanic(errNoKey) + } + panicIfInvalidKey(key) + enc.wf("%s%s = ", enc.indentStr(key), key.maybeQuoted(len(key)-1)) + enc.eElement(val) + enc.newline() +} + +func (enc *Encoder) wf(format string, v ...interface{}) { + if _, err := fmt.Fprintf(enc.w, format, v...); err != nil { + encPanic(err) + } + enc.hasWritten = true +} + +func (enc *Encoder) indentStr(key Key) string { + return strings.Repeat(enc.Indent, len(key)-1) +} + +func encPanic(err error) { + panic(tomlEncodeError{err}) +} + +func eindirect(v reflect.Value) reflect.Value { + switch v.Kind() { + case reflect.Ptr, reflect.Interface: + return eindirect(v.Elem()) + default: + return v + } +} + +func isNil(rv reflect.Value) bool { + switch rv.Kind() { + case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: + return rv.IsNil() + default: + return false + } +} + +func panicIfInvalidKey(key Key) { + for _, k := range key { + if len(k) == 0 { + encPanic(e("Key '%s' is not a valid table name. Key names "+ + "cannot be empty.", key.maybeQuotedAll())) + } + } +} + +func isValidKeyName(s string) bool { + return len(s) != 0 +} diff --git a/vendor/github.com/BurntSushi/toml/encoding_types.go b/vendor/github.com/BurntSushi/toml/encoding_types.go new file mode 100644 index 000000000..d36e1dd60 --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/encoding_types.go @@ -0,0 +1,19 @@ +// +build go1.2 + +package toml + +// In order to support Go 1.1, we define our own TextMarshaler and +// TextUnmarshaler types. For Go 1.2+, we just alias them with the +// standard library interfaces. + +import ( + "encoding" +) + +// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here +// so that Go 1.1 can be supported. +type TextMarshaler encoding.TextMarshaler + +// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined +// here so that Go 1.1 can be supported. +type TextUnmarshaler encoding.TextUnmarshaler diff --git a/vendor/github.com/BurntSushi/toml/encoding_types_1.1.go b/vendor/github.com/BurntSushi/toml/encoding_types_1.1.go new file mode 100644 index 000000000..e8d503d04 --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/encoding_types_1.1.go @@ -0,0 +1,18 @@ +// +build !go1.2 + +package toml + +// These interfaces were introduced in Go 1.2, so we add them manually when +// compiling for Go 1.1. + +// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here +// so that Go 1.1 can be supported. +type TextMarshaler interface { + MarshalText() (text []byte, err error) +} + +// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined +// here so that Go 1.1 can be supported. +type TextUnmarshaler interface { + UnmarshalText(text []byte) error +} diff --git a/vendor/github.com/BurntSushi/toml/lex.go b/vendor/github.com/BurntSushi/toml/lex.go new file mode 100644 index 000000000..9b20b3a81 --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/lex.go @@ -0,0 +1,871 @@ +package toml + +import ( + "fmt" + "strings" + "unicode/utf8" +) + +type itemType int + +const ( + itemError itemType = iota + itemNIL // used in the parser to indicate no type + itemEOF + itemText + itemString + itemRawString + itemMultilineString + itemRawMultilineString + itemBool + itemInteger + itemFloat + itemDatetime + itemArray // the start of an array + itemArrayEnd + itemTableStart + itemTableEnd + itemArrayTableStart + itemArrayTableEnd + itemKeyStart + itemCommentStart +) + +const ( + eof = 0 + tableStart = '[' + tableEnd = ']' + arrayTableStart = '[' + arrayTableEnd = ']' + tableSep = '.' + keySep = '=' + arrayStart = '[' + arrayEnd = ']' + arrayValTerm = ',' + commentStart = '#' + stringStart = '"' + stringEnd = '"' + rawStringStart = '\'' + rawStringEnd = '\'' +) + +type stateFn func(lx *lexer) stateFn + +type lexer struct { + input string + start int + pos int + width int + line int + state stateFn + items chan item + + // A stack of state functions used to maintain context. + // The idea is to reuse parts of the state machine in various places. + // For example, values can appear at the top level or within arbitrarily + // nested arrays. The last state on the stack is used after a value has + // been lexed. Similarly for comments. + stack []stateFn +} + +type item struct { + typ itemType + val string + line int +} + +func (lx *lexer) nextItem() item { + for { + select { + case item := <-lx.items: + return item + default: + lx.state = lx.state(lx) + } + } +} + +func lex(input string) *lexer { + lx := &lexer{ + input: input + "\n", + state: lexTop, + line: 1, + items: make(chan item, 10), + stack: make([]stateFn, 0, 10), + } + return lx +} + +func (lx *lexer) push(state stateFn) { + lx.stack = append(lx.stack, state) +} + +func (lx *lexer) pop() stateFn { + if len(lx.stack) == 0 { + return lx.errorf("BUG in lexer: no states to pop.") + } + last := lx.stack[len(lx.stack)-1] + lx.stack = lx.stack[0 : len(lx.stack)-1] + return last +} + +func (lx *lexer) current() string { + return lx.input[lx.start:lx.pos] +} + +func (lx *lexer) emit(typ itemType) { + lx.items <- item{typ, lx.current(), lx.line} + lx.start = lx.pos +} + +func (lx *lexer) emitTrim(typ itemType) { + lx.items <- item{typ, strings.TrimSpace(lx.current()), lx.line} + lx.start = lx.pos +} + +func (lx *lexer) next() (r rune) { + if lx.pos >= len(lx.input) { + lx.width = 0 + return eof + } + + if lx.input[lx.pos] == '\n' { + lx.line++ + } + r, lx.width = utf8.DecodeRuneInString(lx.input[lx.pos:]) + lx.pos += lx.width + return r +} + +// ignore skips over the pending input before this point. +func (lx *lexer) ignore() { + lx.start = lx.pos +} + +// backup steps back one rune. Can be called only once per call of next. +func (lx *lexer) backup() { + lx.pos -= lx.width + if lx.pos < len(lx.input) && lx.input[lx.pos] == '\n' { + lx.line-- + } +} + +// accept consumes the next rune if it's equal to `valid`. +func (lx *lexer) accept(valid rune) bool { + if lx.next() == valid { + return true + } + lx.backup() + return false +} + +// peek returns but does not consume the next rune in the input. +func (lx *lexer) peek() rune { + r := lx.next() + lx.backup() + return r +} + +// errorf stops all lexing by emitting an error and returning `nil`. +// Note that any value that is a character is escaped if it's a special +// character (new lines, tabs, etc.). +func (lx *lexer) errorf(format string, values ...interface{}) stateFn { + lx.items <- item{ + itemError, + fmt.Sprintf(format, values...), + lx.line, + } + return nil +} + +// lexTop consumes elements at the top level of TOML data. +func lexTop(lx *lexer) stateFn { + r := lx.next() + if isWhitespace(r) || isNL(r) { + return lexSkip(lx, lexTop) + } + + switch r { + case commentStart: + lx.push(lexTop) + return lexCommentStart + case tableStart: + return lexTableStart + case eof: + if lx.pos > lx.start { + return lx.errorf("Unexpected EOF.") + } + lx.emit(itemEOF) + return nil + } + + // At this point, the only valid item can be a key, so we back up + // and let the key lexer do the rest. + lx.backup() + lx.push(lexTopEnd) + return lexKeyStart +} + +// lexTopEnd is entered whenever a top-level item has been consumed. (A value +// or a table.) It must see only whitespace, and will turn back to lexTop +// upon a new line. If it sees EOF, it will quit the lexer successfully. +func lexTopEnd(lx *lexer) stateFn { + r := lx.next() + switch { + case r == commentStart: + // a comment will read to a new line for us. + lx.push(lexTop) + return lexCommentStart + case isWhitespace(r): + return lexTopEnd + case isNL(r): + lx.ignore() + return lexTop + case r == eof: + lx.ignore() + return lexTop + } + return lx.errorf("Expected a top-level item to end with a new line, "+ + "comment or EOF, but got %q instead.", r) +} + +// lexTable lexes the beginning of a table. Namely, it makes sure that +// it starts with a character other than '.' and ']'. +// It assumes that '[' has already been consumed. +// It also handles the case that this is an item in an array of tables. +// e.g., '[[name]]'. +func lexTableStart(lx *lexer) stateFn { + if lx.peek() == arrayTableStart { + lx.next() + lx.emit(itemArrayTableStart) + lx.push(lexArrayTableEnd) + } else { + lx.emit(itemTableStart) + lx.push(lexTableEnd) + } + return lexTableNameStart +} + +func lexTableEnd(lx *lexer) stateFn { + lx.emit(itemTableEnd) + return lexTopEnd +} + +func lexArrayTableEnd(lx *lexer) stateFn { + if r := lx.next(); r != arrayTableEnd { + return lx.errorf("Expected end of table array name delimiter %q, "+ + "but got %q instead.", arrayTableEnd, r) + } + lx.emit(itemArrayTableEnd) + return lexTopEnd +} + +func lexTableNameStart(lx *lexer) stateFn { + switch r := lx.peek(); { + case r == tableEnd || r == eof: + return lx.errorf("Unexpected end of table name. (Table names cannot " + + "be empty.)") + case r == tableSep: + return lx.errorf("Unexpected table separator. (Table names cannot " + + "be empty.)") + case r == stringStart || r == rawStringStart: + lx.ignore() + lx.push(lexTableNameEnd) + return lexValue // reuse string lexing + default: + return lexBareTableName + } +} + +// lexTableName lexes the name of a table. It assumes that at least one +// valid character for the table has already been read. +func lexBareTableName(lx *lexer) stateFn { + switch r := lx.next(); { + case isBareKeyChar(r): + return lexBareTableName + case r == tableSep || r == tableEnd: + lx.backup() + lx.emitTrim(itemText) + return lexTableNameEnd + default: + return lx.errorf("Bare keys cannot contain %q.", r) + } +} + +// lexTableNameEnd reads the end of a piece of a table name, optionally +// consuming whitespace. +func lexTableNameEnd(lx *lexer) stateFn { + switch r := lx.next(); { + case isWhitespace(r): + return lexTableNameEnd + case r == tableSep: + lx.ignore() + return lexTableNameStart + case r == tableEnd: + return lx.pop() + default: + return lx.errorf("Expected '.' or ']' to end table name, but got %q "+ + "instead.", r) + } +} + +// lexKeyStart consumes a key name up until the first non-whitespace character. +// lexKeyStart will ignore whitespace. +func lexKeyStart(lx *lexer) stateFn { + r := lx.peek() + switch { + case r == keySep: + return lx.errorf("Unexpected key separator %q.", keySep) + case isWhitespace(r) || isNL(r): + lx.next() + return lexSkip(lx, lexKeyStart) + case r == stringStart || r == rawStringStart: + lx.ignore() + lx.emit(itemKeyStart) + lx.push(lexKeyEnd) + return lexValue // reuse string lexing + default: + lx.ignore() + lx.emit(itemKeyStart) + return lexBareKey + } +} + +// lexBareKey consumes the text of a bare key. Assumes that the first character +// (which is not whitespace) has not yet been consumed. +func lexBareKey(lx *lexer) stateFn { + switch r := lx.next(); { + case isBareKeyChar(r): + return lexBareKey + case isWhitespace(r): + lx.emitTrim(itemText) + return lexKeyEnd + case r == keySep: + lx.backup() + lx.emitTrim(itemText) + return lexKeyEnd + default: + return lx.errorf("Bare keys cannot contain %q.", r) + } +} + +// lexKeyEnd consumes the end of a key and trims whitespace (up to the key +// separator). +func lexKeyEnd(lx *lexer) stateFn { + switch r := lx.next(); { + case r == keySep: + return lexSkip(lx, lexValue) + case isWhitespace(r): + return lexSkip(lx, lexKeyEnd) + default: + return lx.errorf("Expected key separator %q, but got %q instead.", + keySep, r) + } +} + +// lexValue starts the consumption of a value anywhere a value is expected. +// lexValue will ignore whitespace. +// After a value is lexed, the last state on the next is popped and returned. +func lexValue(lx *lexer) stateFn { + // We allow whitespace to precede a value, but NOT new lines. + // In array syntax, the array states are responsible for ignoring new + // lines. + r := lx.next() + if isWhitespace(r) { + return lexSkip(lx, lexValue) + } + + switch { + case r == arrayStart: + lx.ignore() + lx.emit(itemArray) + return lexArrayValue + case r == stringStart: + if lx.accept(stringStart) { + if lx.accept(stringStart) { + lx.ignore() // Ignore """ + return lexMultilineString + } + lx.backup() + } + lx.ignore() // ignore the '"' + return lexString + case r == rawStringStart: + if lx.accept(rawStringStart) { + if lx.accept(rawStringStart) { + lx.ignore() // Ignore """ + return lexMultilineRawString + } + lx.backup() + } + lx.ignore() // ignore the "'" + return lexRawString + case r == 't': + return lexTrue + case r == 'f': + return lexFalse + case r == '-': + return lexNumberStart + case isDigit(r): + lx.backup() // avoid an extra state and use the same as above + return lexNumberOrDateStart + case r == '.': // special error case, be kind to users + return lx.errorf("Floats must start with a digit, not '.'.") + } + return lx.errorf("Expected value but found %q instead.", r) +} + +// lexArrayValue consumes one value in an array. It assumes that '[' or ',' +// have already been consumed. All whitespace and new lines are ignored. +func lexArrayValue(lx *lexer) stateFn { + r := lx.next() + switch { + case isWhitespace(r) || isNL(r): + return lexSkip(lx, lexArrayValue) + case r == commentStart: + lx.push(lexArrayValue) + return lexCommentStart + case r == arrayValTerm: + return lx.errorf("Unexpected array value terminator %q.", + arrayValTerm) + case r == arrayEnd: + return lexArrayEnd + } + + lx.backup() + lx.push(lexArrayValueEnd) + return lexValue +} + +// lexArrayValueEnd consumes the cruft between values of an array. Namely, +// it ignores whitespace and expects either a ',' or a ']'. +func lexArrayValueEnd(lx *lexer) stateFn { + r := lx.next() + switch { + case isWhitespace(r) || isNL(r): + return lexSkip(lx, lexArrayValueEnd) + case r == commentStart: + lx.push(lexArrayValueEnd) + return lexCommentStart + case r == arrayValTerm: + lx.ignore() + return lexArrayValue // move on to the next value + case r == arrayEnd: + return lexArrayEnd + } + return lx.errorf("Expected an array value terminator %q or an array "+ + "terminator %q, but got %q instead.", arrayValTerm, arrayEnd, r) +} + +// lexArrayEnd finishes the lexing of an array. It assumes that a ']' has +// just been consumed. +func lexArrayEnd(lx *lexer) stateFn { + lx.ignore() + lx.emit(itemArrayEnd) + return lx.pop() +} + +// lexString consumes the inner contents of a string. It assumes that the +// beginning '"' has already been consumed and ignored. +func lexString(lx *lexer) stateFn { + r := lx.next() + switch { + case isNL(r): + return lx.errorf("Strings cannot contain new lines.") + case r == '\\': + lx.push(lexString) + return lexStringEscape + case r == stringEnd: + lx.backup() + lx.emit(itemString) + lx.next() + lx.ignore() + return lx.pop() + } + return lexString +} + +// lexMultilineString consumes the inner contents of a string. It assumes that +// the beginning '"""' has already been consumed and ignored. +func lexMultilineString(lx *lexer) stateFn { + r := lx.next() + switch { + case r == '\\': + return lexMultilineStringEscape + case r == stringEnd: + if lx.accept(stringEnd) { + if lx.accept(stringEnd) { + lx.backup() + lx.backup() + lx.backup() + lx.emit(itemMultilineString) + lx.next() + lx.next() + lx.next() + lx.ignore() + return lx.pop() + } + lx.backup() + } + } + return lexMultilineString +} + +// lexRawString consumes a raw string. Nothing can be escaped in such a string. +// It assumes that the beginning "'" has already been consumed and ignored. +func lexRawString(lx *lexer) stateFn { + r := lx.next() + switch { + case isNL(r): + return lx.errorf("Strings cannot contain new lines.") + case r == rawStringEnd: + lx.backup() + lx.emit(itemRawString) + lx.next() + lx.ignore() + return lx.pop() + } + return lexRawString +} + +// lexMultilineRawString consumes a raw string. Nothing can be escaped in such +// a string. It assumes that the beginning "'" has already been consumed and +// ignored. +func lexMultilineRawString(lx *lexer) stateFn { + r := lx.next() + switch { + case r == rawStringEnd: + if lx.accept(rawStringEnd) { + if lx.accept(rawStringEnd) { + lx.backup() + lx.backup() + lx.backup() + lx.emit(itemRawMultilineString) + lx.next() + lx.next() + lx.next() + lx.ignore() + return lx.pop() + } + lx.backup() + } + } + return lexMultilineRawString +} + +// lexMultilineStringEscape consumes an escaped character. It assumes that the +// preceding '\\' has already been consumed. +func lexMultilineStringEscape(lx *lexer) stateFn { + // Handle the special case first: + if isNL(lx.next()) { + return lexMultilineString + } else { + lx.backup() + lx.push(lexMultilineString) + return lexStringEscape(lx) + } +} + +func lexStringEscape(lx *lexer) stateFn { + r := lx.next() + switch r { + case 'b': + fallthrough + case 't': + fallthrough + case 'n': + fallthrough + case 'f': + fallthrough + case 'r': + fallthrough + case '"': + fallthrough + case '\\': + return lx.pop() + case 'u': + return lexShortUnicodeEscape + case 'U': + return lexLongUnicodeEscape + } + return lx.errorf("Invalid escape character %q. Only the following "+ + "escape characters are allowed: "+ + "\\b, \\t, \\n, \\f, \\r, \\\", \\/, \\\\, "+ + "\\uXXXX and \\UXXXXXXXX.", r) +} + +func lexShortUnicodeEscape(lx *lexer) stateFn { + var r rune + for i := 0; i < 4; i++ { + r = lx.next() + if !isHexadecimal(r) { + return lx.errorf("Expected four hexadecimal digits after '\\u', "+ + "but got '%s' instead.", lx.current()) + } + } + return lx.pop() +} + +func lexLongUnicodeEscape(lx *lexer) stateFn { + var r rune + for i := 0; i < 8; i++ { + r = lx.next() + if !isHexadecimal(r) { + return lx.errorf("Expected eight hexadecimal digits after '\\U', "+ + "but got '%s' instead.", lx.current()) + } + } + return lx.pop() +} + +// lexNumberOrDateStart consumes either a (positive) integer, float or +// datetime. It assumes that NO negative sign has been consumed. +func lexNumberOrDateStart(lx *lexer) stateFn { + r := lx.next() + if !isDigit(r) { + if r == '.' { + return lx.errorf("Floats must start with a digit, not '.'.") + } else { + return lx.errorf("Expected a digit but got %q.", r) + } + } + return lexNumberOrDate +} + +// lexNumberOrDate consumes either a (positive) integer, float or datetime. +func lexNumberOrDate(lx *lexer) stateFn { + r := lx.next() + switch { + case r == '-': + if lx.pos-lx.start != 5 { + return lx.errorf("All ISO8601 dates must be in full Zulu form.") + } + return lexDateAfterYear + case isDigit(r): + return lexNumberOrDate + case r == '.': + return lexFloatStart + } + + lx.backup() + lx.emit(itemInteger) + return lx.pop() +} + +// lexDateAfterYear consumes a full Zulu Datetime in ISO8601 format. +// It assumes that "YYYY-" has already been consumed. +func lexDateAfterYear(lx *lexer) stateFn { + formats := []rune{ + // digits are '0'. + // everything else is direct equality. + '0', '0', '-', '0', '0', + 'T', + '0', '0', ':', '0', '0', ':', '0', '0', + 'Z', + } + for _, f := range formats { + r := lx.next() + if f == '0' { + if !isDigit(r) { + return lx.errorf("Expected digit in ISO8601 datetime, "+ + "but found %q instead.", r) + } + } else if f != r { + return lx.errorf("Expected %q in ISO8601 datetime, "+ + "but found %q instead.", f, r) + } + } + lx.emit(itemDatetime) + return lx.pop() +} + +// lexNumberStart consumes either an integer or a float. It assumes that +// a negative sign has already been read, but that *no* digits have been +// consumed. lexNumberStart will move to the appropriate integer or float +// states. +func lexNumberStart(lx *lexer) stateFn { + // we MUST see a digit. Even floats have to start with a digit. + r := lx.next() + if !isDigit(r) { + if r == '.' { + return lx.errorf("Floats must start with a digit, not '.'.") + } else { + return lx.errorf("Expected a digit but got %q.", r) + } + } + return lexNumber +} + +// lexNumber consumes an integer or a float after seeing the first digit. +func lexNumber(lx *lexer) stateFn { + r := lx.next() + switch { + case isDigit(r): + return lexNumber + case r == '.': + return lexFloatStart + } + + lx.backup() + lx.emit(itemInteger) + return lx.pop() +} + +// lexFloatStart starts the consumption of digits of a float after a '.'. +// Namely, at least one digit is required. +func lexFloatStart(lx *lexer) stateFn { + r := lx.next() + if !isDigit(r) { + return lx.errorf("Floats must have a digit after the '.', but got "+ + "%q instead.", r) + } + return lexFloat +} + +// lexFloat consumes the digits of a float after a '.'. +// Assumes that one digit has been consumed after a '.' already. +func lexFloat(lx *lexer) stateFn { + r := lx.next() + if isDigit(r) { + return lexFloat + } + + lx.backup() + lx.emit(itemFloat) + return lx.pop() +} + +// lexConst consumes the s[1:] in s. It assumes that s[0] has already been +// consumed. +func lexConst(lx *lexer, s string) stateFn { + for i := range s[1:] { + if r := lx.next(); r != rune(s[i+1]) { + return lx.errorf("Expected %q, but found %q instead.", s[:i+1], + s[:i]+string(r)) + } + } + return nil +} + +// lexTrue consumes the "rue" in "true". It assumes that 't' has already +// been consumed. +func lexTrue(lx *lexer) stateFn { + if fn := lexConst(lx, "true"); fn != nil { + return fn + } + lx.emit(itemBool) + return lx.pop() +} + +// lexFalse consumes the "alse" in "false". It assumes that 'f' has already +// been consumed. +func lexFalse(lx *lexer) stateFn { + if fn := lexConst(lx, "false"); fn != nil { + return fn + } + lx.emit(itemBool) + return lx.pop() +} + +// lexCommentStart begins the lexing of a comment. It will emit +// itemCommentStart and consume no characters, passing control to lexComment. +func lexCommentStart(lx *lexer) stateFn { + lx.ignore() + lx.emit(itemCommentStart) + return lexComment +} + +// lexComment lexes an entire comment. It assumes that '#' has been consumed. +// It will consume *up to* the first new line character, and pass control +// back to the last state on the stack. +func lexComment(lx *lexer) stateFn { + r := lx.peek() + if isNL(r) || r == eof { + lx.emit(itemText) + return lx.pop() + } + lx.next() + return lexComment +} + +// lexSkip ignores all slurped input and moves on to the next state. +func lexSkip(lx *lexer, nextState stateFn) stateFn { + return func(lx *lexer) stateFn { + lx.ignore() + return nextState + } +} + +// isWhitespace returns true if `r` is a whitespace character according +// to the spec. +func isWhitespace(r rune) bool { + return r == '\t' || r == ' ' +} + +func isNL(r rune) bool { + return r == '\n' || r == '\r' +} + +func isDigit(r rune) bool { + return r >= '0' && r <= '9' +} + +func isHexadecimal(r rune) bool { + return (r >= '0' && r <= '9') || + (r >= 'a' && r <= 'f') || + (r >= 'A' && r <= 'F') +} + +func isBareKeyChar(r rune) bool { + return (r >= 'A' && r <= 'Z') || + (r >= 'a' && r <= 'z') || + (r >= '0' && r <= '9') || + r == '_' || + r == '-' +} + +func (itype itemType) String() string { + switch itype { + case itemError: + return "Error" + case itemNIL: + return "NIL" + case itemEOF: + return "EOF" + case itemText: + return "Text" + case itemString: + return "String" + case itemRawString: + return "String" + case itemMultilineString: + return "String" + case itemRawMultilineString: + return "String" + case itemBool: + return "Bool" + case itemInteger: + return "Integer" + case itemFloat: + return "Float" + case itemDatetime: + return "DateTime" + case itemTableStart: + return "TableStart" + case itemTableEnd: + return "TableEnd" + case itemKeyStart: + return "KeyStart" + case itemArray: + return "Array" + case itemArrayEnd: + return "ArrayEnd" + case itemCommentStart: + return "CommentStart" + } + panic(fmt.Sprintf("BUG: Unknown type '%d'.", int(itype))) +} + +func (item item) String() string { + return fmt.Sprintf("(%s, %s)", item.typ.String(), item.val) +} diff --git a/vendor/github.com/BurntSushi/toml/parse.go b/vendor/github.com/BurntSushi/toml/parse.go new file mode 100644 index 000000000..6a82e84f6 --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/parse.go @@ -0,0 +1,493 @@ +package toml + +import ( + "fmt" + "log" + "strconv" + "strings" + "time" + "unicode" + "unicode/utf8" +) + +type parser struct { + mapping map[string]interface{} + types map[string]tomlType + lx *lexer + + // A list of keys in the order that they appear in the TOML data. + ordered []Key + + // the full key for the current hash in scope + context Key + + // the base key name for everything except hashes + currentKey string + + // rough approximation of line number + approxLine int + + // A map of 'key.group.names' to whether they were created implicitly. + implicits map[string]bool +} + +type parseError string + +func (pe parseError) Error() string { + return string(pe) +} + +func parse(data string) (p *parser, err error) { + defer func() { + if r := recover(); r != nil { + var ok bool + if err, ok = r.(parseError); ok { + return + } + panic(r) + } + }() + + p = &parser{ + mapping: make(map[string]interface{}), + types: make(map[string]tomlType), + lx: lex(data), + ordered: make([]Key, 0), + implicits: make(map[string]bool), + } + for { + item := p.next() + if item.typ == itemEOF { + break + } + p.topLevel(item) + } + + return p, nil +} + +func (p *parser) panicf(format string, v ...interface{}) { + msg := fmt.Sprintf("Near line %d (last key parsed '%s'): %s", + p.approxLine, p.current(), fmt.Sprintf(format, v...)) + panic(parseError(msg)) +} + +func (p *parser) next() item { + it := p.lx.nextItem() + if it.typ == itemError { + p.panicf("%s", it.val) + } + return it +} + +func (p *parser) bug(format string, v ...interface{}) { + log.Panicf("BUG: %s\n\n", fmt.Sprintf(format, v...)) +} + +func (p *parser) expect(typ itemType) item { + it := p.next() + p.assertEqual(typ, it.typ) + return it +} + +func (p *parser) assertEqual(expected, got itemType) { + if expected != got { + p.bug("Expected '%s' but got '%s'.", expected, got) + } +} + +func (p *parser) topLevel(item item) { + switch item.typ { + case itemCommentStart: + p.approxLine = item.line + p.expect(itemText) + case itemTableStart: + kg := p.next() + p.approxLine = kg.line + + var key Key + for ; kg.typ != itemTableEnd && kg.typ != itemEOF; kg = p.next() { + key = append(key, p.keyString(kg)) + } + p.assertEqual(itemTableEnd, kg.typ) + + p.establishContext(key, false) + p.setType("", tomlHash) + p.ordered = append(p.ordered, key) + case itemArrayTableStart: + kg := p.next() + p.approxLine = kg.line + + var key Key + for ; kg.typ != itemArrayTableEnd && kg.typ != itemEOF; kg = p.next() { + key = append(key, p.keyString(kg)) + } + p.assertEqual(itemArrayTableEnd, kg.typ) + + p.establishContext(key, true) + p.setType("", tomlArrayHash) + p.ordered = append(p.ordered, key) + case itemKeyStart: + kname := p.next() + p.approxLine = kname.line + p.currentKey = p.keyString(kname) + + val, typ := p.value(p.next()) + p.setValue(p.currentKey, val) + p.setType(p.currentKey, typ) + p.ordered = append(p.ordered, p.context.add(p.currentKey)) + p.currentKey = "" + default: + p.bug("Unexpected type at top level: %s", item.typ) + } +} + +// Gets a string for a key (or part of a key in a table name). +func (p *parser) keyString(it item) string { + switch it.typ { + case itemText: + return it.val + case itemString, itemMultilineString, + itemRawString, itemRawMultilineString: + s, _ := p.value(it) + return s.(string) + default: + p.bug("Unexpected key type: %s", it.typ) + panic("unreachable") + } +} + +// value translates an expected value from the lexer into a Go value wrapped +// as an empty interface. +func (p *parser) value(it item) (interface{}, tomlType) { + switch it.typ { + case itemString: + return p.replaceEscapes(it.val), p.typeOfPrimitive(it) + case itemMultilineString: + trimmed := stripFirstNewline(stripEscapedWhitespace(it.val)) + return p.replaceEscapes(trimmed), p.typeOfPrimitive(it) + case itemRawString: + return it.val, p.typeOfPrimitive(it) + case itemRawMultilineString: + return stripFirstNewline(it.val), p.typeOfPrimitive(it) + case itemBool: + switch it.val { + case "true": + return true, p.typeOfPrimitive(it) + case "false": + return false, p.typeOfPrimitive(it) + } + p.bug("Expected boolean value, but got '%s'.", it.val) + case itemInteger: + num, err := strconv.ParseInt(it.val, 10, 64) + if err != nil { + // See comment below for floats describing why we make a + // distinction between a bug and a user error. + if e, ok := err.(*strconv.NumError); ok && + e.Err == strconv.ErrRange { + + p.panicf("Integer '%s' is out of the range of 64-bit "+ + "signed integers.", it.val) + } else { + p.bug("Expected integer value, but got '%s'.", it.val) + } + } + return num, p.typeOfPrimitive(it) + case itemFloat: + num, err := strconv.ParseFloat(it.val, 64) + if err != nil { + // Distinguish float values. Normally, it'd be a bug if the lexer + // provides an invalid float, but it's possible that the float is + // out of range of valid values (which the lexer cannot determine). + // So mark the former as a bug but the latter as a legitimate user + // error. + // + // This is also true for integers. + if e, ok := err.(*strconv.NumError); ok && + e.Err == strconv.ErrRange { + + p.panicf("Float '%s' is out of the range of 64-bit "+ + "IEEE-754 floating-point numbers.", it.val) + } else { + p.bug("Expected float value, but got '%s'.", it.val) + } + } + return num, p.typeOfPrimitive(it) + case itemDatetime: + t, err := time.Parse("2006-01-02T15:04:05Z", it.val) + if err != nil { + p.panicf("Invalid RFC3339 Zulu DateTime: '%s'.", it.val) + } + return t, p.typeOfPrimitive(it) + case itemArray: + array := make([]interface{}, 0) + types := make([]tomlType, 0) + + for it = p.next(); it.typ != itemArrayEnd; it = p.next() { + if it.typ == itemCommentStart { + p.expect(itemText) + continue + } + + val, typ := p.value(it) + array = append(array, val) + types = append(types, typ) + } + return array, p.typeOfArray(types) + } + p.bug("Unexpected value type: %s", it.typ) + panic("unreachable") +} + +// establishContext sets the current context of the parser, +// where the context is either a hash or an array of hashes. Which one is +// set depends on the value of the `array` parameter. +// +// Establishing the context also makes sure that the key isn't a duplicate, and +// will create implicit hashes automatically. +func (p *parser) establishContext(key Key, array bool) { + var ok bool + + // Always start at the top level and drill down for our context. + hashContext := p.mapping + keyContext := make(Key, 0) + + // We only need implicit hashes for key[0:-1] + for _, k := range key[0 : len(key)-1] { + _, ok = hashContext[k] + keyContext = append(keyContext, k) + + // No key? Make an implicit hash and move on. + if !ok { + p.addImplicit(keyContext) + hashContext[k] = make(map[string]interface{}) + } + + // If the hash context is actually an array of tables, then set + // the hash context to the last element in that array. + // + // Otherwise, it better be a table, since this MUST be a key group (by + // virtue of it not being the last element in a key). + switch t := hashContext[k].(type) { + case []map[string]interface{}: + hashContext = t[len(t)-1] + case map[string]interface{}: + hashContext = t + default: + p.panicf("Key '%s' was already created as a hash.", keyContext) + } + } + + p.context = keyContext + if array { + // If this is the first element for this array, then allocate a new + // list of tables for it. + k := key[len(key)-1] + if _, ok := hashContext[k]; !ok { + hashContext[k] = make([]map[string]interface{}, 0, 5) + } + + // Add a new table. But make sure the key hasn't already been used + // for something else. + if hash, ok := hashContext[k].([]map[string]interface{}); ok { + hashContext[k] = append(hash, make(map[string]interface{})) + } else { + p.panicf("Key '%s' was already created and cannot be used as "+ + "an array.", keyContext) + } + } else { + p.setValue(key[len(key)-1], make(map[string]interface{})) + } + p.context = append(p.context, key[len(key)-1]) +} + +// setValue sets the given key to the given value in the current context. +// It will make sure that the key hasn't already been defined, account for +// implicit key groups. +func (p *parser) setValue(key string, value interface{}) { + var tmpHash interface{} + var ok bool + + hash := p.mapping + keyContext := make(Key, 0) + for _, k := range p.context { + keyContext = append(keyContext, k) + if tmpHash, ok = hash[k]; !ok { + p.bug("Context for key '%s' has not been established.", keyContext) + } + switch t := tmpHash.(type) { + case []map[string]interface{}: + // The context is a table of hashes. Pick the most recent table + // defined as the current hash. + hash = t[len(t)-1] + case map[string]interface{}: + hash = t + default: + p.bug("Expected hash to have type 'map[string]interface{}', but "+ + "it has '%T' instead.", tmpHash) + } + } + keyContext = append(keyContext, key) + + if _, ok := hash[key]; ok { + // Typically, if the given key has already been set, then we have + // to raise an error since duplicate keys are disallowed. However, + // it's possible that a key was previously defined implicitly. In this + // case, it is allowed to be redefined concretely. (See the + // `tests/valid/implicit-and-explicit-after.toml` test in `toml-test`.) + // + // But we have to make sure to stop marking it as an implicit. (So that + // another redefinition provokes an error.) + // + // Note that since it has already been defined (as a hash), we don't + // want to overwrite it. So our business is done. + if p.isImplicit(keyContext) { + p.removeImplicit(keyContext) + return + } + + // Otherwise, we have a concrete key trying to override a previous + // key, which is *always* wrong. + p.panicf("Key '%s' has already been defined.", keyContext) + } + hash[key] = value +} + +// setType sets the type of a particular value at a given key. +// It should be called immediately AFTER setValue. +// +// Note that if `key` is empty, then the type given will be applied to the +// current context (which is either a table or an array of tables). +func (p *parser) setType(key string, typ tomlType) { + keyContext := make(Key, 0, len(p.context)+1) + for _, k := range p.context { + keyContext = append(keyContext, k) + } + if len(key) > 0 { // allow type setting for hashes + keyContext = append(keyContext, key) + } + p.types[keyContext.String()] = typ +} + +// addImplicit sets the given Key as having been created implicitly. +func (p *parser) addImplicit(key Key) { + p.implicits[key.String()] = true +} + +// removeImplicit stops tagging the given key as having been implicitly +// created. +func (p *parser) removeImplicit(key Key) { + p.implicits[key.String()] = false +} + +// isImplicit returns true if the key group pointed to by the key was created +// implicitly. +func (p *parser) isImplicit(key Key) bool { + return p.implicits[key.String()] +} + +// current returns the full key name of the current context. +func (p *parser) current() string { + if len(p.currentKey) == 0 { + return p.context.String() + } + if len(p.context) == 0 { + return p.currentKey + } + return fmt.Sprintf("%s.%s", p.context, p.currentKey) +} + +func stripFirstNewline(s string) string { + if len(s) == 0 || s[0] != '\n' { + return s + } + return s[1:] +} + +func stripEscapedWhitespace(s string) string { + esc := strings.Split(s, "\\\n") + if len(esc) > 1 { + for i := 1; i < len(esc); i++ { + esc[i] = strings.TrimLeftFunc(esc[i], unicode.IsSpace) + } + } + return strings.Join(esc, "") +} + +func (p *parser) replaceEscapes(str string) string { + var replaced []rune + s := []byte(str) + r := 0 + for r < len(s) { + if s[r] != '\\' { + c, size := utf8.DecodeRune(s[r:]) + r += size + replaced = append(replaced, c) + continue + } + r += 1 + if r >= len(s) { + p.bug("Escape sequence at end of string.") + return "" + } + switch s[r] { + default: + p.bug("Expected valid escape code after \\, but got %q.", s[r]) + return "" + case 'b': + replaced = append(replaced, rune(0x0008)) + r += 1 + case 't': + replaced = append(replaced, rune(0x0009)) + r += 1 + case 'n': + replaced = append(replaced, rune(0x000A)) + r += 1 + case 'f': + replaced = append(replaced, rune(0x000C)) + r += 1 + case 'r': + replaced = append(replaced, rune(0x000D)) + r += 1 + case '"': + replaced = append(replaced, rune(0x0022)) + r += 1 + case '\\': + replaced = append(replaced, rune(0x005C)) + r += 1 + case 'u': + // At this point, we know we have a Unicode escape of the form + // `uXXXX` at [r, r+5). (Because the lexer guarantees this + // for us.) + escaped := p.asciiEscapeToUnicode(s[r+1 : r+5]) + replaced = append(replaced, escaped) + r += 5 + case 'U': + // At this point, we know we have a Unicode escape of the form + // `uXXXX` at [r, r+9). (Because the lexer guarantees this + // for us.) + escaped := p.asciiEscapeToUnicode(s[r+1 : r+9]) + replaced = append(replaced, escaped) + r += 9 + } + } + return string(replaced) +} + +func (p *parser) asciiEscapeToUnicode(bs []byte) rune { + s := string(bs) + hex, err := strconv.ParseUint(strings.ToLower(s), 16, 32) + if err != nil { + p.bug("Could not parse '%s' as a hexadecimal number, but the "+ + "lexer claims it's OK: %s", s, err) + } + if !utf8.ValidRune(rune(hex)) { + p.panicf("Escaped character '\\u%s' is not valid UTF-8.", s) + } + return rune(hex) +} + +func isStringType(ty itemType) bool { + return ty == itemString || ty == itemMultilineString || + ty == itemRawString || ty == itemRawMultilineString +} diff --git a/vendor/github.com/BurntSushi/toml/type_check.go b/vendor/github.com/BurntSushi/toml/type_check.go new file mode 100644 index 000000000..c73f8afc1 --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/type_check.go @@ -0,0 +1,91 @@ +package toml + +// tomlType represents any Go type that corresponds to a TOML type. +// While the first draft of the TOML spec has a simplistic type system that +// probably doesn't need this level of sophistication, we seem to be militating +// toward adding real composite types. +type tomlType interface { + typeString() string +} + +// typeEqual accepts any two types and returns true if they are equal. +func typeEqual(t1, t2 tomlType) bool { + if t1 == nil || t2 == nil { + return false + } + return t1.typeString() == t2.typeString() +} + +func typeIsHash(t tomlType) bool { + return typeEqual(t, tomlHash) || typeEqual(t, tomlArrayHash) +} + +type tomlBaseType string + +func (btype tomlBaseType) typeString() string { + return string(btype) +} + +func (btype tomlBaseType) String() string { + return btype.typeString() +} + +var ( + tomlInteger tomlBaseType = "Integer" + tomlFloat tomlBaseType = "Float" + tomlDatetime tomlBaseType = "Datetime" + tomlString tomlBaseType = "String" + tomlBool tomlBaseType = "Bool" + tomlArray tomlBaseType = "Array" + tomlHash tomlBaseType = "Hash" + tomlArrayHash tomlBaseType = "ArrayHash" +) + +// typeOfPrimitive returns a tomlType of any primitive value in TOML. +// Primitive values are: Integer, Float, Datetime, String and Bool. +// +// Passing a lexer item other than the following will cause a BUG message +// to occur: itemString, itemBool, itemInteger, itemFloat, itemDatetime. +func (p *parser) typeOfPrimitive(lexItem item) tomlType { + switch lexItem.typ { + case itemInteger: + return tomlInteger + case itemFloat: + return tomlFloat + case itemDatetime: + return tomlDatetime + case itemString: + return tomlString + case itemMultilineString: + return tomlString + case itemRawString: + return tomlString + case itemRawMultilineString: + return tomlString + case itemBool: + return tomlBool + } + p.bug("Cannot infer primitive type of lex item '%s'.", lexItem) + panic("unreachable") +} + +// typeOfArray returns a tomlType for an array given a list of types of its +// values. +// +// In the current spec, if an array is homogeneous, then its type is always +// "Array". If the array is not homogeneous, an error is generated. +func (p *parser) typeOfArray(types []tomlType) tomlType { + // Empty arrays are cool. + if len(types) == 0 { + return tomlArray + } + + theType := types[0] + for _, t := range types[1:] { + if !typeEqual(theType, t) { + p.panicf("Array contains values of type '%s' and '%s', but "+ + "arrays must be homogeneous.", theType, t) + } + } + return tomlArray +} diff --git a/vendor/github.com/BurntSushi/toml/type_fields.go b/vendor/github.com/BurntSushi/toml/type_fields.go new file mode 100644 index 000000000..6da608af4 --- /dev/null +++ b/vendor/github.com/BurntSushi/toml/type_fields.go @@ -0,0 +1,241 @@ +package toml + +// Struct field handling is adapted from code in encoding/json: +// +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the Go distribution. + +import ( + "reflect" + "sort" + "sync" +) + +// A field represents a single field found in a struct. +type field struct { + name string // the name of the field (`toml` tag included) + tag bool // whether field has a `toml` tag + index []int // represents the depth of an anonymous field + typ reflect.Type // the type of the field +} + +// byName sorts field by name, breaking ties with depth, +// then breaking ties with "name came from toml tag", then +// breaking ties with index sequence. +type byName []field + +func (x byName) Len() int { return len(x) } + +func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] } + +func (x byName) Less(i, j int) bool { + if x[i].name != x[j].name { + return x[i].name < x[j].name + } + if len(x[i].index) != len(x[j].index) { + return len(x[i].index) < len(x[j].index) + } + if x[i].tag != x[j].tag { + return x[i].tag + } + return byIndex(x).Less(i, j) +} + +// byIndex sorts field by index sequence. +type byIndex []field + +func (x byIndex) Len() int { return len(x) } + +func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] } + +func (x byIndex) Less(i, j int) bool { + for k, xik := range x[i].index { + if k >= len(x[j].index) { + return false + } + if xik != x[j].index[k] { + return xik < x[j].index[k] + } + } + return len(x[i].index) < len(x[j].index) +} + +// typeFields returns a list of fields that TOML should recognize for the given +// type. The algorithm is breadth-first search over the set of structs to +// include - the top struct and then any reachable anonymous structs. +func typeFields(t reflect.Type) []field { + // Anonymous fields to explore at the current level and the next. + current := []field{} + next := []field{{typ: t}} + + // Count of queued names for current level and the next. + count := map[reflect.Type]int{} + nextCount := map[reflect.Type]int{} + + // Types already visited at an earlier level. + visited := map[reflect.Type]bool{} + + // Fields found. + var fields []field + + for len(next) > 0 { + current, next = next, current[:0] + count, nextCount = nextCount, map[reflect.Type]int{} + + for _, f := range current { + if visited[f.typ] { + continue + } + visited[f.typ] = true + + // Scan f.typ for fields to include. + for i := 0; i < f.typ.NumField(); i++ { + sf := f.typ.Field(i) + if sf.PkgPath != "" && !sf.Anonymous { // unexported + continue + } + name, _ := getOptions(sf.Tag.Get("toml")) + if name == "-" { + continue + } + index := make([]int, len(f.index)+1) + copy(index, f.index) + index[len(f.index)] = i + + ft := sf.Type + if ft.Name() == "" && ft.Kind() == reflect.Ptr { + // Follow pointer. + ft = ft.Elem() + } + + // Record found field and index sequence. + if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct { + tagged := name != "" + if name == "" { + name = sf.Name + } + fields = append(fields, field{name, tagged, index, ft}) + if count[f.typ] > 1 { + // If there were multiple instances, add a second, + // so that the annihilation code will see a duplicate. + // It only cares about the distinction between 1 or 2, + // so don't bother generating any more copies. + fields = append(fields, fields[len(fields)-1]) + } + continue + } + + // Record new anonymous struct to explore in next round. + nextCount[ft]++ + if nextCount[ft] == 1 { + f := field{name: ft.Name(), index: index, typ: ft} + next = append(next, f) + } + } + } + } + + sort.Sort(byName(fields)) + + // Delete all fields that are hidden by the Go rules for embedded fields, + // except that fields with TOML tags are promoted. + + // The fields are sorted in primary order of name, secondary order + // of field index length. Loop over names; for each name, delete + // hidden fields by choosing the one dominant field that survives. + out := fields[:0] + for advance, i := 0, 0; i < len(fields); i += advance { + // One iteration per name. + // Find the sequence of fields with the name of this first field. + fi := fields[i] + name := fi.name + for advance = 1; i+advance < len(fields); advance++ { + fj := fields[i+advance] + if fj.name != name { + break + } + } + if advance == 1 { // Only one field with this name + out = append(out, fi) + continue + } + dominant, ok := dominantField(fields[i : i+advance]) + if ok { + out = append(out, dominant) + } + } + + fields = out + sort.Sort(byIndex(fields)) + + return fields +} + +// dominantField looks through the fields, all of which are known to +// have the same name, to find the single field that dominates the +// others using Go's embedding rules, modified by the presence of +// TOML tags. If there are multiple top-level fields, the boolean +// will be false: This condition is an error in Go and we skip all +// the fields. +func dominantField(fields []field) (field, bool) { + // The fields are sorted in increasing index-length order. The winner + // must therefore be one with the shortest index length. Drop all + // longer entries, which is easy: just truncate the slice. + length := len(fields[0].index) + tagged := -1 // Index of first tagged field. + for i, f := range fields { + if len(f.index) > length { + fields = fields[:i] + break + } + if f.tag { + if tagged >= 0 { + // Multiple tagged fields at the same level: conflict. + // Return no field. + return field{}, false + } + tagged = i + } + } + if tagged >= 0 { + return fields[tagged], true + } + // All remaining fields have the same length. If there's more than one, + // we have a conflict (two fields named "X" at the same level) and we + // return no field. + if len(fields) > 1 { + return field{}, false + } + return fields[0], true +} + +var fieldCache struct { + sync.RWMutex + m map[reflect.Type][]field +} + +// cachedTypeFields is like typeFields but uses a cache to avoid repeated work. +func cachedTypeFields(t reflect.Type) []field { + fieldCache.RLock() + f := fieldCache.m[t] + fieldCache.RUnlock() + if f != nil { + return f + } + + // Compute fields without lock. + // Might duplicate effort but won't hold other computations back. + f = typeFields(t) + if f == nil { + f = []field{} + } + + fieldCache.Lock() + if fieldCache.m == nil { + fieldCache.m = map[reflect.Type][]field{} + } + fieldCache.m[t] = f + fieldCache.Unlock() + return f +} |