summaryrefslogtreecommitdiff
path: root/vendor/github.com/bits-and-blooms/bitset/bitset.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/bits-and-blooms/bitset/bitset.go')
-rw-r--r--vendor/github.com/bits-and-blooms/bitset/bitset.go952
1 files changed, 0 insertions, 952 deletions
diff --git a/vendor/github.com/bits-and-blooms/bitset/bitset.go b/vendor/github.com/bits-and-blooms/bitset/bitset.go
deleted file mode 100644
index d688806a5..000000000
--- a/vendor/github.com/bits-and-blooms/bitset/bitset.go
+++ /dev/null
@@ -1,952 +0,0 @@
-/*
-Package bitset implements bitsets, a mapping
-between non-negative integers and boolean values. It should be more
-efficient than map[uint] bool.
-
-It provides methods for setting, clearing, flipping, and testing
-individual integers.
-
-But it also provides set intersection, union, difference,
-complement, and symmetric operations, as well as tests to
-check whether any, all, or no bits are set, and querying a
-bitset's current length and number of positive bits.
-
-BitSets are expanded to the size of the largest set bit; the
-memory allocation is approximately Max bits, where Max is
-the largest set bit. BitSets are never shrunk. On creation,
-a hint can be given for the number of bits that will be used.
-
-Many of the methods, including Set,Clear, and Flip, return
-a BitSet pointer, which allows for chaining.
-
-Example use:
-
- import "bitset"
- var b BitSet
- b.Set(10).Set(11)
- if b.Test(1000) {
- b.Clear(1000)
- }
- if B.Intersection(bitset.New(100).Set(10)).Count() > 1 {
- fmt.Println("Intersection works.")
- }
-
-As an alternative to BitSets, one should check out the 'big' package,
-which provides a (less set-theoretical) view of bitsets.
-
-*/
-package bitset
-
-import (
- "bufio"
- "bytes"
- "encoding/base64"
- "encoding/binary"
- "encoding/json"
- "errors"
- "fmt"
- "io"
- "strconv"
-)
-
-// the wordSize of a bit set
-const wordSize = uint(64)
-
-// log2WordSize is lg(wordSize)
-const log2WordSize = uint(6)
-
-// allBits has every bit set
-const allBits uint64 = 0xffffffffffffffff
-
-// default binary BigEndian
-var binaryOrder binary.ByteOrder = binary.BigEndian
-
-// default json encoding base64.URLEncoding
-var base64Encoding = base64.URLEncoding
-
-// Base64StdEncoding Marshal/Unmarshal BitSet with base64.StdEncoding(Default: base64.URLEncoding)
-func Base64StdEncoding() { base64Encoding = base64.StdEncoding }
-
-// LittleEndian Marshal/Unmarshal Binary as Little Endian(Default: binary.BigEndian)
-func LittleEndian() { binaryOrder = binary.LittleEndian }
-
-// A BitSet is a set of bits. The zero value of a BitSet is an empty set of length 0.
-type BitSet struct {
- length uint
- set []uint64
-}
-
-// Error is used to distinguish errors (panics) generated in this package.
-type Error string
-
-// safeSet will fixup b.set to be non-nil and return the field value
-func (b *BitSet) safeSet() []uint64 {
- if b.set == nil {
- b.set = make([]uint64, wordsNeeded(0))
- }
- return b.set
-}
-
-// From is a constructor used to create a BitSet from an array of integers
-func From(buf []uint64) *BitSet {
- return &BitSet{uint(len(buf)) * 64, buf}
-}
-
-// Bytes returns the bitset as array of integers
-func (b *BitSet) Bytes() []uint64 {
- return b.set
-}
-
-// wordsNeeded calculates the number of words needed for i bits
-func wordsNeeded(i uint) int {
- if i > (Cap() - wordSize + 1) {
- return int(Cap() >> log2WordSize)
- }
- return int((i + (wordSize - 1)) >> log2WordSize)
-}
-
-// New creates a new BitSet with a hint that length bits will be required
-func New(length uint) (bset *BitSet) {
- defer func() {
- if r := recover(); r != nil {
- bset = &BitSet{
- 0,
- make([]uint64, 0),
- }
- }
- }()
-
- bset = &BitSet{
- length,
- make([]uint64, wordsNeeded(length)),
- }
-
- return bset
-}
-
-// Cap returns the total possible capacity, or number of bits
-func Cap() uint {
- return ^uint(0)
-}
-
-// Len returns the number of bits in the BitSet.
-// Note the difference to method Count, see example.
-func (b *BitSet) Len() uint {
- return b.length
-}
-
-// extendSetMaybe adds additional words to incorporate new bits if needed
-func (b *BitSet) extendSetMaybe(i uint) {
- if i >= b.length { // if we need more bits, make 'em
- if i >= Cap() {
- panic("You are exceeding the capacity")
- }
- nsize := wordsNeeded(i + 1)
- if b.set == nil {
- b.set = make([]uint64, nsize)
- } else if cap(b.set) >= nsize {
- b.set = b.set[:nsize] // fast resize
- } else if len(b.set) < nsize {
- newset := make([]uint64, nsize, 2*nsize) // increase capacity 2x
- copy(newset, b.set)
- b.set = newset
- }
- b.length = i + 1
- }
-}
-
-// Test whether bit i is set.
-func (b *BitSet) Test(i uint) bool {
- if i >= b.length {
- return false
- }
- return b.set[i>>log2WordSize]&(1<<(i&(wordSize-1))) != 0
-}
-
-// Set bit i to 1, the capacity of the bitset is automatically
-// increased accordingly.
-// If i>= Cap(), this function will panic.
-// Warning: using a very large value for 'i'
-// may lead to a memory shortage and a panic: the caller is responsible
-// for providing sensible parameters in line with their memory capacity.
-func (b *BitSet) Set(i uint) *BitSet {
- b.extendSetMaybe(i)
- b.set[i>>log2WordSize] |= 1 << (i & (wordSize - 1))
- return b
-}
-
-// Clear bit i to 0
-func (b *BitSet) Clear(i uint) *BitSet {
- if i >= b.length {
- return b
- }
- b.set[i>>log2WordSize] &^= 1 << (i & (wordSize - 1))
- return b
-}
-
-// SetTo sets bit i to value.
-// If i>= Cap(), this function will panic.
-// Warning: using a very large value for 'i'
-// may lead to a memory shortage and a panic: the caller is responsible
-// for providing sensible parameters in line with their memory capacity.
-func (b *BitSet) SetTo(i uint, value bool) *BitSet {
- if value {
- return b.Set(i)
- }
- return b.Clear(i)
-}
-
-// Flip bit at i.
-// If i>= Cap(), this function will panic.
-// Warning: using a very large value for 'i'
-// may lead to a memory shortage and a panic: the caller is responsible
-// for providing sensible parameters in line with their memory capacity.
-func (b *BitSet) Flip(i uint) *BitSet {
- if i >= b.length {
- return b.Set(i)
- }
- b.set[i>>log2WordSize] ^= 1 << (i & (wordSize - 1))
- return b
-}
-
-// FlipRange bit in [start, end).
-// If end>= Cap(), this function will panic.
-// Warning: using a very large value for 'end'
-// may lead to a memory shortage and a panic: the caller is responsible
-// for providing sensible parameters in line with their memory capacity.
-func (b *BitSet) FlipRange(start, end uint) *BitSet {
- if start >= end {
- return b
- }
-
- b.extendSetMaybe(end - 1)
- var startWord uint = start >> log2WordSize
- var endWord uint = end >> log2WordSize
- b.set[startWord] ^= ^(^uint64(0) << (start & (wordSize - 1)))
- for i := startWord; i < endWord; i++ {
- b.set[i] = ^b.set[i]
- }
- b.set[endWord] ^= ^uint64(0) >> (-end & (wordSize - 1))
- return b
-}
-
-// Shrink shrinks BitSet so that the provided value is the last possible
-// set value. It clears all bits > the provided index and reduces the size
-// and length of the set.
-//
-// Note that the parameter value is not the new length in bits: it is the
-// maximal value that can be stored in the bitset after the function call.
-// The new length in bits is the parameter value + 1. Thus it is not possible
-// to use this function to set the length to 0, the minimal value of the length
-// after this function call is 1.
-//
-// A new slice is allocated to store the new bits, so you may see an increase in
-// memory usage until the GC runs. Normally this should not be a problem, but if you
-// have an extremely large BitSet its important to understand that the old BitSet will
-// remain in memory until the GC frees it.
-func (b *BitSet) Shrink(lastbitindex uint) *BitSet {
- length := lastbitindex + 1
- idx := wordsNeeded(length)
- if idx > len(b.set) {
- return b
- }
- shrunk := make([]uint64, idx)
- copy(shrunk, b.set[:idx])
- b.set = shrunk
- b.length = length
- b.set[idx-1] &= (allBits >> (uint64(64) - uint64(length&(wordSize-1))))
- return b
-}
-
-// Compact shrinks BitSet to so that we preserve all set bits, while minimizing
-// memory usage. Compact calls Shrink.
-func (b *BitSet) Compact() *BitSet {
- idx := len(b.set) - 1
- for ; idx >= 0 && b.set[idx] == 0; idx-- {
- }
- newlength := uint((idx + 1) << log2WordSize)
- if newlength >= b.length {
- return b // nothing to do
- }
- if newlength > 0 {
- return b.Shrink(newlength - 1)
- }
- // We preserve one word
- return b.Shrink(63)
-}
-
-// InsertAt takes an index which indicates where a bit should be
-// inserted. Then it shifts all the bits in the set to the left by 1, starting
-// from the given index position, and sets the index position to 0.
-//
-// Depending on the size of your BitSet, and where you are inserting the new entry,
-// this method could be extremely slow and in some cases might cause the entire BitSet
-// to be recopied.
-func (b *BitSet) InsertAt(idx uint) *BitSet {
- insertAtElement := (idx >> log2WordSize)
-
- // if length of set is a multiple of wordSize we need to allocate more space first
- if b.isLenExactMultiple() {
- b.set = append(b.set, uint64(0))
- }
-
- var i uint
- for i = uint(len(b.set) - 1); i > insertAtElement; i-- {
- // all elements above the position where we want to insert can simply by shifted
- b.set[i] <<= 1
-
- // we take the most significant bit of the previous element and set it as
- // the least significant bit of the current element
- b.set[i] |= (b.set[i-1] & 0x8000000000000000) >> 63
- }
-
- // generate a mask to extract the data that we need to shift left
- // within the element where we insert a bit
- dataMask := ^(uint64(1)<<uint64(idx&(wordSize-1)) - 1)
-
- // extract that data that we'll shift
- data := b.set[i] & dataMask
-
- // set the positions of the data mask to 0 in the element where we insert
- b.set[i] &= ^dataMask
-
- // shift data mask to the left and insert its data to the slice element
- b.set[i] |= data << 1
-
- // add 1 to length of BitSet
- b.length++
-
- return b
-}
-
-// String creates a string representation of the Bitmap
-func (b *BitSet) String() string {
- // follows code from https://github.com/RoaringBitmap/roaring
- var buffer bytes.Buffer
- start := []byte("{")
- buffer.Write(start)
- counter := 0
- i, e := b.NextSet(0)
- for e {
- counter = counter + 1
- // to avoid exhausting the memory
- if counter > 0x40000 {
- buffer.WriteString("...")
- break
- }
- buffer.WriteString(strconv.FormatInt(int64(i), 10))
- i, e = b.NextSet(i + 1)
- if e {
- buffer.WriteString(",")
- }
- }
- buffer.WriteString("}")
- return buffer.String()
-}
-
-// DeleteAt deletes the bit at the given index position from
-// within the bitset
-// All the bits residing on the left of the deleted bit get
-// shifted right by 1
-// The running time of this operation may potentially be
-// relatively slow, O(length)
-func (b *BitSet) DeleteAt(i uint) *BitSet {
- // the index of the slice element where we'll delete a bit
- deleteAtElement := i >> log2WordSize
-
- // generate a mask for the data that needs to be shifted right
- // within that slice element that gets modified
- dataMask := ^((uint64(1) << (i & (wordSize - 1))) - 1)
-
- // extract the data that we'll shift right from the slice element
- data := b.set[deleteAtElement] & dataMask
-
- // set the masked area to 0 while leaving the rest as it is
- b.set[deleteAtElement] &= ^dataMask
-
- // shift the previously extracted data to the right and then
- // set it in the previously masked area
- b.set[deleteAtElement] |= (data >> 1) & dataMask
-
- // loop over all the consecutive slice elements to copy each
- // lowest bit into the highest position of the previous element,
- // then shift the entire content to the right by 1
- for i := int(deleteAtElement) + 1; i < len(b.set); i++ {
- b.set[i-1] |= (b.set[i] & 1) << 63
- b.set[i] >>= 1
- }
-
- b.length = b.length - 1
-
- return b
-}
-
-// NextSet returns the next bit set from the specified index,
-// including possibly the current index
-// along with an error code (true = valid, false = no set bit found)
-// for i,e := v.NextSet(0); e; i,e = v.NextSet(i + 1) {...}
-//
-// Users concerned with performance may want to use NextSetMany to
-// retrieve several values at once.
-func (b *BitSet) NextSet(i uint) (uint, bool) {
- x := int(i >> log2WordSize)
- if x >= len(b.set) {
- return 0, false
- }
- w := b.set[x]
- w = w >> (i & (wordSize - 1))
- if w != 0 {
- return i + trailingZeroes64(w), true
- }
- x = x + 1
- for x < len(b.set) {
- if b.set[x] != 0 {
- return uint(x)*wordSize + trailingZeroes64(b.set[x]), true
- }
- x = x + 1
-
- }
- return 0, false
-}
-
-// NextSetMany returns many next bit sets from the specified index,
-// including possibly the current index and up to cap(buffer).
-// If the returned slice has len zero, then no more set bits were found
-//
-// buffer := make([]uint, 256) // this should be reused
-// j := uint(0)
-// j, buffer = bitmap.NextSetMany(j, buffer)
-// for ; len(buffer) > 0; j, buffer = bitmap.NextSetMany(j,buffer) {
-// for k := range buffer {
-// do something with buffer[k]
-// }
-// j += 1
-// }
-//
-//
-// It is possible to retrieve all set bits as follow:
-//
-// indices := make([]uint, bitmap.Count())
-// bitmap.NextSetMany(0, indices)
-//
-// However if bitmap.Count() is large, it might be preferable to
-// use several calls to NextSetMany, for performance reasons.
-func (b *BitSet) NextSetMany(i uint, buffer []uint) (uint, []uint) {
- myanswer := buffer
- capacity := cap(buffer)
- x := int(i >> log2WordSize)
- if x >= len(b.set) || capacity == 0 {
- return 0, myanswer[:0]
- }
- skip := i & (wordSize - 1)
- word := b.set[x] >> skip
- myanswer = myanswer[:capacity]
- size := int(0)
- for word != 0 {
- r := trailingZeroes64(word)
- t := word & ((^word) + 1)
- myanswer[size] = r + i
- size++
- if size == capacity {
- goto End
- }
- word = word ^ t
- }
- x++
- for idx, word := range b.set[x:] {
- for word != 0 {
- r := trailingZeroes64(word)
- t := word & ((^word) + 1)
- myanswer[size] = r + (uint(x+idx) << 6)
- size++
- if size == capacity {
- goto End
- }
- word = word ^ t
- }
- }
-End:
- if size > 0 {
- return myanswer[size-1], myanswer[:size]
- }
- return 0, myanswer[:0]
-}
-
-// NextClear returns the next clear bit from the specified index,
-// including possibly the current index
-// along with an error code (true = valid, false = no bit found i.e. all bits are set)
-func (b *BitSet) NextClear(i uint) (uint, bool) {
- x := int(i >> log2WordSize)
- if x >= len(b.set) {
- return 0, false
- }
- w := b.set[x]
- w = w >> (i & (wordSize - 1))
- wA := allBits >> (i & (wordSize - 1))
- index := i + trailingZeroes64(^w)
- if w != wA && index < b.length {
- return index, true
- }
- x++
- for x < len(b.set) {
- index = uint(x)*wordSize + trailingZeroes64(^b.set[x])
- if b.set[x] != allBits && index < b.length {
- return index, true
- }
- x++
- }
- return 0, false
-}
-
-// ClearAll clears the entire BitSet
-func (b *BitSet) ClearAll() *BitSet {
- if b != nil && b.set != nil {
- for i := range b.set {
- b.set[i] = 0
- }
- }
- return b
-}
-
-// wordCount returns the number of words used in a bit set
-func (b *BitSet) wordCount() int {
- return len(b.set)
-}
-
-// Clone this BitSet
-func (b *BitSet) Clone() *BitSet {
- c := New(b.length)
- if b.set != nil { // Clone should not modify current object
- copy(c.set, b.set)
- }
- return c
-}
-
-// Copy into a destination BitSet
-// Returning the size of the destination BitSet
-// like array copy
-func (b *BitSet) Copy(c *BitSet) (count uint) {
- if c == nil {
- return
- }
- if b.set != nil { // Copy should not modify current object
- copy(c.set, b.set)
- }
- count = c.length
- if b.length < c.length {
- count = b.length
- }
- return
-}
-
-// Count (number of set bits).
-// Also known as "popcount" or "population count".
-func (b *BitSet) Count() uint {
- if b != nil && b.set != nil {
- return uint(popcntSlice(b.set))
- }
- return 0
-}
-
-// Equal tests the equivalence of two BitSets.
-// False if they are of different sizes, otherwise true
-// only if all the same bits are set
-func (b *BitSet) Equal(c *BitSet) bool {
- if c == nil || b == nil {
- return c == b
- }
- if b.length != c.length {
- return false
- }
- if b.length == 0 { // if they have both length == 0, then could have nil set
- return true
- }
- // testing for equality shoud not transform the bitset (no call to safeSet)
-
- for p, v := range b.set {
- if c.set[p] != v {
- return false
- }
- }
- return true
-}
-
-func panicIfNull(b *BitSet) {
- if b == nil {
- panic(Error("BitSet must not be null"))
- }
-}
-
-// Difference of base set and other set
-// This is the BitSet equivalent of &^ (and not)
-func (b *BitSet) Difference(compare *BitSet) (result *BitSet) {
- panicIfNull(b)
- panicIfNull(compare)
- result = b.Clone() // clone b (in case b is bigger than compare)
- l := int(compare.wordCount())
- if l > int(b.wordCount()) {
- l = int(b.wordCount())
- }
- for i := 0; i < l; i++ {
- result.set[i] = b.set[i] &^ compare.set[i]
- }
- return
-}
-
-// DifferenceCardinality computes the cardinality of the differnce
-func (b *BitSet) DifferenceCardinality(compare *BitSet) uint {
- panicIfNull(b)
- panicIfNull(compare)
- l := int(compare.wordCount())
- if l > int(b.wordCount()) {
- l = int(b.wordCount())
- }
- cnt := uint64(0)
- cnt += popcntMaskSlice(b.set[:l], compare.set[:l])
- cnt += popcntSlice(b.set[l:])
- return uint(cnt)
-}
-
-// InPlaceDifference computes the difference of base set and other set
-// This is the BitSet equivalent of &^ (and not)
-func (b *BitSet) InPlaceDifference(compare *BitSet) {
- panicIfNull(b)
- panicIfNull(compare)
- l := int(compare.wordCount())
- if l > int(b.wordCount()) {
- l = int(b.wordCount())
- }
- for i := 0; i < l; i++ {
- b.set[i] &^= compare.set[i]
- }
-}
-
-// Convenience function: return two bitsets ordered by
-// increasing length. Note: neither can be nil
-func sortByLength(a *BitSet, b *BitSet) (ap *BitSet, bp *BitSet) {
- if a.length <= b.length {
- ap, bp = a, b
- } else {
- ap, bp = b, a
- }
- return
-}
-
-// Intersection of base set and other set
-// This is the BitSet equivalent of & (and)
-func (b *BitSet) Intersection(compare *BitSet) (result *BitSet) {
- panicIfNull(b)
- panicIfNull(compare)
- b, compare = sortByLength(b, compare)
- result = New(b.length)
- for i, word := range b.set {
- result.set[i] = word & compare.set[i]
- }
- return
-}
-
-// IntersectionCardinality computes the cardinality of the union
-func (b *BitSet) IntersectionCardinality(compare *BitSet) uint {
- panicIfNull(b)
- panicIfNull(compare)
- b, compare = sortByLength(b, compare)
- cnt := popcntAndSlice(b.set, compare.set)
- return uint(cnt)
-}
-
-// InPlaceIntersection destructively computes the intersection of
-// base set and the compare set.
-// This is the BitSet equivalent of & (and)
-func (b *BitSet) InPlaceIntersection(compare *BitSet) {
- panicIfNull(b)
- panicIfNull(compare)
- l := int(compare.wordCount())
- if l > int(b.wordCount()) {
- l = int(b.wordCount())
- }
- for i := 0; i < l; i++ {
- b.set[i] &= compare.set[i]
- }
- for i := l; i < len(b.set); i++ {
- b.set[i] = 0
- }
- if compare.length > 0 {
- b.extendSetMaybe(compare.length - 1)
- }
-}
-
-// Union of base set and other set
-// This is the BitSet equivalent of | (or)
-func (b *BitSet) Union(compare *BitSet) (result *BitSet) {
- panicIfNull(b)
- panicIfNull(compare)
- b, compare = sortByLength(b, compare)
- result = compare.Clone()
- for i, word := range b.set {
- result.set[i] = word | compare.set[i]
- }
- return
-}
-
-// UnionCardinality computes the cardinality of the uniton of the base set
-// and the compare set.
-func (b *BitSet) UnionCardinality(compare *BitSet) uint {
- panicIfNull(b)
- panicIfNull(compare)
- b, compare = sortByLength(b, compare)
- cnt := popcntOrSlice(b.set, compare.set)
- if len(compare.set) > len(b.set) {
- cnt += popcntSlice(compare.set[len(b.set):])
- }
- return uint(cnt)
-}
-
-// InPlaceUnion creates the destructive union of base set and compare set.
-// This is the BitSet equivalent of | (or).
-func (b *BitSet) InPlaceUnion(compare *BitSet) {
- panicIfNull(b)
- panicIfNull(compare)
- l := int(compare.wordCount())
- if l > int(b.wordCount()) {
- l = int(b.wordCount())
- }
- if compare.length > 0 {
- b.extendSetMaybe(compare.length - 1)
- }
- for i := 0; i < l; i++ {
- b.set[i] |= compare.set[i]
- }
- if len(compare.set) > l {
- for i := l; i < len(compare.set); i++ {
- b.set[i] = compare.set[i]
- }
- }
-}
-
-// SymmetricDifference of base set and other set
-// This is the BitSet equivalent of ^ (xor)
-func (b *BitSet) SymmetricDifference(compare *BitSet) (result *BitSet) {
- panicIfNull(b)
- panicIfNull(compare)
- b, compare = sortByLength(b, compare)
- // compare is bigger, so clone it
- result = compare.Clone()
- for i, word := range b.set {
- result.set[i] = word ^ compare.set[i]
- }
- return
-}
-
-// SymmetricDifferenceCardinality computes the cardinality of the symmetric difference
-func (b *BitSet) SymmetricDifferenceCardinality(compare *BitSet) uint {
- panicIfNull(b)
- panicIfNull(compare)
- b, compare = sortByLength(b, compare)
- cnt := popcntXorSlice(b.set, compare.set)
- if len(compare.set) > len(b.set) {
- cnt += popcntSlice(compare.set[len(b.set):])
- }
- return uint(cnt)
-}
-
-// InPlaceSymmetricDifference creates the destructive SymmetricDifference of base set and other set
-// This is the BitSet equivalent of ^ (xor)
-func (b *BitSet) InPlaceSymmetricDifference(compare *BitSet) {
- panicIfNull(b)
- panicIfNull(compare)
- l := int(compare.wordCount())
- if l > int(b.wordCount()) {
- l = int(b.wordCount())
- }
- if compare.length > 0 {
- b.extendSetMaybe(compare.length - 1)
- }
- for i := 0; i < l; i++ {
- b.set[i] ^= compare.set[i]
- }
- if len(compare.set) > l {
- for i := l; i < len(compare.set); i++ {
- b.set[i] = compare.set[i]
- }
- }
-}
-
-// Is the length an exact multiple of word sizes?
-func (b *BitSet) isLenExactMultiple() bool {
- return b.length%wordSize == 0
-}
-
-// Clean last word by setting unused bits to 0
-func (b *BitSet) cleanLastWord() {
- if !b.isLenExactMultiple() {
- b.set[len(b.set)-1] &= allBits >> (wordSize - b.length%wordSize)
- }
-}
-
-// Complement computes the (local) complement of a biset (up to length bits)
-func (b *BitSet) Complement() (result *BitSet) {
- panicIfNull(b)
- result = New(b.length)
- for i, word := range b.set {
- result.set[i] = ^word
- }
- result.cleanLastWord()
- return
-}
-
-// All returns true if all bits are set, false otherwise. Returns true for
-// empty sets.
-func (b *BitSet) All() bool {
- panicIfNull(b)
- return b.Count() == b.length
-}
-
-// None returns true if no bit is set, false otherwise. Returns true for
-// empty sets.
-func (b *BitSet) None() bool {
- panicIfNull(b)
- if b != nil && b.set != nil {
- for _, word := range b.set {
- if word > 0 {
- return false
- }
- }
- return true
- }
- return true
-}
-
-// Any returns true if any bit is set, false otherwise
-func (b *BitSet) Any() bool {
- panicIfNull(b)
- return !b.None()
-}
-
-// IsSuperSet returns true if this is a superset of the other set
-func (b *BitSet) IsSuperSet(other *BitSet) bool {
- for i, e := other.NextSet(0); e; i, e = other.NextSet(i + 1) {
- if !b.Test(i) {
- return false
- }
- }
- return true
-}
-
-// IsStrictSuperSet returns true if this is a strict superset of the other set
-func (b *BitSet) IsStrictSuperSet(other *BitSet) bool {
- return b.Count() > other.Count() && b.IsSuperSet(other)
-}
-
-// DumpAsBits dumps a bit set as a string of bits
-func (b *BitSet) DumpAsBits() string {
- if b.set == nil {
- return "."
- }
- buffer := bytes.NewBufferString("")
- i := len(b.set) - 1
- for ; i >= 0; i-- {
- fmt.Fprintf(buffer, "%064b.", b.set[i])
- }
- return buffer.String()
-}
-
-// BinaryStorageSize returns the binary storage requirements
-func (b *BitSet) BinaryStorageSize() int {
- return binary.Size(uint64(0)) + binary.Size(b.set)
-}
-
-// WriteTo writes a BitSet to a stream
-func (b *BitSet) WriteTo(stream io.Writer) (int64, error) {
- length := uint64(b.length)
-
- // Write length
- err := binary.Write(stream, binaryOrder, length)
- if err != nil {
- return 0, err
- }
-
- // Write set
- err = binary.Write(stream, binaryOrder, b.set)
- return int64(b.BinaryStorageSize()), err
-}
-
-// ReadFrom reads a BitSet from a stream written using WriteTo
-func (b *BitSet) ReadFrom(stream io.Reader) (int64, error) {
- var length uint64
-
- // Read length first
- err := binary.Read(stream, binaryOrder, &length)
- if err != nil {
- return 0, err
- }
- newset := New(uint(length))
-
- if uint64(newset.length) != length {
- return 0, errors.New("unmarshalling error: type mismatch")
- }
-
- // Read remaining bytes as set
- err = binary.Read(stream, binaryOrder, newset.set)
- if err != nil {
- return 0, err
- }
-
- *b = *newset
- return int64(b.BinaryStorageSize()), nil
-}
-
-// MarshalBinary encodes a BitSet into a binary form and returns the result.
-func (b *BitSet) MarshalBinary() ([]byte, error) {
- var buf bytes.Buffer
- writer := bufio.NewWriter(&buf)
-
- _, err := b.WriteTo(writer)
- if err != nil {
- return []byte{}, err
- }
-
- err = writer.Flush()
-
- return buf.Bytes(), err
-}
-
-// UnmarshalBinary decodes the binary form generated by MarshalBinary.
-func (b *BitSet) UnmarshalBinary(data []byte) error {
- buf := bytes.NewReader(data)
- reader := bufio.NewReader(buf)
-
- _, err := b.ReadFrom(reader)
-
- return err
-}
-
-// MarshalJSON marshals a BitSet as a JSON structure
-func (b *BitSet) MarshalJSON() ([]byte, error) {
- buffer := bytes.NewBuffer(make([]byte, 0, b.BinaryStorageSize()))
- _, err := b.WriteTo(buffer)
- if err != nil {
- return nil, err
- }
-
- // URLEncode all bytes
- return json.Marshal(base64Encoding.EncodeToString(buffer.Bytes()))
-}
-
-// UnmarshalJSON unmarshals a BitSet from JSON created using MarshalJSON
-func (b *BitSet) UnmarshalJSON(data []byte) error {
- // Unmarshal as string
- var s string
- err := json.Unmarshal(data, &s)
- if err != nil {
- return err
- }
-
- // URLDecode string
- buf, err := base64Encoding.DecodeString(s)
- if err != nil {
- return err
- }
-
- _, err = b.ReadFrom(bytes.NewReader(buf))
- return err
-}