summaryrefslogtreecommitdiff
path: root/vendor/github.com/DataDog/zstd/README.md
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/DataDog/zstd/README.md')
-rw-r--r--vendor/github.com/DataDog/zstd/README.md120
1 files changed, 120 insertions, 0 deletions
diff --git a/vendor/github.com/DataDog/zstd/README.md b/vendor/github.com/DataDog/zstd/README.md
new file mode 100644
index 000000000..a444e0b2c
--- /dev/null
+++ b/vendor/github.com/DataDog/zstd/README.md
@@ -0,0 +1,120 @@
+# Zstd Go Wrapper
+
+[C Zstd Homepage](https://github.com/Cyan4973/zstd)
+
+The current headers and C files are from *v1.4.0* (Commit
+[83b51e9](https://github.com/facebook/zstd/releases/tag/v1.4.0)).
+
+## Usage
+
+There are two main APIs:
+
+* simple Compress/Decompress
+* streaming API (io.Reader/io.Writer)
+
+The compress/decompress APIs mirror that of lz4, while the streaming API was
+designed to be a drop-in replacement for zlib.
+
+### Simple `Compress/Decompress`
+
+
+```go
+// Compress compresses the byte array given in src and writes it to dst.
+// If you already have a buffer allocated, you can pass it to prevent allocation
+// If not, you can pass nil as dst.
+// If the buffer is too small, it will be reallocated, resized, and returned bu the function
+// If dst is nil, this will allocate the worst case size (CompressBound(src))
+Compress(dst, src []byte) ([]byte, error)
+```
+
+```go
+// CompressLevel is the same as Compress but you can pass another compression level
+CompressLevel(dst, src []byte, level int) ([]byte, error)
+```
+
+```go
+// Decompress will decompress your payload into dst.
+// If you already have a buffer allocated, you can pass it to prevent allocation
+// If not, you can pass nil as dst (allocates a 4*src size as default).
+// If the buffer is too small, it will retry 3 times by doubling the dst size
+// After max retries, it will switch to the slower stream API to be sure to be able
+// to decompress. Currently switches if compression ratio > 4*2**3=32.
+Decompress(dst, src []byte) ([]byte, error)
+```
+
+### Stream API
+
+```go
+// NewWriter creates a new object that can optionally be initialized with
+// a precomputed dictionary. If dict is nil, compress without a dictionary.
+// The dictionary array should not be changed during the use of this object.
+// You MUST CALL Close() to write the last bytes of a zstd stream and free C objects.
+NewWriter(w io.Writer) *Writer
+NewWriterLevel(w io.Writer, level int) *Writer
+NewWriterLevelDict(w io.Writer, level int, dict []byte) *Writer
+
+// Write compresses the input data and write it to the underlying writer
+(w *Writer) Write(p []byte) (int, error)
+
+// Close flushes the buffer and frees C zstd objects
+(w *Writer) Close() error
+```
+
+```go
+// NewReader returns a new io.ReadCloser that will decompress data from the
+// underlying reader. If a dictionary is provided to NewReaderDict, it must
+// not be modified until Close is called. It is the caller's responsibility
+// to call Close, which frees up C objects.
+NewReader(r io.Reader) io.ReadCloser
+NewReaderDict(r io.Reader, dict []byte) io.ReadCloser
+```
+
+### Benchmarks (benchmarked with v0.5.0)
+
+The author of Zstd also wrote lz4. Zstd is intended to occupy a speed/ratio
+level similar to what zlib currently provides. In our tests, the can always
+be made to be better than zlib by chosing an appropriate level while still
+keeping compression and decompression time faster than zlib.
+
+You can run the benchmarks against your own payloads by using the Go benchmarks tool.
+Just export your payload filepath as the `PAYLOAD` environment variable and run the benchmarks:
+
+```go
+go test -bench .
+```
+
+Compression of a 7Mb pdf zstd (this wrapper) vs [czlib](https://github.com/DataDog/czlib):
+```
+BenchmarkCompression 5 221056624 ns/op 67.34 MB/s
+BenchmarkDecompression 100 18370416 ns/op 810.32 MB/s
+
+BenchmarkFzlibCompress 2 610156603 ns/op 24.40 MB/s
+BenchmarkFzlibDecompress 20 81195246 ns/op 183.33 MB/s
+```
+
+Ratio is also better by a margin of ~20%.
+Compression speed is always better than zlib on all the payloads we tested;
+However, [czlib](https://github.com/DataDog/czlib) has optimisations that make it
+faster at decompressiong small payloads:
+
+```
+Testing with size: 11... czlib: 8.97 MB/s, zstd: 3.26 MB/s
+Testing with size: 27... czlib: 23.3 MB/s, zstd: 8.22 MB/s
+Testing with size: 62... czlib: 31.6 MB/s, zstd: 19.49 MB/s
+Testing with size: 141... czlib: 74.54 MB/s, zstd: 42.55 MB/s
+Testing with size: 323... czlib: 155.14 MB/s, zstd: 99.39 MB/s
+Testing with size: 739... czlib: 235.9 MB/s, zstd: 216.45 MB/s
+Testing with size: 1689... czlib: 116.45 MB/s, zstd: 345.64 MB/s
+Testing with size: 3858... czlib: 176.39 MB/s, zstd: 617.56 MB/s
+Testing with size: 8811... czlib: 254.11 MB/s, zstd: 824.34 MB/s
+Testing with size: 20121... czlib: 197.43 MB/s, zstd: 1339.11 MB/s
+Testing with size: 45951... czlib: 201.62 MB/s, zstd: 1951.57 MB/s
+```
+
+zstd starts to shine with payloads > 1KB
+
+### Stability - Current state: STABLE
+
+The C library seems to be pretty stable and according to the author has been tested and fuzzed.
+
+For the Go wrapper, the test cover most usual cases and we have succesfully tested it on all staging and prod data.