summaryrefslogtreecommitdiff
path: root/vendor/github.com/klauspost/compress/flate/snappy.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/klauspost/compress/flate/snappy.go')
-rw-r--r--vendor/github.com/klauspost/compress/flate/snappy.go900
1 files changed, 900 insertions, 0 deletions
diff --git a/vendor/github.com/klauspost/compress/flate/snappy.go b/vendor/github.com/klauspost/compress/flate/snappy.go
new file mode 100644
index 000000000..d853320a7
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/snappy.go
@@ -0,0 +1,900 @@
+// Copyright 2011 The Snappy-Go Authors. All rights reserved.
+// Modified for deflate by Klaus Post (c) 2015.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+// emitLiteral writes a literal chunk and returns the number of bytes written.
+func emitLiteral(dst *tokens, lit []byte) {
+ ol := int(dst.n)
+ for i, v := range lit {
+ dst.tokens[(i+ol)&maxStoreBlockSize] = token(v)
+ }
+ dst.n += uint16(len(lit))
+}
+
+// emitCopy writes a copy chunk and returns the number of bytes written.
+func emitCopy(dst *tokens, offset, length int) {
+ dst.tokens[dst.n] = matchToken(uint32(length-3), uint32(offset-minOffsetSize))
+ dst.n++
+}
+
+type snappyEnc interface {
+ Encode(dst *tokens, src []byte)
+ Reset()
+}
+
+func newSnappy(level int) snappyEnc {
+ switch level {
+ case 1:
+ return &snappyL1{}
+ case 2:
+ return &snappyL2{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
+ case 3:
+ return &snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
+ case 4:
+ return &snappyL4{snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}}
+ default:
+ panic("invalid level specified")
+ }
+}
+
+const (
+ tableBits = 14 // Bits used in the table
+ tableSize = 1 << tableBits // Size of the table
+ tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
+ tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
+ baseMatchOffset = 1 // The smallest match offset
+ baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
+ maxMatchOffset = 1 << 15 // The largest match offset
+)
+
+func load32(b []byte, i int) uint32 {
+ b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
+ return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
+}
+
+func load64(b []byte, i int) uint64 {
+ b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
+ return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
+ uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
+}
+
+func hash(u uint32) uint32 {
+ return (u * 0x1e35a7bd) >> tableShift
+}
+
+// snappyL1 encapsulates level 1 compression
+type snappyL1 struct{}
+
+func (e *snappyL1) Reset() {}
+
+func (e *snappyL1) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 16 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ return
+ }
+
+ // Initialize the hash table.
+ //
+ // The table element type is uint16, as s < sLimit and sLimit < len(src)
+ // and len(src) <= maxStoreBlockSize and maxStoreBlockSize == 65535.
+ var table [tableSize]uint16
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := len(src) - inputMargin
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ nextEmit := 0
+
+ // The encoded form must start with a literal, as there are no previous
+ // bytes to copy, so we start looking for hash matches at s == 1.
+ s := 1
+ nextHash := hash(load32(src, s))
+
+ for {
+ // Copied from the C++ snappy implementation:
+ //
+ // Heuristic match skipping: If 32 bytes are scanned with no matches
+ // found, start looking only at every other byte. If 32 more bytes are
+ // scanned (or skipped), look at every third byte, etc.. When a match
+ // is found, immediately go back to looking at every byte. This is a
+ // small loss (~5% performance, ~0.1% density) for compressible data
+ // due to more bookkeeping, but for non-compressible data (such as
+ // JPEG) it's a huge win since the compressor quickly "realizes" the
+ // data is incompressible and doesn't bother looking for matches
+ // everywhere.
+ //
+ // The "skip" variable keeps track of how many bytes there are since
+ // the last match; dividing it by 32 (ie. right-shifting by five) gives
+ // the number of bytes to move ahead for each iteration.
+ skip := 32
+
+ nextS := s
+ candidate := 0
+ for {
+ s = nextS
+ bytesBetweenHashLookups := skip >> 5
+ nextS = s + bytesBetweenHashLookups
+ skip += bytesBetweenHashLookups
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ candidate = int(table[nextHash&tableMask])
+ table[nextHash&tableMask] = uint16(s)
+ nextHash = hash(load32(src, nextS))
+ if s-candidate <= maxMatchOffset && load32(src, s) == load32(src, candidate) {
+ break
+ }
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+ emitLiteral(dst, src[nextEmit:s])
+
+ // Call emitCopy, and then see if another emitCopy could be our next
+ // move. Repeat until we find no match for the input immediately after
+ // what was consumed by the last emitCopy call.
+ //
+ // If we exit this loop normally then we need to call emitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can
+ // exit this loop via goto if we get close to exhausting the input.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+ base := s
+
+ // Extend the 4-byte match as long as possible.
+ //
+ // This is an inlined version of Snappy's:
+ // s = extendMatch(src, candidate+4, s+4)
+ s += 4
+ s1 := base + maxMatchLength
+ if s1 > len(src) {
+ s1 = len(src)
+ }
+ a := src[s:s1]
+ b := src[candidate+4:]
+ b = b[:len(a)]
+ l := len(a)
+ for i := range a {
+ if a[i] != b[i] {
+ l = i
+ break
+ }
+ }
+ s += l
+
+ // matchToken is flate's equivalent of Snappy's emitCopy.
+ dst.tokens[dst.n] = matchToken(uint32(s-base-baseMatchLength), uint32(base-candidate-baseMatchOffset))
+ dst.n++
+ nextEmit = s
+ if s >= sLimit {
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-1 and at s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load64(src, s-1)
+ prevHash := hash(uint32(x >> 0))
+ table[prevHash&tableMask] = uint16(s - 1)
+ currHash := hash(uint32(x >> 8))
+ candidate = int(table[currHash&tableMask])
+ table[currHash&tableMask] = uint16(s)
+ if s-candidate > maxMatchOffset || uint32(x>>8) != load32(src, candidate) {
+ nextHash = hash(uint32(x >> 16))
+ s++
+ break
+ }
+ }
+ }
+
+emitRemainder:
+ if nextEmit < len(src) {
+ emitLiteral(dst, src[nextEmit:])
+ }
+}
+
+type tableEntry struct {
+ val uint32
+ offset int32
+}
+
+func load3232(b []byte, i int32) uint32 {
+ b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
+ return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
+}
+
+func load6432(b []byte, i int32) uint64 {
+ b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
+ return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
+ uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
+}
+
+// snappyGen maintains the table for matches,
+// and the previous byte block for level 2.
+// This is the generic implementation.
+type snappyGen struct {
+ prev []byte
+ cur int32
+}
+
+// snappyGen maintains the table for matches,
+// and the previous byte block for level 2.
+// This is the generic implementation.
+type snappyL2 struct {
+ snappyGen
+ table [tableSize]tableEntry
+}
+
+// EncodeL2 uses a similar algorithm to level 1, but is capable
+// of matching across blocks giving better compression at a small slowdown.
+func (e *snappyL2) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 8 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // Protect against e.cur wraparound.
+ if e.cur > 1<<30 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntry{}
+ }
+ e.cur = maxStoreBlockSize
+ }
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ e.cur += maxStoreBlockSize
+ e.prev = e.prev[:0]
+ return
+ }
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ nextEmit := int32(0)
+ s := int32(0)
+ cv := load3232(src, s)
+ nextHash := hash(cv)
+
+ for {
+ // Copied from the C++ snappy implementation:
+ //
+ // Heuristic match skipping: If 32 bytes are scanned with no matches
+ // found, start looking only at every other byte. If 32 more bytes are
+ // scanned (or skipped), look at every third byte, etc.. When a match
+ // is found, immediately go back to looking at every byte. This is a
+ // small loss (~5% performance, ~0.1% density) for compressible data
+ // due to more bookkeeping, but for non-compressible data (such as
+ // JPEG) it's a huge win since the compressor quickly "realizes" the
+ // data is incompressible and doesn't bother looking for matches
+ // everywhere.
+ //
+ // The "skip" variable keeps track of how many bytes there are since
+ // the last match; dividing it by 32 (ie. right-shifting by five) gives
+ // the number of bytes to move ahead for each iteration.
+ skip := int32(32)
+
+ nextS := s
+ var candidate tableEntry
+ for {
+ s = nextS
+ bytesBetweenHashLookups := skip >> 5
+ nextS = s + bytesBetweenHashLookups
+ skip += bytesBetweenHashLookups
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ candidate = e.table[nextHash&tableMask]
+ now := load3232(src, nextS)
+ e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv}
+ nextHash = hash(now)
+
+ offset := s - (candidate.offset - e.cur)
+ if offset > maxMatchOffset || cv != candidate.val {
+ // Out of range or not matched.
+ cv = now
+ continue
+ }
+ break
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+ emitLiteral(dst, src[nextEmit:s])
+
+ // Call emitCopy, and then see if another emitCopy could be our next
+ // move. Repeat until we find no match for the input immediately after
+ // what was consumed by the last emitCopy call.
+ //
+ // If we exit this loop normally then we need to call emitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can
+ // exit this loop via goto if we get close to exhausting the input.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+
+ // Extend the 4-byte match as long as possible.
+ //
+ s += 4
+ t := candidate.offset - e.cur + 4
+ l := e.matchlen(s, t, src)
+
+ // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
+ dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
+ dst.n++
+ s += l
+ nextEmit = s
+ if s >= sLimit {
+ t += l
+ // Index first pair after match end.
+ if int(t+4) < len(src) && t > 0 {
+ cv := load3232(src, t)
+ e.table[hash(cv)&tableMask] = tableEntry{offset: t + e.cur, val: cv}
+ }
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-1 and at s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load6432(src, s-1)
+ prevHash := hash(uint32(x))
+ e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)}
+ x >>= 8
+ currHash := hash(uint32(x))
+ candidate = e.table[currHash&tableMask]
+ e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)}
+
+ offset := s - (candidate.offset - e.cur)
+ if offset > maxMatchOffset || uint32(x) != candidate.val {
+ cv = uint32(x >> 8)
+ nextHash = hash(cv)
+ s++
+ break
+ }
+ }
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ emitLiteral(dst, src[nextEmit:])
+ }
+ e.cur += int32(len(src))
+ e.prev = e.prev[:len(src)]
+ copy(e.prev, src)
+}
+
+type tableEntryPrev struct {
+ Cur tableEntry
+ Prev tableEntry
+}
+
+// snappyL3
+type snappyL3 struct {
+ snappyGen
+ table [tableSize]tableEntryPrev
+}
+
+// Encode uses a similar algorithm to level 2, will check up to two candidates.
+func (e *snappyL3) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 8 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // Protect against e.cur wraparound.
+ if e.cur > 1<<30 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntryPrev{}
+ }
+ e.snappyGen = snappyGen{cur: maxStoreBlockSize, prev: e.prev[:0]}
+ }
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ e.cur += maxStoreBlockSize
+ e.prev = e.prev[:0]
+ return
+ }
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ nextEmit := int32(0)
+ s := int32(0)
+ cv := load3232(src, s)
+ nextHash := hash(cv)
+
+ for {
+ // Copied from the C++ snappy implementation:
+ //
+ // Heuristic match skipping: If 32 bytes are scanned with no matches
+ // found, start looking only at every other byte. If 32 more bytes are
+ // scanned (or skipped), look at every third byte, etc.. When a match
+ // is found, immediately go back to looking at every byte. This is a
+ // small loss (~5% performance, ~0.1% density) for compressible data
+ // due to more bookkeeping, but for non-compressible data (such as
+ // JPEG) it's a huge win since the compressor quickly "realizes" the
+ // data is incompressible and doesn't bother looking for matches
+ // everywhere.
+ //
+ // The "skip" variable keeps track of how many bytes there are since
+ // the last match; dividing it by 32 (ie. right-shifting by five) gives
+ // the number of bytes to move ahead for each iteration.
+ skip := int32(32)
+
+ nextS := s
+ var candidate tableEntry
+ for {
+ s = nextS
+ bytesBetweenHashLookups := skip >> 5
+ nextS = s + bytesBetweenHashLookups
+ skip += bytesBetweenHashLookups
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ candidates := e.table[nextHash&tableMask]
+ now := load3232(src, nextS)
+ e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
+ nextHash = hash(now)
+
+ // Check both candidates
+ candidate = candidates.Cur
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ break
+ }
+ } else {
+ // We only check if value mismatches.
+ // Offset will always be invalid in other cases.
+ candidate = candidates.Prev
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ break
+ }
+ }
+ }
+ cv = now
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+ emitLiteral(dst, src[nextEmit:s])
+
+ // Call emitCopy, and then see if another emitCopy could be our next
+ // move. Repeat until we find no match for the input immediately after
+ // what was consumed by the last emitCopy call.
+ //
+ // If we exit this loop normally then we need to call emitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can
+ // exit this loop via goto if we get close to exhausting the input.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+
+ // Extend the 4-byte match as long as possible.
+ //
+ s += 4
+ t := candidate.offset - e.cur + 4
+ l := e.matchlen(s, t, src)
+
+ // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
+ dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
+ dst.n++
+ s += l
+ nextEmit = s
+ if s >= sLimit {
+ t += l
+ // Index first pair after match end.
+ if int(t+4) < len(src) && t > 0 {
+ cv := load3232(src, t)
+ nextHash = hash(cv)
+ e.table[nextHash&tableMask] = tableEntryPrev{
+ Prev: e.table[nextHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + t, val: cv},
+ }
+ }
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-3 to s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load6432(src, s-3)
+ prevHash := hash(uint32(x))
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 3, val: uint32(x)},
+ }
+ x >>= 8
+ prevHash = hash(uint32(x))
+
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
+ }
+ x >>= 8
+ prevHash = hash(uint32(x))
+
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
+ }
+ x >>= 8
+ currHash := hash(uint32(x))
+ candidates := e.table[currHash&tableMask]
+ cv = uint32(x)
+ e.table[currHash&tableMask] = tableEntryPrev{
+ Prev: candidates.Cur,
+ Cur: tableEntry{offset: s + e.cur, val: cv},
+ }
+
+ // Check both candidates
+ candidate = candidates.Cur
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ continue
+ }
+ } else {
+ // We only check if value mismatches.
+ // Offset will always be invalid in other cases.
+ candidate = candidates.Prev
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ continue
+ }
+ }
+ }
+ cv = uint32(x >> 8)
+ nextHash = hash(cv)
+ s++
+ break
+ }
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ emitLiteral(dst, src[nextEmit:])
+ }
+ e.cur += int32(len(src))
+ e.prev = e.prev[:len(src)]
+ copy(e.prev, src)
+}
+
+// snappyL4
+type snappyL4 struct {
+ snappyL3
+}
+
+// Encode uses a similar algorithm to level 3,
+// but will check up to two candidates if first isn't long enough.
+func (e *snappyL4) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 8 - 3
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ matchLenGood = 12
+ )
+
+ // Protect against e.cur wraparound.
+ if e.cur > 1<<30 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntryPrev{}
+ }
+ e.snappyGen = snappyGen{cur: maxStoreBlockSize, prev: e.prev[:0]}
+ }
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ e.cur += maxStoreBlockSize
+ e.prev = e.prev[:0]
+ return
+ }
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ nextEmit := int32(0)
+ s := int32(0)
+ cv := load3232(src, s)
+ nextHash := hash(cv)
+
+ for {
+ // Copied from the C++ snappy implementation:
+ //
+ // Heuristic match skipping: If 32 bytes are scanned with no matches
+ // found, start looking only at every other byte. If 32 more bytes are
+ // scanned (or skipped), look at every third byte, etc.. When a match
+ // is found, immediately go back to looking at every byte. This is a
+ // small loss (~5% performance, ~0.1% density) for compressible data
+ // due to more bookkeeping, but for non-compressible data (such as
+ // JPEG) it's a huge win since the compressor quickly "realizes" the
+ // data is incompressible and doesn't bother looking for matches
+ // everywhere.
+ //
+ // The "skip" variable keeps track of how many bytes there are since
+ // the last match; dividing it by 32 (ie. right-shifting by five) gives
+ // the number of bytes to move ahead for each iteration.
+ skip := int32(32)
+
+ nextS := s
+ var candidate tableEntry
+ var candidateAlt tableEntry
+ for {
+ s = nextS
+ bytesBetweenHashLookups := skip >> 5
+ nextS = s + bytesBetweenHashLookups
+ skip += bytesBetweenHashLookups
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ candidates := e.table[nextHash&tableMask]
+ now := load3232(src, nextS)
+ e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
+ nextHash = hash(now)
+
+ // Check both candidates
+ candidate = candidates.Cur
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset < maxMatchOffset {
+ offset = s - (candidates.Prev.offset - e.cur)
+ if cv == candidates.Prev.val && offset < maxMatchOffset {
+ candidateAlt = candidates.Prev
+ }
+ break
+ }
+ } else {
+ // We only check if value mismatches.
+ // Offset will always be invalid in other cases.
+ candidate = candidates.Prev
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset < maxMatchOffset {
+ break
+ }
+ }
+ }
+ cv = now
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+ emitLiteral(dst, src[nextEmit:s])
+
+ // Call emitCopy, and then see if another emitCopy could be our next
+ // move. Repeat until we find no match for the input immediately after
+ // what was consumed by the last emitCopy call.
+ //
+ // If we exit this loop normally then we need to call emitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can
+ // exit this loop via goto if we get close to exhausting the input.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+
+ // Extend the 4-byte match as long as possible.
+ //
+ s += 4
+ t := candidate.offset - e.cur + 4
+ l := e.matchlen(s, t, src)
+ // Try alternative candidate if match length < matchLenGood.
+ if l < matchLenGood-4 && candidateAlt.offset != 0 {
+ t2 := candidateAlt.offset - e.cur + 4
+ l2 := e.matchlen(s, t2, src)
+ if l2 > l {
+ l = l2
+ t = t2
+ }
+ }
+ // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
+ dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
+ dst.n++
+ s += l
+ nextEmit = s
+ if s >= sLimit {
+ t += l
+ // Index first pair after match end.
+ if int(t+4) < len(src) && t > 0 {
+ cv := load3232(src, t)
+ nextHash = hash(cv)
+ e.table[nextHash&tableMask] = tableEntryPrev{
+ Prev: e.table[nextHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + t, val: cv},
+ }
+ }
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-3 to s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load6432(src, s-3)
+ prevHash := hash(uint32(x))
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 3, val: uint32(x)},
+ }
+ x >>= 8
+ prevHash = hash(uint32(x))
+
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
+ }
+ x >>= 8
+ prevHash = hash(uint32(x))
+
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
+ }
+ x >>= 8
+ currHash := hash(uint32(x))
+ candidates := e.table[currHash&tableMask]
+ cv = uint32(x)
+ e.table[currHash&tableMask] = tableEntryPrev{
+ Prev: candidates.Cur,
+ Cur: tableEntry{offset: s + e.cur, val: cv},
+ }
+
+ // Check both candidates
+ candidate = candidates.Cur
+ candidateAlt = tableEntry{}
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ offset = s - (candidates.Prev.offset - e.cur)
+ if cv == candidates.Prev.val && offset <= maxMatchOffset {
+ candidateAlt = candidates.Prev
+ }
+ continue
+ }
+ } else {
+ // We only check if value mismatches.
+ // Offset will always be invalid in other cases.
+ candidate = candidates.Prev
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ continue
+ }
+ }
+ }
+ cv = uint32(x >> 8)
+ nextHash = hash(cv)
+ s++
+ break
+ }
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ emitLiteral(dst, src[nextEmit:])
+ }
+ e.cur += int32(len(src))
+ e.prev = e.prev[:len(src)]
+ copy(e.prev, src)
+}
+
+func (e *snappyGen) matchlen(s, t int32, src []byte) int32 {
+ s1 := int(s) + maxMatchLength - 4
+ if s1 > len(src) {
+ s1 = len(src)
+ }
+
+ // If we are inside the current block
+ if t >= 0 {
+ b := src[t:]
+ a := src[s:s1]
+ b = b[:len(a)]
+ // Extend the match to be as long as possible.
+ for i := range a {
+ if a[i] != b[i] {
+ return int32(i)
+ }
+ }
+ return int32(len(a))
+ }
+
+ // We found a match in the previous block.
+ tp := int32(len(e.prev)) + t
+ if tp < 0 {
+ return 0
+ }
+
+ // Extend the match to be as long as possible.
+ a := src[s:s1]
+ b := e.prev[tp:]
+ if len(b) > len(a) {
+ b = b[:len(a)]
+ }
+ a = a[:len(b)]
+ for i := range b {
+ if a[i] != b[i] {
+ return int32(i)
+ }
+ }
+
+ // If we reached our limit, we matched everything we are
+ // allowed to in the previous block and we return.
+ n := int32(len(b))
+ if int(s+n) == s1 {
+ return n
+ }
+
+ // Continue looking for more matches in the current block.
+ a = src[s+n : s1]
+ b = src[:len(a)]
+ for i := range a {
+ if a[i] != b[i] {
+ return int32(i) + n
+ }
+ }
+ return int32(len(a)) + n
+}
+
+// Reset the encoding table.
+func (e *snappyGen) Reset() {
+ e.prev = e.prev[:0]
+ e.cur += maxMatchOffset
+}