aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/klauspost/compress/flate
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/klauspost/compress/flate')
-rw-r--r--vendor/github.com/klauspost/compress/flate/copy.go32
-rw-r--r--vendor/github.com/klauspost/compress/flate/crc32_amd64.go42
-rw-r--r--vendor/github.com/klauspost/compress/flate/crc32_amd64.s214
-rw-r--r--vendor/github.com/klauspost/compress/flate/crc32_noasm.go35
-rw-r--r--vendor/github.com/klauspost/compress/flate/deflate.go1353
-rw-r--r--vendor/github.com/klauspost/compress/flate/dict_decoder.go184
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go701
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_code.go344
-rw-r--r--vendor/github.com/klauspost/compress/flate/inflate.go880
-rw-r--r--vendor/github.com/klauspost/compress/flate/reverse_bits.go48
-rw-r--r--vendor/github.com/klauspost/compress/flate/snappy.go900
-rw-r--r--vendor/github.com/klauspost/compress/flate/token.go115
12 files changed, 4848 insertions, 0 deletions
diff --git a/vendor/github.com/klauspost/compress/flate/copy.go b/vendor/github.com/klauspost/compress/flate/copy.go
new file mode 100644
index 000000000..a3200a8f4
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/copy.go
@@ -0,0 +1,32 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+// forwardCopy is like the built-in copy function except that it always goes
+// forward from the start, even if the dst and src overlap.
+// It is equivalent to:
+// for i := 0; i < n; i++ {
+// mem[dst+i] = mem[src+i]
+// }
+func forwardCopy(mem []byte, dst, src, n int) {
+ if dst <= src {
+ copy(mem[dst:dst+n], mem[src:src+n])
+ return
+ }
+ for {
+ if dst >= src+n {
+ copy(mem[dst:dst+n], mem[src:src+n])
+ return
+ }
+ // There is some forward overlap. The destination
+ // will be filled with a repeated pattern of mem[src:src+k].
+ // We copy one instance of the pattern here, then repeat.
+ // Each time around this loop k will double.
+ k := dst - src
+ copy(mem[dst:dst+k], mem[src:src+k])
+ n -= k
+ dst += k
+ }
+}
diff --git a/vendor/github.com/klauspost/compress/flate/crc32_amd64.go b/vendor/github.com/klauspost/compress/flate/crc32_amd64.go
new file mode 100644
index 000000000..8298d309a
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/crc32_amd64.go
@@ -0,0 +1,42 @@
+//+build !noasm
+//+build !appengine
+//+build !gccgo
+
+// Copyright 2015, Klaus Post, see LICENSE for details.
+
+package flate
+
+import (
+ "github.com/klauspost/cpuid"
+)
+
+// crc32sse returns a hash for the first 4 bytes of the slice
+// len(a) must be >= 4.
+//go:noescape
+func crc32sse(a []byte) uint32
+
+// crc32sseAll calculates hashes for each 4-byte set in a.
+// dst must be east len(a) - 4 in size.
+// The size is not checked by the assembly.
+//go:noescape
+func crc32sseAll(a []byte, dst []uint32)
+
+// matchLenSSE4 returns the number of matching bytes in a and b
+// up to length 'max'. Both slices must be at least 'max'
+// bytes in size.
+//
+// TODO: drop the "SSE4" name, since it doesn't use any SSE instructions.
+//
+//go:noescape
+func matchLenSSE4(a, b []byte, max int) int
+
+// histogram accumulates a histogram of b in h.
+// h must be at least 256 entries in length,
+// and must be cleared before calling this function.
+//go:noescape
+func histogram(b []byte, h []int32)
+
+// Detect SSE 4.2 feature.
+func init() {
+ useSSE42 = cpuid.CPU.SSE42()
+}
diff --git a/vendor/github.com/klauspost/compress/flate/crc32_amd64.s b/vendor/github.com/klauspost/compress/flate/crc32_amd64.s
new file mode 100644
index 000000000..a79943727
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/crc32_amd64.s
@@ -0,0 +1,214 @@
+//+build !noasm
+//+build !appengine
+//+build !gccgo
+
+// Copyright 2015, Klaus Post, see LICENSE for details.
+
+// func crc32sse(a []byte) uint32
+TEXT ·crc32sse(SB), 4, $0
+ MOVQ a+0(FP), R10
+ XORQ BX, BX
+
+ // CRC32 dword (R10), EBX
+ BYTE $0xF2; BYTE $0x41; BYTE $0x0f
+ BYTE $0x38; BYTE $0xf1; BYTE $0x1a
+
+ MOVL BX, ret+24(FP)
+ RET
+
+// func crc32sseAll(a []byte, dst []uint32)
+TEXT ·crc32sseAll(SB), 4, $0
+ MOVQ a+0(FP), R8 // R8: src
+ MOVQ a_len+8(FP), R10 // input length
+ MOVQ dst+24(FP), R9 // R9: dst
+ SUBQ $4, R10
+ JS end
+ JZ one_crc
+ MOVQ R10, R13
+ SHRQ $2, R10 // len/4
+ ANDQ $3, R13 // len&3
+ XORQ BX, BX
+ ADDQ $1, R13
+ TESTQ R10, R10
+ JZ rem_loop
+
+crc_loop:
+ MOVQ (R8), R11
+ XORQ BX, BX
+ XORQ DX, DX
+ XORQ DI, DI
+ MOVQ R11, R12
+ SHRQ $8, R11
+ MOVQ R12, AX
+ MOVQ R11, CX
+ SHRQ $16, R12
+ SHRQ $16, R11
+ MOVQ R12, SI
+
+ // CRC32 EAX, EBX
+ BYTE $0xF2; BYTE $0x0f
+ BYTE $0x38; BYTE $0xf1; BYTE $0xd8
+
+ // CRC32 ECX, EDX
+ BYTE $0xF2; BYTE $0x0f
+ BYTE $0x38; BYTE $0xf1; BYTE $0xd1
+
+ // CRC32 ESI, EDI
+ BYTE $0xF2; BYTE $0x0f
+ BYTE $0x38; BYTE $0xf1; BYTE $0xfe
+ MOVL BX, (R9)
+ MOVL DX, 4(R9)
+ MOVL DI, 8(R9)
+
+ XORQ BX, BX
+ MOVL R11, AX
+
+ // CRC32 EAX, EBX
+ BYTE $0xF2; BYTE $0x0f
+ BYTE $0x38; BYTE $0xf1; BYTE $0xd8
+ MOVL BX, 12(R9)
+
+ ADDQ $16, R9
+ ADDQ $4, R8
+ XORQ BX, BX
+ SUBQ $1, R10
+ JNZ crc_loop
+
+rem_loop:
+ MOVL (R8), AX
+
+ // CRC32 EAX, EBX
+ BYTE $0xF2; BYTE $0x0f
+ BYTE $0x38; BYTE $0xf1; BYTE $0xd8
+
+ MOVL BX, (R9)
+ ADDQ $4, R9
+ ADDQ $1, R8
+ XORQ BX, BX
+ SUBQ $1, R13
+ JNZ rem_loop
+
+end:
+ RET
+
+one_crc:
+ MOVQ $1, R13
+ XORQ BX, BX
+ JMP rem_loop
+
+// func matchLenSSE4(a, b []byte, max int) int
+TEXT ·matchLenSSE4(SB), 4, $0
+ MOVQ a_base+0(FP), SI
+ MOVQ b_base+24(FP), DI
+ MOVQ DI, DX
+ MOVQ max+48(FP), CX
+
+cmp8:
+ // As long as we are 8 or more bytes before the end of max, we can load and
+ // compare 8 bytes at a time. If those 8 bytes are equal, repeat.
+ CMPQ CX, $8
+ JLT cmp1
+ MOVQ (SI), AX
+ MOVQ (DI), BX
+ CMPQ AX, BX
+ JNE bsf
+ ADDQ $8, SI
+ ADDQ $8, DI
+ SUBQ $8, CX
+ JMP cmp8
+
+bsf:
+ // If those 8 bytes were not equal, XOR the two 8 byte values, and return
+ // the index of the first byte that differs. The BSF instruction finds the
+ // least significant 1 bit, the amd64 architecture is little-endian, and
+ // the shift by 3 converts a bit index to a byte index.
+ XORQ AX, BX
+ BSFQ BX, BX
+ SHRQ $3, BX
+ ADDQ BX, DI
+
+ // Subtract off &b[0] to convert from &b[ret] to ret, and return.
+ SUBQ DX, DI
+ MOVQ DI, ret+56(FP)
+ RET
+
+cmp1:
+ // In the slices' tail, compare 1 byte at a time.
+ CMPQ CX, $0
+ JEQ matchLenEnd
+ MOVB (SI), AX
+ MOVB (DI), BX
+ CMPB AX, BX
+ JNE matchLenEnd
+ ADDQ $1, SI
+ ADDQ $1, DI
+ SUBQ $1, CX
+ JMP cmp1
+
+matchLenEnd:
+ // Subtract off &b[0] to convert from &b[ret] to ret, and return.
+ SUBQ DX, DI
+ MOVQ DI, ret+56(FP)
+ RET
+
+// func histogram(b []byte, h []int32)
+TEXT ·histogram(SB), 4, $0
+ MOVQ b+0(FP), SI // SI: &b
+ MOVQ b_len+8(FP), R9 // R9: len(b)
+ MOVQ h+24(FP), DI // DI: Histogram
+ MOVQ R9, R8
+ SHRQ $3, R8
+ JZ hist1
+ XORQ R11, R11
+
+loop_hist8:
+ MOVQ (SI), R10
+
+ MOVB R10, R11
+ INCL (DI)(R11*4)
+ SHRQ $8, R10
+
+ MOVB R10, R11
+ INCL (DI)(R11*4)
+ SHRQ $8, R10
+
+ MOVB R10, R11
+ INCL (DI)(R11*4)
+ SHRQ $8, R10
+
+ MOVB R10, R11
+ INCL (DI)(R11*4)
+ SHRQ $8, R10
+
+ MOVB R10, R11
+ INCL (DI)(R11*4)
+ SHRQ $8, R10
+
+ MOVB R10, R11
+ INCL (DI)(R11*4)
+ SHRQ $8, R10
+
+ MOVB R10, R11
+ INCL (DI)(R11*4)
+ SHRQ $8, R10
+
+ INCL (DI)(R10*4)
+
+ ADDQ $8, SI
+ DECQ R8
+ JNZ loop_hist8
+
+hist1:
+ ANDQ $7, R9
+ JZ end_hist
+ XORQ R10, R10
+
+loop_hist1:
+ MOVB (SI), R10
+ INCL (DI)(R10*4)
+ INCQ SI
+ DECQ R9
+ JNZ loop_hist1
+
+end_hist:
+ RET
diff --git a/vendor/github.com/klauspost/compress/flate/crc32_noasm.go b/vendor/github.com/klauspost/compress/flate/crc32_noasm.go
new file mode 100644
index 000000000..dcf43bd50
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/crc32_noasm.go
@@ -0,0 +1,35 @@
+//+build !amd64 noasm appengine gccgo
+
+// Copyright 2015, Klaus Post, see LICENSE for details.
+
+package flate
+
+func init() {
+ useSSE42 = false
+}
+
+// crc32sse should never be called.
+func crc32sse(a []byte) uint32 {
+ panic("no assembler")
+}
+
+// crc32sseAll should never be called.
+func crc32sseAll(a []byte, dst []uint32) {
+ panic("no assembler")
+}
+
+// matchLenSSE4 should never be called.
+func matchLenSSE4(a, b []byte, max int) int {
+ panic("no assembler")
+ return 0
+}
+
+// histogram accumulates a histogram of b in h.
+//
+// len(h) must be >= 256, and h's elements must be all zeroes.
+func histogram(b []byte, h []int32) {
+ h = h[:256]
+ for _, t := range b {
+ h[t]++
+ }
+}
diff --git a/vendor/github.com/klauspost/compress/flate/deflate.go b/vendor/github.com/klauspost/compress/flate/deflate.go
new file mode 100644
index 000000000..9e6e7ff0c
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/deflate.go
@@ -0,0 +1,1353 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Copyright (c) 2015 Klaus Post
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "fmt"
+ "io"
+ "math"
+)
+
+const (
+ NoCompression = 0
+ BestSpeed = 1
+ BestCompression = 9
+ DefaultCompression = -1
+
+ // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
+ // entropy encoding. This mode is useful in compressing data that has
+ // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
+ // that lacks an entropy encoder. Compression gains are achieved when
+ // certain bytes in the input stream occur more frequently than others.
+ //
+ // Note that HuffmanOnly produces a compressed output that is
+ // RFC 1951 compliant. That is, any valid DEFLATE decompressor will
+ // continue to be able to decompress this output.
+ HuffmanOnly = -2
+ ConstantCompression = HuffmanOnly // compatibility alias.
+
+ logWindowSize = 15
+ windowSize = 1 << logWindowSize
+ windowMask = windowSize - 1
+ logMaxOffsetSize = 15 // Standard DEFLATE
+ minMatchLength = 4 // The smallest match that the compressor looks for
+ maxMatchLength = 258 // The longest match for the compressor
+ minOffsetSize = 1 // The shortest offset that makes any sense
+
+ // The maximum number of tokens we put into a single flat block, just too
+ // stop things from getting too large.
+ maxFlateBlockTokens = 1 << 14
+ maxStoreBlockSize = 65535
+ hashBits = 17 // After 17 performance degrades
+ hashSize = 1 << hashBits
+ hashMask = (1 << hashBits) - 1
+ hashShift = (hashBits + minMatchLength - 1) / minMatchLength
+ maxHashOffset = 1 << 24
+
+ skipNever = math.MaxInt32
+)
+
+var useSSE42 bool
+
+type compressionLevel struct {
+ good, lazy, nice, chain, fastSkipHashing, level int
+}
+
+// Compression levels have been rebalanced from zlib deflate defaults
+// to give a bigger spread in speed and compression.
+// See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
+var levels = []compressionLevel{
+ {}, // 0
+ // Level 1-4 uses specialized algorithm - values not used
+ {0, 0, 0, 0, 0, 1},
+ {0, 0, 0, 0, 0, 2},
+ {0, 0, 0, 0, 0, 3},
+ {0, 0, 0, 0, 0, 4},
+ // For levels 5-6 we don't bother trying with lazy matches.
+ // Lazy matching is at least 30% slower, with 1.5% increase.
+ {6, 0, 12, 8, 12, 5},
+ {8, 0, 24, 16, 16, 6},
+ // Levels 7-9 use increasingly more lazy matching
+ // and increasingly stringent conditions for "good enough".
+ {8, 8, 24, 16, skipNever, 7},
+ {10, 16, 24, 64, skipNever, 8},
+ {32, 258, 258, 4096, skipNever, 9},
+}
+
+type compressor struct {
+ compressionLevel
+
+ w *huffmanBitWriter
+ bulkHasher func([]byte, []uint32)
+
+ // compression algorithm
+ fill func(*compressor, []byte) int // copy data to window
+ step func(*compressor) // process window
+ sync bool // requesting flush
+
+ // Input hash chains
+ // hashHead[hashValue] contains the largest inputIndex with the specified hash value
+ // If hashHead[hashValue] is within the current window, then
+ // hashPrev[hashHead[hashValue] & windowMask] contains the previous index
+ // with the same hash value.
+ chainHead int
+ hashHead [hashSize]uint32
+ hashPrev [windowSize]uint32
+ hashOffset int
+
+ // input window: unprocessed data is window[index:windowEnd]
+ index int
+ window []byte
+ windowEnd int
+ blockStart int // window index where current tokens start
+ byteAvailable bool // if true, still need to process window[index-1].
+
+ // queued output tokens
+ tokens tokens
+
+ // deflate state
+ length int
+ offset int
+ hash uint32
+ maxInsertIndex int
+ err error
+ ii uint16 // position of last match, intended to overflow to reset.
+
+ snap snappyEnc
+ hashMatch [maxMatchLength + minMatchLength]uint32
+}
+
+func (d *compressor) fillDeflate(b []byte) int {
+ if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
+ // shift the window by windowSize
+ copy(d.window[:], d.window[windowSize:2*windowSize])
+ d.index -= windowSize
+ d.windowEnd -= windowSize
+ if d.blockStart >= windowSize {
+ d.blockStart -= windowSize
+ } else {
+ d.blockStart = math.MaxInt32
+ }
+ d.hashOffset += windowSize
+ if d.hashOffset > maxHashOffset {
+ delta := d.hashOffset - 1
+ d.hashOffset -= delta
+ d.chainHead -= delta
+ // Iterate over slices instead of arrays to avoid copying
+ // the entire table onto the stack (Issue #18625).
+ for i, v := range d.hashPrev[:] {
+ if int(v) > delta {
+ d.hashPrev[i] = uint32(int(v) - delta)
+ } else {
+ d.hashPrev[i] = 0
+ }
+ }
+ for i, v := range d.hashHead[:] {
+ if int(v) > delta {
+ d.hashHead[i] = uint32(int(v) - delta)
+ } else {
+ d.hashHead[i] = 0
+ }
+ }
+ }
+ }
+ n := copy(d.window[d.windowEnd:], b)
+ d.windowEnd += n
+ return n
+}
+
+func (d *compressor) writeBlock(tok tokens, index int, eof bool) error {
+ if index > 0 || eof {
+ var window []byte
+ if d.blockStart <= index {
+ window = d.window[d.blockStart:index]
+ }
+ d.blockStart = index
+ d.w.writeBlock(tok.tokens[:tok.n], eof, window)
+ return d.w.err
+ }
+ return nil
+}
+
+// writeBlockSkip writes the current block and uses the number of tokens
+// to determine if the block should be stored on no matches, or
+// only huffman encoded.
+func (d *compressor) writeBlockSkip(tok tokens, index int, eof bool) error {
+ if index > 0 || eof {
+ if d.blockStart <= index {
+ window := d.window[d.blockStart:index]
+ // If we removed less than a 64th of all literals
+ // we huffman compress the block.
+ if int(tok.n) > len(window)-int(tok.n>>6) {
+ d.w.writeBlockHuff(eof, window)
+ } else {
+ // Write a dynamic huffman block.
+ d.w.writeBlockDynamic(tok.tokens[:tok.n], eof, window)
+ }
+ } else {
+ d.w.writeBlock(tok.tokens[:tok.n], eof, nil)
+ }
+ d.blockStart = index
+ return d.w.err
+ }
+ return nil
+}
+
+// fillWindow will fill the current window with the supplied
+// dictionary and calculate all hashes.
+// This is much faster than doing a full encode.
+// Should only be used after a start/reset.
+func (d *compressor) fillWindow(b []byte) {
+ // Do not fill window if we are in store-only mode,
+ // use constant or Snappy compression.
+ switch d.compressionLevel.level {
+ case 0, 1, 2:
+ return
+ }
+ // If we are given too much, cut it.
+ if len(b) > windowSize {
+ b = b[len(b)-windowSize:]
+ }
+ // Add all to window.
+ n := copy(d.window[d.windowEnd:], b)
+
+ // Calculate 256 hashes at the time (more L1 cache hits)
+ loops := (n + 256 - minMatchLength) / 256
+ for j := 0; j < loops; j++ {
+ startindex := j * 256
+ end := startindex + 256 + minMatchLength - 1
+ if end > n {
+ end = n
+ }
+ tocheck := d.window[startindex:end]
+ dstSize := len(tocheck) - minMatchLength + 1
+
+ if dstSize <= 0 {
+ continue
+ }
+
+ dst := d.hashMatch[:dstSize]
+ d.bulkHasher(tocheck, dst)
+ var newH uint32
+ for i, val := range dst {
+ di := i + startindex
+ newH = val & hashMask
+ // Get previous value with the same hash.
+ // Our chain should point to the previous value.
+ d.hashPrev[di&windowMask] = d.hashHead[newH]
+ // Set the head of the hash chain to us.
+ d.hashHead[newH] = uint32(di + d.hashOffset)
+ }
+ d.hash = newH
+ }
+ // Update window information.
+ d.windowEnd += n
+ d.index = n
+}
+
+// Try to find a match starting at index whose length is greater than prevSize.
+// We only look at chainCount possibilities before giving up.
+// pos = d.index, prevHead = d.chainHead-d.hashOffset, prevLength=minMatchLength-1, lookahead
+func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
+ minMatchLook := maxMatchLength
+ if lookahead < minMatchLook {
+ minMatchLook = lookahead
+ }
+
+ win := d.window[0 : pos+minMatchLook]
+
+ // We quit when we get a match that's at least nice long
+ nice := len(win) - pos
+ if d.nice < nice {
+ nice = d.nice
+ }
+
+ // If we've got a match that's good enough, only look in 1/4 the chain.
+ tries := d.chain
+ length = prevLength
+ if length >= d.good {
+ tries >>= 2
+ }
+
+ wEnd := win[pos+length]
+ wPos := win[pos:]
+ minIndex := pos - windowSize
+
+ for i := prevHead; tries > 0; tries-- {
+ if wEnd == win[i+length] {
+ n := matchLen(win[i:], wPos, minMatchLook)
+
+ if n > length && (n > minMatchLength || pos-i <= 4096) {
+ length = n
+ offset = pos - i
+ ok = true
+ if n >= nice {
+ // The match is good enough that we don't try to find a better one.
+ break
+ }
+ wEnd = win[pos+n]
+ }
+ }
+ if i == minIndex {
+ // hashPrev[i & windowMask] has already been overwritten, so stop now.
+ break
+ }
+ i = int(d.hashPrev[i&windowMask]) - d.hashOffset
+ if i < minIndex || i < 0 {
+ break
+ }
+ }
+ return
+}
+
+// Try to find a match starting at index whose length is greater than prevSize.
+// We only look at chainCount possibilities before giving up.
+// pos = d.index, prevHead = d.chainHead-d.hashOffset, prevLength=minMatchLength-1, lookahead
+func (d *compressor) findMatchSSE(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
+ minMatchLook := maxMatchLength
+ if lookahead < minMatchLook {
+ minMatchLook = lookahead
+ }
+
+ win := d.window[0 : pos+minMatchLook]
+
+ // We quit when we get a match that's at least nice long
+ nice := len(win) - pos
+ if d.nice < nice {
+ nice = d.nice
+ }
+
+ // If we've got a match that's good enough, only look in 1/4 the chain.
+ tries := d.chain
+ length = prevLength
+ if length >= d.good {
+ tries >>= 2
+ }
+
+ wEnd := win[pos+length]
+ wPos := win[pos:]
+ minIndex := pos - windowSize
+
+ for i := prevHead; tries > 0; tries-- {
+ if wEnd == win[i+length] {
+ n := matchLenSSE4(win[i:], wPos, minMatchLook)
+
+ if n > length && (n > minMatchLength || pos-i <= 4096) {
+ length = n
+ offset = pos - i
+ ok = true
+ if n >= nice {
+ // The match is good enough that we don't try to find a better one.
+ break
+ }
+ wEnd = win[pos+n]
+ }
+ }
+ if i == minIndex {
+ // hashPrev[i & windowMask] has already been overwritten, so stop now.
+ break
+ }
+ i = int(d.hashPrev[i&windowMask]) - d.hashOffset
+ if i < minIndex || i < 0 {
+ break
+ }
+ }
+ return
+}
+
+func (d *compressor) writeStoredBlock(buf []byte) error {
+ if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
+ return d.w.err
+ }
+ d.w.writeBytes(buf)
+ return d.w.err
+}
+
+const hashmul = 0x1e35a7bd
+
+// hash4 returns a hash representation of the first 4 bytes
+// of the supplied slice.
+// The caller must ensure that len(b) >= 4.
+func hash4(b []byte) uint32 {
+ return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
+}
+
+// bulkHash4 will compute hashes using the same
+// algorithm as hash4
+func bulkHash4(b []byte, dst []uint32) {
+ if len(b) < minMatchLength {
+ return
+ }
+ hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
+ dst[0] = (hb * hashmul) >> (32 - hashBits)
+ end := len(b) - minMatchLength + 1
+ for i := 1; i < end; i++ {
+ hb = (hb << 8) | uint32(b[i+3])
+ dst[i] = (hb * hashmul) >> (32 - hashBits)
+ }
+}
+
+// matchLen returns the number of matching bytes in a and b
+// up to length 'max'. Both slices must be at least 'max'
+// bytes in size.
+func matchLen(a, b []byte, max int) int {
+ a = a[:max]
+ b = b[:len(a)]
+ for i, av := range a {
+ if b[i] != av {
+ return i
+ }
+ }
+ return max
+}
+
+func (d *compressor) initDeflate() {
+ d.window = make([]byte, 2*windowSize)
+ d.hashOffset = 1
+ d.length = minMatchLength - 1
+ d.offset = 0
+ d.byteAvailable = false
+ d.index = 0
+ d.hash = 0
+ d.chainHead = -1
+ d.bulkHasher = bulkHash4
+ if useSSE42 {
+ d.bulkHasher = crc32sseAll
+ }
+}
+
+// Assumes that d.fastSkipHashing != skipNever,
+// otherwise use deflateLazy
+func (d *compressor) deflate() {
+
+ // Sanity enables additional runtime tests.
+ // It's intended to be used during development
+ // to supplement the currently ad-hoc unit tests.
+ const sanity = false
+
+ if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
+ return
+ }
+
+ d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
+ if d.index < d.maxInsertIndex {
+ d.hash = hash4(d.window[d.index : d.index+minMatchLength])
+ }
+
+ for {
+ if sanity && d.index > d.windowEnd {
+ panic("index > windowEnd")
+ }
+ lookahead := d.windowEnd - d.index
+ if lookahead < minMatchLength+maxMatchLength {
+ if !d.sync {
+ return
+ }
+ if sanity && d.index > d.windowEnd {
+ panic("index > windowEnd")
+ }
+ if lookahead == 0 {
+ if d.tokens.n > 0 {
+ if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ return
+ }
+ }
+ if d.index < d.maxInsertIndex {
+ // Update the hash
+ d.hash = hash4(d.window[d.index : d.index+minMatchLength])
+ ch := d.hashHead[d.hash&hashMask]
+ d.chainHead = int(ch)
+ d.hashPrev[d.index&windowMask] = ch
+ d.hashHead[d.hash&hashMask] = uint32(d.index + d.hashOffset)
+ }
+ d.length = minMatchLength - 1
+ d.offset = 0
+ minIndex := d.index - windowSize
+ if minIndex < 0 {
+ minIndex = 0
+ }
+
+ if d.chainHead-d.hashOffset >= minIndex && lookahead > minMatchLength-1 {
+ if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
+ d.length = newLength
+ d.offset = newOffset
+ }
+ }
+ if d.length >= minMatchLength {
+ d.ii = 0
+ // There was a match at the previous step, and the current match is
+ // not better. Output the previous match.
+ // "d.length-3" should NOT be "d.length-minMatchLength", since the format always assume 3
+ d.tokens.tokens[d.tokens.n] = matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize))
+ d.tokens.n++
+ // Insert in the hash table all strings up to the end of the match.
+ // index and index-1 are already inserted. If there is not enough
+ // lookahead, the last two strings are not inserted into the hash
+ // table.
+ if d.length <= d.fastSkipHashing {
+ var newIndex int
+ newIndex = d.index + d.length
+ // Calculate missing hashes
+ end := newIndex
+ if end > d.maxInsertIndex {
+ end = d.maxInsertIndex
+ }
+ end += minMatchLength - 1
+ startindex := d.index + 1
+ if startindex > d.maxInsertIndex {
+ startindex = d.maxInsertIndex
+ }
+ tocheck := d.window[startindex:end]
+ dstSize := len(tocheck) - minMatchLength + 1
+ if dstSize > 0 {
+ dst := d.hashMatch[:dstSize]
+ bulkHash4(tocheck, dst)
+ var newH uint32
+ for i, val := range dst {
+ di := i + startindex
+ newH = val & hashMask
+ // Get previous value with the same hash.
+ // Our chain should point to the previous value.
+ d.hashPrev[di&windowMask] = d.hashHead[newH]
+ // Set the head of the hash chain to us.
+ d.hashHead[newH] = uint32(di + d.hashOffset)
+ }
+ d.hash = newH
+ }
+ d.index = newIndex
+ } else {
+ // For matches this long, we don't bother inserting each individual
+ // item into the table.
+ d.index += d.length
+ if d.index < d.maxInsertIndex {
+ d.hash = hash4(d.window[d.index : d.index+minMatchLength])
+ }
+ }
+ if d.tokens.n == maxFlateBlockTokens {
+ // The block includes the current character
+ if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ } else {
+ d.ii++
+ end := d.index + int(d.ii>>uint(d.fastSkipHashing)) + 1
+ if end > d.windowEnd {
+ end = d.windowEnd
+ }
+ for i := d.index; i < end; i++ {
+ d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[i]))
+ d.tokens.n++
+ if d.tokens.n == maxFlateBlockTokens {
+ if d.err = d.writeBlockSkip(d.tokens, i+1, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ }
+ d.index = end
+ }
+ }
+}
+
+// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
+// meaning it always has lazy matching on.
+func (d *compressor) deflateLazy() {
+ // Sanity enables additional runtime tests.
+ // It's intended to be used during development
+ // to supplement the currently ad-hoc unit tests.
+ const sanity = false
+
+ if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
+ return
+ }
+
+ d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
+ if d.index < d.maxInsertIndex {
+ d.hash = hash4(d.window[d.index : d.index+minMatchLength])
+ }
+
+ for {
+ if sanity && d.index > d.windowEnd {
+ panic("index > windowEnd")
+ }
+ lookahead := d.windowEnd - d.index
+ if lookahead < minMatchLength+maxMatchLength {
+ if !d.sync {
+ return
+ }
+ if sanity && d.index > d.windowEnd {
+ panic("index > windowEnd")
+ }
+ if lookahead == 0 {
+ // Flush current output block if any.
+ if d.byteAvailable {
+ // There is still one pending token that needs to be flushed
+ d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
+ d.tokens.n++
+ d.byteAvailable = false
+ }
+ if d.tokens.n > 0 {
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ return
+ }
+ }
+ if d.index < d.maxInsertIndex {
+ // Update the hash
+ d.hash = hash4(d.window[d.index : d.index+minMatchLength])
+ ch := d.hashHead[d.hash&hashMask]
+ d.chainHead = int(ch)
+ d.hashPrev[d.index&windowMask] = ch
+ d.hashHead[d.hash&hashMask] = uint32(d.index + d.hashOffset)
+ }
+ prevLength := d.length
+ prevOffset := d.offset
+ d.length = minMatchLength - 1
+ d.offset = 0
+ minIndex := d.index - windowSize
+ if minIndex < 0 {
+ minIndex = 0
+ }
+
+ if d.chainHead-d.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
+ if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
+ d.length = newLength
+ d.offset = newOffset
+ }
+ }
+ if prevLength >= minMatchLength && d.length <= prevLength {
+ // There was a match at the previous step, and the current match is
+ // not better. Output the previous match.
+ d.tokens.tokens[d.tokens.n] = matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
+ d.tokens.n++
+
+ // Insert in the hash table all strings up to the end of the match.
+ // index and index-1 are already inserted. If there is not enough
+ // lookahead, the last two strings are not inserted into the hash
+ // table.
+ var newIndex int
+ newIndex = d.index + prevLength - 1
+ // Calculate missing hashes
+ end := newIndex
+ if end > d.maxInsertIndex {
+ end = d.maxInsertIndex
+ }
+ end += minMatchLength - 1
+ startindex := d.index + 1
+ if startindex > d.maxInsertIndex {
+ startindex = d.maxInsertIndex
+ }
+ tocheck := d.window[startindex:end]
+ dstSize := len(tocheck) - minMatchLength + 1
+ if dstSize > 0 {
+ dst := d.hashMatch[:dstSize]
+ bulkHash4(tocheck, dst)
+ var newH uint32
+ for i, val := range dst {
+ di := i + startindex
+ newH = val & hashMask
+ // Get previous value with the same hash.
+ // Our chain should point to the previous value.
+ d.hashPrev[di&windowMask] = d.hashHead[newH]
+ // Set the head of the hash chain to us.
+ d.hashHead[newH] = uint32(di + d.hashOffset)
+ }
+ d.hash = newH
+ }
+
+ d.index = newIndex
+ d.byteAvailable = false
+ d.length = minMatchLength - 1
+ if d.tokens.n == maxFlateBlockTokens {
+ // The block includes the current character
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ } else {
+ // Reset, if we got a match this run.
+ if d.length >= minMatchLength {
+ d.ii = 0
+ }
+ // We have a byte waiting. Emit it.
+ if d.byteAvailable {
+ d.ii++
+ d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
+ d.tokens.n++
+ if d.tokens.n == maxFlateBlockTokens {
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ d.index++
+
+ // If we have a long run of no matches, skip additional bytes
+ // Resets when d.ii overflows after 64KB.
+ if d.ii > 31 {
+ n := int(d.ii >> 5)
+ for j := 0; j < n; j++ {
+ if d.index >= d.windowEnd-1 {
+ break
+ }
+
+ d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
+ d.tokens.n++
+ if d.tokens.n == maxFlateBlockTokens {
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ d.index++
+ }
+ // Flush last byte
+ d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
+ d.tokens.n++
+ d.byteAvailable = false
+ // d.length = minMatchLength - 1 // not needed, since d.ii is reset above, so it should never be > minMatchLength
+ if d.tokens.n == maxFlateBlockTokens {
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ }
+ } else {
+ d.index++
+ d.byteAvailable = true
+ }
+ }
+ }
+}
+
+// Assumes that d.fastSkipHashing != skipNever,
+// otherwise use deflateLazySSE
+func (d *compressor) deflateSSE() {
+
+ // Sanity enables additional runtime tests.
+ // It's intended to be used during development
+ // to supplement the currently ad-hoc unit tests.
+ const sanity = false
+
+ if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
+ return
+ }
+
+ d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
+ if d.index < d.maxInsertIndex {
+ d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
+ }
+
+ for {
+ if sanity && d.index > d.windowEnd {
+ panic("index > windowEnd")
+ }
+ lookahead := d.windowEnd - d.index
+ if lookahead < minMatchLength+maxMatchLength {
+ if !d.sync {
+ return
+ }
+ if sanity && d.index > d.windowEnd {
+ panic("index > windowEnd")
+ }
+ if lookahead == 0 {
+ if d.tokens.n > 0 {
+ if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ return
+ }
+ }
+ if d.index < d.maxInsertIndex {
+ // Update the hash
+ d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
+ ch := d.hashHead[d.hash]
+ d.chainHead = int(ch)
+ d.hashPrev[d.index&windowMask] = ch
+ d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
+ }
+ d.length = minMatchLength - 1
+ d.offset = 0
+ minIndex := d.index - windowSize
+ if minIndex < 0 {
+ minIndex = 0
+ }
+
+ if d.chainHead-d.hashOffset >= minIndex && lookahead > minMatchLength-1 {
+ if newLength, newOffset, ok := d.findMatchSSE(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
+ d.length = newLength
+ d.offset = newOffset
+ }
+ }
+ if d.length >= minMatchLength {
+ d.ii = 0
+ // There was a match at the previous step, and the current match is
+ // not better. Output the previous match.
+ // "d.length-3" should NOT be "d.length-minMatchLength", since the format always assume 3
+ d.tokens.tokens[d.tokens.n] = matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize))
+ d.tokens.n++
+ // Insert in the hash table all strings up to the end of the match.
+ // index and index-1 are already inserted. If there is not enough
+ // lookahead, the last two strings are not inserted into the hash
+ // table.
+ if d.length <= d.fastSkipHashing {
+ var newIndex int
+ newIndex = d.index + d.length
+ // Calculate missing hashes
+ end := newIndex
+ if end > d.maxInsertIndex {
+ end = d.maxInsertIndex
+ }
+ end += minMatchLength - 1
+ startindex := d.index + 1
+ if startindex > d.maxInsertIndex {
+ startindex = d.maxInsertIndex
+ }
+ tocheck := d.window[startindex:end]
+ dstSize := len(tocheck) - minMatchLength + 1
+ if dstSize > 0 {
+ dst := d.hashMatch[:dstSize]
+
+ crc32sseAll(tocheck, dst)
+ var newH uint32
+ for i, val := range dst {
+ di := i + startindex
+ newH = val & hashMask
+ // Get previous value with the same hash.
+ // Our chain should point to the previous value.
+ d.hashPrev[di&windowMask] = d.hashHead[newH]
+ // Set the head of the hash chain to us.
+ d.hashHead[newH] = uint32(di + d.hashOffset)
+ }
+ d.hash = newH
+ }
+ d.index = newIndex
+ } else {
+ // For matches this long, we don't bother inserting each individual
+ // item into the table.
+ d.index += d.length
+ if d.index < d.maxInsertIndex {
+ d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
+ }
+ }
+ if d.tokens.n == maxFlateBlockTokens {
+ // The block includes the current character
+ if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ } else {
+ d.ii++
+ end := d.index + int(d.ii>>5) + 1
+ if end > d.windowEnd {
+ end = d.windowEnd
+ }
+ for i := d.index; i < end; i++ {
+ d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[i]))
+ d.tokens.n++
+ if d.tokens.n == maxFlateBlockTokens {
+ if d.err = d.writeBlockSkip(d.tokens, i+1, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ }
+ d.index = end
+ }
+ }
+}
+
+// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
+// meaning it always has lazy matching on.
+func (d *compressor) deflateLazySSE() {
+ // Sanity enables additional runtime tests.
+ // It's intended to be used during development
+ // to supplement the currently ad-hoc unit tests.
+ const sanity = false
+
+ if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
+ return
+ }
+
+ d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
+ if d.index < d.maxInsertIndex {
+ d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
+ }
+
+ for {
+ if sanity && d.index > d.windowEnd {
+ panic("index > windowEnd")
+ }
+ lookahead := d.windowEnd - d.index
+ if lookahead < minMatchLength+maxMatchLength {
+ if !d.sync {
+ return
+ }
+ if sanity && d.index > d.windowEnd {
+ panic("index > windowEnd")
+ }
+ if lookahead == 0 {
+ // Flush current output block if any.
+ if d.byteAvailable {
+ // There is still one pending token that needs to be flushed
+ d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
+ d.tokens.n++
+ d.byteAvailable = false
+ }
+ if d.tokens.n > 0 {
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ return
+ }
+ }
+ if d.index < d.maxInsertIndex {
+ // Update the hash
+ d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
+ ch := d.hashHead[d.hash]
+ d.chainHead = int(ch)
+ d.hashPrev[d.index&windowMask] = ch
+ d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
+ }
+ prevLength := d.length
+ prevOffset := d.offset
+ d.length = minMatchLength - 1
+ d.offset = 0
+ minIndex := d.index - windowSize
+ if minIndex < 0 {
+ minIndex = 0
+ }
+
+ if d.chainHead-d.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
+ if newLength, newOffset, ok := d.findMatchSSE(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
+ d.length = newLength
+ d.offset = newOffset
+ }
+ }
+ if prevLength >= minMatchLength && d.length <= prevLength {
+ // There was a match at the previous step, and the current match is
+ // not better. Output the previous match.
+ d.tokens.tokens[d.tokens.n] = matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
+ d.tokens.n++
+
+ // Insert in the hash table all strings up to the end of the match.
+ // index and index-1 are already inserted. If there is not enough
+ // lookahead, the last two strings are not inserted into the hash
+ // table.
+ var newIndex int
+ newIndex = d.index + prevLength - 1
+ // Calculate missing hashes
+ end := newIndex
+ if end > d.maxInsertIndex {
+ end = d.maxInsertIndex
+ }
+ end += minMatchLength - 1
+ startindex := d.index + 1
+ if startindex > d.maxInsertIndex {
+ startindex = d.maxInsertIndex
+ }
+ tocheck := d.window[startindex:end]
+ dstSize := len(tocheck) - minMatchLength + 1
+ if dstSize > 0 {
+ dst := d.hashMatch[:dstSize]
+ crc32sseAll(tocheck, dst)
+ var newH uint32
+ for i, val := range dst {
+ di := i + startindex
+ newH = val & hashMask
+ // Get previous value with the same hash.
+ // Our chain should point to the previous value.
+ d.hashPrev[di&windowMask] = d.hashHead[newH]
+ // Set the head of the hash chain to us.
+ d.hashHead[newH] = uint32(di + d.hashOffset)
+ }
+ d.hash = newH
+ }
+
+ d.index = newIndex
+ d.byteAvailable = false
+ d.length = minMatchLength - 1
+ if d.tokens.n == maxFlateBlockTokens {
+ // The block includes the current character
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ } else {
+ // Reset, if we got a match this run.
+ if d.length >= minMatchLength {
+ d.ii = 0
+ }
+ // We have a byte waiting. Emit it.
+ if d.byteAvailable {
+ d.ii++
+ d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
+ d.tokens.n++
+ if d.tokens.n == maxFlateBlockTokens {
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ d.index++
+
+ // If we have a long run of no matches, skip additional bytes
+ // Resets when d.ii overflows after 64KB.
+ if d.ii > 31 {
+ n := int(d.ii >> 6)
+ for j := 0; j < n; j++ {
+ if d.index >= d.windowEnd-1 {
+ break
+ }
+
+ d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
+ d.tokens.n++
+ if d.tokens.n == maxFlateBlockTokens {
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ d.index++
+ }
+ // Flush last byte
+ d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
+ d.tokens.n++
+ d.byteAvailable = false
+ // d.length = minMatchLength - 1 // not needed, since d.ii is reset above, so it should never be > minMatchLength
+ if d.tokens.n == maxFlateBlockTokens {
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens.n = 0
+ }
+ }
+ } else {
+ d.index++
+ d.byteAvailable = true
+ }
+ }
+ }
+}
+
+func (d *compressor) store() {
+ if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
+ d.err = d.writeStoredBlock(d.window[:d.windowEnd])
+ d.windowEnd = 0
+ }
+}
+
+// fillWindow will fill the buffer with data for huffman-only compression.
+// The number of bytes copied is returned.
+func (d *compressor) fillBlock(b []byte) int {
+ n := copy(d.window[d.windowEnd:], b)
+ d.windowEnd += n
+ return n
+}
+
+// storeHuff will compress and store the currently added data,
+// if enough has been accumulated or we at the end of the stream.
+// Any error that occurred will be in d.err
+func (d *compressor) storeHuff() {
+ if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
+ return
+ }
+ d.w.writeBlockHuff(false, d.window[:d.windowEnd])
+ d.err = d.w.err
+ d.windowEnd = 0
+}
+
+// storeHuff will compress and store the currently added data,
+// if enough has been accumulated or we at the end of the stream.
+// Any error that occurred will be in d.err
+func (d *compressor) storeSnappy() {
+ // We only compress if we have maxStoreBlockSize.
+ if d.windowEnd < maxStoreBlockSize {
+ if !d.sync {
+ return
+ }
+ // Handle extremely small sizes.
+ if d.windowEnd < 128 {
+ if d.windowEnd == 0 {
+ return
+ }
+ if d.windowEnd <= 32 {
+ d.err = d.writeStoredBlock(d.window[:d.windowEnd])
+ d.tokens.n = 0
+ d.windowEnd = 0
+ } else {
+ d.w.writeBlockHuff(false, d.window[:d.windowEnd])
+ d.err = d.w.err
+ }
+ d.tokens.n = 0
+ d.windowEnd = 0
+ d.snap.Reset()
+ return
+ }
+ }
+
+ d.snap.Encode(&d.tokens, d.window[:d.windowEnd])
+ // If we made zero matches, store the block as is.
+ if int(d.tokens.n) == d.windowEnd {
+ d.err = d.writeStoredBlock(d.window[:d.windowEnd])
+ // If we removed less than 1/16th, huffman compress the block.
+ } else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
+ d.w.writeBlockHuff(false, d.window[:d.windowEnd])
+ d.err = d.w.err
+ } else {
+ d.w.writeBlockDynamic(d.tokens.tokens[:d.tokens.n], false, d.window[:d.windowEnd])
+ d.err = d.w.err
+ }
+ d.tokens.n = 0
+ d.windowEnd = 0
+}
+
+// write will add input byte to the stream.
+// Unless an error occurs all bytes will be consumed.
+func (d *compressor) write(b []byte) (n int, err error) {
+ if d.err != nil {
+ return 0, d.err
+ }
+ n = len(b)
+ for len(b) > 0 {
+ d.step(d)
+ b = b[d.fill(d, b):]
+ if d.err != nil {
+ return 0, d.err
+ }
+ }
+ return n, d.err
+}
+
+func (d *compressor) syncFlush() error {
+ d.sync = true
+ if d.err != nil {
+ return d.err
+ }
+ d.step(d)
+ if d.err == nil {
+ d.w.writeStoredHeader(0, false)
+ d.w.flush()
+ d.err = d.w.err
+ }
+ d.sync = false
+ return d.err
+}
+
+func (d *compressor) init(w io.Writer, level int) (err error) {
+ d.w = newHuffmanBitWriter(w)
+
+ switch {
+ case level == NoCompression:
+ d.window = make([]byte, maxStoreBlockSize)
+ d.fill = (*compressor).fillBlock
+ d.step = (*compressor).store
+ case level == ConstantCompression:
+ d.window = make([]byte, maxStoreBlockSize)
+ d.fill = (*compressor).fillBlock
+ d.step = (*compressor).storeHuff
+ case level >= 1 && level <= 4:
+ d.snap = newSnappy(level)
+ d.window = make([]byte, maxStoreBlockSize)
+ d.fill = (*compressor).fillBlock
+ d.step = (*compressor).storeSnappy
+ case level == DefaultCompression:
+ level = 5
+ fallthrough
+ case 5 <= level && level <= 9:
+ d.compressionLevel = levels[level]
+ d.initDeflate()
+ d.fill = (*compressor).fillDeflate
+ if d.fastSkipHashing == skipNever {
+ if useSSE42 {
+ d.step = (*compressor).deflateLazySSE
+ } else {
+ d.step = (*compressor).deflateLazy
+ }
+ } else {
+ if useSSE42 {
+ d.step = (*compressor).deflateSSE
+ } else {
+ d.step = (*compressor).deflate
+
+ }
+ }
+ default:
+ return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
+ }
+ return nil
+}
+
+// reset the state of the compressor.
+func (d *compressor) reset(w io.Writer) {
+ d.w.reset(w)
+ d.sync = false
+ d.err = nil
+ // We only need to reset a few things for Snappy.
+ if d.snap != nil {
+ d.snap.Reset()
+ d.windowEnd = 0
+ d.tokens.n = 0
+ return
+ }
+ switch d.compressionLevel.chain {
+ case 0:
+ // level was NoCompression or ConstantCompresssion.
+ d.windowEnd = 0
+ default:
+ d.chainHead = -1
+ for i := range d.hashHead {
+ d.hashHead[i] = 0
+ }
+ for i := range d.hashPrev {
+ d.hashPrev[i] = 0
+ }
+ d.hashOffset = 1
+ d.index, d.windowEnd = 0, 0
+ d.blockStart, d.byteAvailable = 0, false
+ d.tokens.n = 0
+ d.length = minMatchLength - 1
+ d.offset = 0
+ d.hash = 0
+ d.ii = 0
+ d.maxInsertIndex = 0
+ }
+}
+
+func (d *compressor) close() error {
+ if d.err != nil {
+ return d.err
+ }
+ d.sync = true
+ d.step(d)
+ if d.err != nil {
+ return d.err
+ }
+ if d.w.writeStoredHeader(0, true); d.w.err != nil {
+ return d.w.err
+ }
+ d.w.flush()
+ return d.w.err
+}
+
+// NewWriter returns a new Writer compressing data at the given level.
+// Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
+// higher levels typically run slower but compress more.
+// Level 0 (NoCompression) does not attempt any compression; it only adds the
+// necessary DEFLATE framing.
+// Level -1 (DefaultCompression) uses the default compression level.
+// Level -2 (ConstantCompression) will use Huffman compression only, giving
+// a very fast compression for all types of input, but sacrificing considerable
+// compression efficiency.
+//
+// If level is in the range [-2, 9] then the error returned will be nil.
+// Otherwise the error returned will be non-nil.
+func NewWriter(w io.Writer, level int) (*Writer, error) {
+ var dw Writer
+ if err := dw.d.init(w, level); err != nil {
+ return nil, err
+ }
+ return &dw, nil
+}
+
+// NewWriterDict is like NewWriter but initializes the new
+// Writer with a preset dictionary. The returned Writer behaves
+// as if the dictionary had been written to it without producing
+// any compressed output. The compressed data written to w
+// can only be decompressed by a Reader initialized with the
+// same dictionary.
+func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
+ dw := &dictWriter{w}
+ zw, err := NewWriter(dw, level)
+ if err != nil {
+ return nil, err
+ }
+ zw.d.fillWindow(dict)
+ zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
+ return zw, err
+}
+
+type dictWriter struct {
+ w io.Writer
+}
+
+func (w *dictWriter) Write(b []byte) (n int, err error) {
+ return w.w.Write(b)
+}
+
+// A Writer takes data written to it and writes the compressed
+// form of that data to an underlying writer (see NewWriter).
+type Writer struct {
+ d compressor
+ dict []byte
+}
+
+// Write writes data to w, which will eventually write the
+// compressed form of data to its underlying writer.
+func (w *Writer) Write(data []byte) (n int, err error) {
+ return w.d.write(data)
+}
+
+// Flush flushes any pending data to the underlying writer.
+// It is useful mainly in compressed network protocols, to ensure that
+// a remote reader has enough data to reconstruct a packet.
+// Flush does not return until the data has been written.
+// Calling Flush when there is no pending data still causes the Writer
+// to emit a sync marker of at least 4 bytes.
+// If the underlying writer returns an error, Flush returns that error.
+//
+// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
+func (w *Writer) Flush() error {
+ // For more about flushing:
+ // http://www.bolet.org/~pornin/deflate-flush.html
+ return w.d.syncFlush()
+}
+
+// Close flushes and closes the writer.
+func (w *Writer) Close() error {
+ return w.d.close()
+}
+
+// Reset discards the writer's state and makes it equivalent to
+// the result of NewWriter or NewWriterDict called with dst
+// and w's level and dictionary.
+func (w *Writer) Reset(dst io.Writer) {
+ if dw, ok := w.d.w.writer.(*dictWriter); ok {
+ // w was created with NewWriterDict
+ dw.w = dst
+ w.d.reset(dw)
+ w.d.fillWindow(w.dict)
+ } else {
+ // w was created with NewWriter
+ w.d.reset(dst)
+ }
+}
+
+// ResetDict discards the writer's state and makes it equivalent to
+// the result of NewWriter or NewWriterDict called with dst
+// and w's level, but sets a specific dictionary.
+func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
+ w.dict = dict
+ w.d.reset(dst)
+ w.d.fillWindow(w.dict)
+}
diff --git a/vendor/github.com/klauspost/compress/flate/dict_decoder.go b/vendor/github.com/klauspost/compress/flate/dict_decoder.go
new file mode 100644
index 000000000..71c75a065
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/dict_decoder.go
@@ -0,0 +1,184 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+// dictDecoder implements the LZ77 sliding dictionary as used in decompression.
+// LZ77 decompresses data through sequences of two forms of commands:
+//
+// * Literal insertions: Runs of one or more symbols are inserted into the data
+// stream as is. This is accomplished through the writeByte method for a
+// single symbol, or combinations of writeSlice/writeMark for multiple symbols.
+// Any valid stream must start with a literal insertion if no preset dictionary
+// is used.
+//
+// * Backward copies: Runs of one or more symbols are copied from previously
+// emitted data. Backward copies come as the tuple (dist, length) where dist
+// determines how far back in the stream to copy from and length determines how
+// many bytes to copy. Note that it is valid for the length to be greater than
+// the distance. Since LZ77 uses forward copies, that situation is used to
+// perform a form of run-length encoding on repeated runs of symbols.
+// The writeCopy and tryWriteCopy are used to implement this command.
+//
+// For performance reasons, this implementation performs little to no sanity
+// checks about the arguments. As such, the invariants documented for each
+// method call must be respected.
+type dictDecoder struct {
+ hist []byte // Sliding window history
+
+ // Invariant: 0 <= rdPos <= wrPos <= len(hist)
+ wrPos int // Current output position in buffer
+ rdPos int // Have emitted hist[:rdPos] already
+ full bool // Has a full window length been written yet?
+}
+
+// init initializes dictDecoder to have a sliding window dictionary of the given
+// size. If a preset dict is provided, it will initialize the dictionary with
+// the contents of dict.
+func (dd *dictDecoder) init(size int, dict []byte) {
+ *dd = dictDecoder{hist: dd.hist}
+
+ if cap(dd.hist) < size {
+ dd.hist = make([]byte, size)
+ }
+ dd.hist = dd.hist[:size]
+
+ if len(dict) > len(dd.hist) {
+ dict = dict[len(dict)-len(dd.hist):]
+ }
+ dd.wrPos = copy(dd.hist, dict)
+ if dd.wrPos == len(dd.hist) {
+ dd.wrPos = 0
+ dd.full = true
+ }
+ dd.rdPos = dd.wrPos
+}
+
+// histSize reports the total amount of historical data in the dictionary.
+func (dd *dictDecoder) histSize() int {
+ if dd.full {
+ return len(dd.hist)
+ }
+ return dd.wrPos
+}
+
+// availRead reports the number of bytes that can be flushed by readFlush.
+func (dd *dictDecoder) availRead() int {
+ return dd.wrPos - dd.rdPos
+}
+
+// availWrite reports the available amount of output buffer space.
+func (dd *dictDecoder) availWrite() int {
+ return len(dd.hist) - dd.wrPos
+}
+
+// writeSlice returns a slice of the available buffer to write data to.
+//
+// This invariant will be kept: len(s) <= availWrite()
+func (dd *dictDecoder) writeSlice() []byte {
+ return dd.hist[dd.wrPos:]
+}
+
+// writeMark advances the writer pointer by cnt.
+//
+// This invariant must be kept: 0 <= cnt <= availWrite()
+func (dd *dictDecoder) writeMark(cnt int) {
+ dd.wrPos += cnt
+}
+
+// writeByte writes a single byte to the dictionary.
+//
+// This invariant must be kept: 0 < availWrite()
+func (dd *dictDecoder) writeByte(c byte) {
+ dd.hist[dd.wrPos] = c
+ dd.wrPos++
+}
+
+// writeCopy copies a string at a given (dist, length) to the output.
+// This returns the number of bytes copied and may be less than the requested
+// length if the available space in the output buffer is too small.
+//
+// This invariant must be kept: 0 < dist <= histSize()
+func (dd *dictDecoder) writeCopy(dist, length int) int {
+ dstBase := dd.wrPos
+ dstPos := dstBase
+ srcPos := dstPos - dist
+ endPos := dstPos + length
+ if endPos > len(dd.hist) {
+ endPos = len(dd.hist)
+ }
+
+ // Copy non-overlapping section after destination position.
+ //
+ // This section is non-overlapping in that the copy length for this section
+ // is always less than or equal to the backwards distance. This can occur
+ // if a distance refers to data that wraps-around in the buffer.
+ // Thus, a backwards copy is performed here; that is, the exact bytes in
+ // the source prior to the copy is placed in the destination.
+ if srcPos < 0 {
+ srcPos += len(dd.hist)
+ dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:])
+ srcPos = 0
+ }
+
+ // Copy possibly overlapping section before destination position.
+ //
+ // This section can overlap if the copy length for this section is larger
+ // than the backwards distance. This is allowed by LZ77 so that repeated
+ // strings can be succinctly represented using (dist, length) pairs.
+ // Thus, a forwards copy is performed here; that is, the bytes copied is
+ // possibly dependent on the resulting bytes in the destination as the copy
+ // progresses along. This is functionally equivalent to the following:
+ //
+ // for i := 0; i < endPos-dstPos; i++ {
+ // dd.hist[dstPos+i] = dd.hist[srcPos+i]
+ // }
+ // dstPos = endPos
+ //
+ for dstPos < endPos {
+ dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:dstPos])
+ }
+
+ dd.wrPos = dstPos
+ return dstPos - dstBase
+}
+
+// tryWriteCopy tries to copy a string at a given (distance, length) to the
+// output. This specialized version is optimized for short distances.
+//
+// This method is designed to be inlined for performance reasons.
+//
+// This invariant must be kept: 0 < dist <= histSize()
+func (dd *dictDecoder) tryWriteCopy(dist, length int) int {
+ dstPos := dd.wrPos
+ endPos := dstPos + length
+ if dstPos < dist || endPos > len(dd.hist) {
+ return 0
+ }
+ dstBase := dstPos
+ srcPos := dstPos - dist
+
+ // Copy possibly overlapping section before destination position.
+loop:
+ dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:dstPos])
+ if dstPos < endPos {
+ goto loop // Avoid for-loop so that this function can be inlined
+ }
+
+ dd.wrPos = dstPos
+ return dstPos - dstBase
+}
+
+// readFlush returns a slice of the historical buffer that is ready to be
+// emitted to the user. The data returned by readFlush must be fully consumed
+// before calling any other dictDecoder methods.
+func (dd *dictDecoder) readFlush() []byte {
+ toRead := dd.hist[dd.rdPos:dd.wrPos]
+ dd.rdPos = dd.wrPos
+ if dd.wrPos == len(dd.hist) {
+ dd.wrPos, dd.rdPos = 0, 0
+ dd.full = true
+ }
+ return toRead
+}
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go b/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
new file mode 100644
index 000000000..f9b2a699a
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
@@ -0,0 +1,701 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "io"
+)
+
+const (
+ // The largest offset code.
+ offsetCodeCount = 30
+
+ // The special code used to mark the end of a block.
+ endBlockMarker = 256
+
+ // The first length code.
+ lengthCodesStart = 257
+
+ // The number of codegen codes.
+ codegenCodeCount = 19
+ badCode = 255
+
+ // bufferFlushSize indicates the buffer size
+ // after which bytes are flushed to the writer.
+ // Should preferably be a multiple of 6, since
+ // we accumulate 6 bytes between writes to the buffer.
+ bufferFlushSize = 240
+
+ // bufferSize is the actual output byte buffer size.
+ // It must have additional headroom for a flush
+ // which can contain up to 8 bytes.
+ bufferSize = bufferFlushSize + 8
+)
+
+// The number of extra bits needed by length code X - LENGTH_CODES_START.
+var lengthExtraBits = []int8{
+ /* 257 */ 0, 0, 0,
+ /* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
+ /* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
+ /* 280 */ 4, 5, 5, 5, 5, 0,
+}
+
+// The length indicated by length code X - LENGTH_CODES_START.
+var lengthBase = []uint32{
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
+ 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
+ 64, 80, 96, 112, 128, 160, 192, 224, 255,
+}
+
+// offset code word extra bits.
+var offsetExtraBits = []int8{
+ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
+ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
+ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
+ /* extended window */
+ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
+}
+
+var offsetBase = []uint32{
+ /* normal deflate */
+ 0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
+ 0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
+ 0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
+ 0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
+ 0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
+ 0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
+
+ /* extended window */
+ 0x008000, 0x00c000, 0x010000, 0x018000, 0x020000,
+ 0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000,
+ 0x100000, 0x180000, 0x200000, 0x300000,
+}
+
+// The odd order in which the codegen code sizes are written.
+var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
+
+type huffmanBitWriter struct {
+ // writer is the underlying writer.
+ // Do not use it directly; use the write method, which ensures
+ // that Write errors are sticky.
+ writer io.Writer
+
+ // Data waiting to be written is bytes[0:nbytes]
+ // and then the low nbits of bits.
+ bits uint64
+ nbits uint
+ bytes [bufferSize]byte
+ codegenFreq [codegenCodeCount]int32
+ nbytes int
+ literalFreq []int32
+ offsetFreq []int32
+ codegen []uint8
+ literalEncoding *huffmanEncoder
+ offsetEncoding *huffmanEncoder
+ codegenEncoding *huffmanEncoder
+ err error
+}
+
+func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
+ return &huffmanBitWriter{
+ writer: w,
+ literalFreq: make([]int32, maxNumLit),
+ offsetFreq: make([]int32, offsetCodeCount),
+ codegen: make([]uint8, maxNumLit+offsetCodeCount+1),
+ literalEncoding: newHuffmanEncoder(maxNumLit),
+ codegenEncoding: newHuffmanEncoder(codegenCodeCount),
+ offsetEncoding: newHuffmanEncoder(offsetCodeCount),
+ }
+}
+
+func (w *huffmanBitWriter) reset(writer io.Writer) {
+ w.writer = writer
+ w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
+ w.bytes = [bufferSize]byte{}
+}
+
+func (w *huffmanBitWriter) flush() {
+ if w.err != nil {
+ w.nbits = 0
+ return
+ }
+ n := w.nbytes
+ for w.nbits != 0 {
+ w.bytes[n] = byte(w.bits)
+ w.bits >>= 8
+ if w.nbits > 8 { // Avoid underflow
+ w.nbits -= 8
+ } else {
+ w.nbits = 0
+ }
+ n++
+ }
+ w.bits = 0
+ w.write(w.bytes[:n])
+ w.nbytes = 0
+}
+
+func (w *huffmanBitWriter) write(b []byte) {
+ if w.err != nil {
+ return
+ }
+ _, w.err = w.writer.Write(b)
+}
+
+func (w *huffmanBitWriter) writeBits(b int32, nb uint) {
+ if w.err != nil {
+ return
+ }
+ w.bits |= uint64(b) << w.nbits
+ w.nbits += nb
+ if w.nbits >= 48 {
+ bits := w.bits
+ w.bits >>= 48
+ w.nbits -= 48
+ n := w.nbytes
+ bytes := w.bytes[n : n+6]
+ bytes[0] = byte(bits)
+ bytes[1] = byte(bits >> 8)
+ bytes[2] = byte(bits >> 16)
+ bytes[3] = byte(bits >> 24)
+ bytes[4] = byte(bits >> 32)
+ bytes[5] = byte(bits >> 40)
+ n += 6
+ if n >= bufferFlushSize {
+ w.write(w.bytes[:n])
+ n = 0
+ }
+ w.nbytes = n
+ }
+}
+
+func (w *huffmanBitWriter) writeBytes(bytes []byte) {
+ if w.err != nil {
+ return
+ }
+ n := w.nbytes
+ if w.nbits&7 != 0 {
+ w.err = InternalError("writeBytes with unfinished bits")
+ return
+ }
+ for w.nbits != 0 {
+ w.bytes[n] = byte(w.bits)
+ w.bits >>= 8
+ w.nbits -= 8
+ n++
+ }
+ if n != 0 {
+ w.write(w.bytes[:n])
+ }
+ w.nbytes = 0
+ w.write(bytes)
+}
+
+// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
+// the literal and offset lengths arrays (which are concatenated into a single
+// array). This method generates that run-length encoding.
+//
+// The result is written into the codegen array, and the frequencies
+// of each code is written into the codegenFreq array.
+// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
+// information. Code badCode is an end marker
+//
+// numLiterals The number of literals in literalEncoding
+// numOffsets The number of offsets in offsetEncoding
+// litenc, offenc The literal and offset encoder to use
+func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
+ for i := range w.codegenFreq {
+ w.codegenFreq[i] = 0
+ }
+ // Note that we are using codegen both as a temporary variable for holding
+ // a copy of the frequencies, and as the place where we put the result.
+ // This is fine because the output is always shorter than the input used
+ // so far.
+ codegen := w.codegen // cache
+ // Copy the concatenated code sizes to codegen. Put a marker at the end.
+ cgnl := codegen[:numLiterals]
+ for i := range cgnl {
+ cgnl[i] = uint8(litEnc.codes[i].len)
+ }
+
+ cgnl = codegen[numLiterals : numLiterals+numOffsets]
+ for i := range cgnl {
+ cgnl[i] = uint8(offEnc.codes[i].len)
+ }
+ codegen[numLiterals+numOffsets] = badCode
+
+ size := codegen[0]
+ count := 1
+ outIndex := 0
+ for inIndex := 1; size != badCode; inIndex++ {
+ // INVARIANT: We have seen "count" copies of size that have not yet
+ // had output generated for them.
+ nextSize := codegen[inIndex]
+ if nextSize == size {
+ count++
+ continue
+ }
+ // We need to generate codegen indicating "count" of size.
+ if size != 0 {
+ codegen[outIndex] = size
+ outIndex++
+ w.codegenFreq[size]++
+ count--
+ for count >= 3 {
+ n := 6
+ if n > count {
+ n = count
+ }
+ codegen[outIndex] = 16
+ outIndex++
+ codegen[outIndex] = uint8(n - 3)
+ outIndex++
+ w.codegenFreq[16]++
+ count -= n
+ }
+ } else {
+ for count >= 11 {
+ n := 138
+ if n > count {
+ n = count
+ }
+ codegen[outIndex] = 18
+ outIndex++
+ codegen[outIndex] = uint8(n - 11)
+ outIndex++
+ w.codegenFreq[18]++
+ count -= n
+ }
+ if count >= 3 {
+ // count >= 3 && count <= 10
+ codegen[outIndex] = 17
+ outIndex++
+ codegen[outIndex] = uint8(count - 3)
+ outIndex++
+ w.codegenFreq[17]++
+ count = 0
+ }
+ }
+ count--
+ for ; count >= 0; count-- {
+ codegen[outIndex] = size
+ outIndex++
+ w.codegenFreq[size]++
+ }
+ // Set up invariant for next time through the loop.
+ size = nextSize
+ count = 1
+ }
+ // Marker indicating the end of the codegen.
+ codegen[outIndex] = badCode
+}
+
+// dynamicSize returns the size of dynamically encoded data in bits.
+func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
+ numCodegens = len(w.codegenFreq)
+ for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
+ numCodegens--
+ }
+ header := 3 + 5 + 5 + 4 + (3 * numCodegens) +
+ w.codegenEncoding.bitLength(w.codegenFreq[:]) +
+ int(w.codegenFreq[16])*2 +
+ int(w.codegenFreq[17])*3 +
+ int(w.codegenFreq[18])*7
+ size = header +
+ litEnc.bitLength(w.literalFreq) +
+ offEnc.bitLength(w.offsetFreq) +
+ extraBits
+
+ return size, numCodegens
+}
+
+// fixedSize returns the size of dynamically encoded data in bits.
+func (w *huffmanBitWriter) fixedSize(extraBits int) int {
+ return 3 +
+ fixedLiteralEncoding.bitLength(w.literalFreq) +
+ fixedOffsetEncoding.bitLength(w.offsetFreq) +
+ extraBits
+}
+
+// storedSize calculates the stored size, including header.
+// The function returns the size in bits and whether the block
+// fits inside a single block.
+func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
+ if in == nil {
+ return 0, false
+ }
+ if len(in) <= maxStoreBlockSize {
+ return (len(in) + 5) * 8, true
+ }
+ return 0, false
+}
+
+func (w *huffmanBitWriter) writeCode(c hcode) {
+ if w.err != nil {
+ return
+ }
+ w.bits |= uint64(c.code) << w.nbits
+ w.nbits += uint(c.len)
+ if w.nbits >= 48 {
+ bits := w.bits
+ w.bits >>= 48
+ w.nbits -= 48
+ n := w.nbytes
+ bytes := w.bytes[n : n+6]
+ bytes[0] = byte(bits)
+ bytes[1] = byte(bits >> 8)
+ bytes[2] = byte(bits >> 16)
+ bytes[3] = byte(bits >> 24)
+ bytes[4] = byte(bits >> 32)
+ bytes[5] = byte(bits >> 40)
+ n += 6
+ if n >= bufferFlushSize {
+ w.write(w.bytes[:n])
+ n = 0
+ }
+ w.nbytes = n
+ }
+}
+
+// Write the header of a dynamic Huffman block to the output stream.
+//
+// numLiterals The number of literals specified in codegen
+// numOffsets The number of offsets specified in codegen
+// numCodegens The number of codegens used in codegen
+func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
+ if w.err != nil {
+ return
+ }
+ var firstBits int32 = 4
+ if isEof {
+ firstBits = 5
+ }
+ w.writeBits(firstBits, 3)
+ w.writeBits(int32(numLiterals-257), 5)
+ w.writeBits(int32(numOffsets-1), 5)
+ w.writeBits(int32(numCodegens-4), 4)
+
+ for i := 0; i < numCodegens; i++ {
+ value := uint(w.codegenEncoding.codes[codegenOrder[i]].len)
+ w.writeBits(int32(value), 3)
+ }
+
+ i := 0
+ for {
+ var codeWord int = int(w.codegen[i])
+ i++
+ if codeWord == badCode {
+ break
+ }
+ w.writeCode(w.codegenEncoding.codes[uint32(codeWord)])
+
+ switch codeWord {
+ case 16:
+ w.writeBits(int32(w.codegen[i]), 2)
+ i++
+ break
+ case 17:
+ w.writeBits(int32(w.codegen[i]), 3)
+ i++
+ break
+ case 18:
+ w.writeBits(int32(w.codegen[i]), 7)
+ i++
+ break
+ }
+ }
+}
+
+func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
+ if w.err != nil {
+ return
+ }
+ var flag int32
+ if isEof {
+ flag = 1
+ }
+ w.writeBits(flag, 3)
+ w.flush()
+ w.writeBits(int32(length), 16)
+ w.writeBits(int32(^uint16(length)), 16)
+}
+
+func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
+ if w.err != nil {
+ return
+ }
+ // Indicate that we are a fixed Huffman block
+ var value int32 = 2
+ if isEof {
+ value = 3
+ }
+ w.writeBits(value, 3)
+}
+
+// writeBlock will write a block of tokens with the smallest encoding.
+// The original input can be supplied, and if the huffman encoded data
+// is larger than the original bytes, the data will be written as a
+// stored block.
+// If the input is nil, the tokens will always be Huffman encoded.
+func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
+ if w.err != nil {
+ return
+ }
+
+ tokens = append(tokens, endBlockMarker)
+ numLiterals, numOffsets := w.indexTokens(tokens)
+
+ var extraBits int
+ storedSize, storable := w.storedSize(input)
+ if storable {
+ // We only bother calculating the costs of the extra bits required by
+ // the length of offset fields (which will be the same for both fixed
+ // and dynamic encoding), if we need to compare those two encodings
+ // against stored encoding.
+ for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
+ // First eight length codes have extra size = 0.
+ extraBits += int(w.literalFreq[lengthCode]) * int(lengthExtraBits[lengthCode-lengthCodesStart])
+ }
+ for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
+ // First four offset codes have extra size = 0.
+ extraBits += int(w.offsetFreq[offsetCode]) * int(offsetExtraBits[offsetCode])
+ }
+ }
+
+ // Figure out smallest code.
+ // Fixed Huffman baseline.
+ var literalEncoding = fixedLiteralEncoding
+ var offsetEncoding = fixedOffsetEncoding
+ var size = w.fixedSize(extraBits)
+
+ // Dynamic Huffman?
+ var numCodegens int
+
+ // Generate codegen and codegenFrequencies, which indicates how to encode
+ // the literalEncoding and the offsetEncoding.
+ w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
+ w.codegenEncoding.generate(w.codegenFreq[:], 7)
+ dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
+
+ if dynamicSize < size {
+ size = dynamicSize
+ literalEncoding = w.literalEncoding
+ offsetEncoding = w.offsetEncoding
+ }
+
+ // Stored bytes?
+ if storable && storedSize < size {
+ w.writeStoredHeader(len(input), eof)
+ w.writeBytes(input)
+ return
+ }
+
+ // Huffman.
+ if literalEncoding == fixedLiteralEncoding {
+ w.writeFixedHeader(eof)
+ } else {
+ w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
+ }
+
+ // Write the tokens.
+ w.writeTokens(tokens, literalEncoding.codes, offsetEncoding.codes)
+}
+
+// writeBlockDynamic encodes a block using a dynamic Huffman table.
+// This should be used if the symbols used have a disproportionate
+// histogram distribution.
+// If input is supplied and the compression savings are below 1/16th of the
+// input size the block is stored.
+func (w *huffmanBitWriter) writeBlockDynamic(tokens []token, eof bool, input []byte) {
+ if w.err != nil {
+ return
+ }
+
+ tokens = append(tokens, endBlockMarker)
+ numLiterals, numOffsets := w.indexTokens(tokens)
+
+ // Generate codegen and codegenFrequencies, which indicates how to encode
+ // the literalEncoding and the offsetEncoding.
+ w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
+ w.codegenEncoding.generate(w.codegenFreq[:], 7)
+ size, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, 0)
+
+ // Store bytes, if we don't get a reasonable improvement.
+ if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
+ w.writeStoredHeader(len(input), eof)
+ w.writeBytes(input)
+ return
+ }
+
+ // Write Huffman table.
+ w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
+
+ // Write the tokens.
+ w.writeTokens(tokens, w.literalEncoding.codes, w.offsetEncoding.codes)
+}
+
+// indexTokens indexes a slice of tokens, and updates
+// literalFreq and offsetFreq, and generates literalEncoding
+// and offsetEncoding.
+// The number of literal and offset tokens is returned.
+func (w *huffmanBitWriter) indexTokens(tokens []token) (numLiterals, numOffsets int) {
+ for i := range w.literalFreq {
+ w.literalFreq[i] = 0
+ }
+ for i := range w.offsetFreq {
+ w.offsetFreq[i] = 0
+ }
+
+ for _, t := range tokens {
+ if t < matchType {
+ w.literalFreq[t.literal()]++
+ continue
+ }
+ length := t.length()
+ offset := t.offset()
+ w.literalFreq[lengthCodesStart+lengthCode(length)]++
+ w.offsetFreq[offsetCode(offset)]++
+ }
+
+ // get the number of literals
+ numLiterals = len(w.literalFreq)
+ for w.literalFreq[numLiterals-1] == 0 {
+ numLiterals--
+ }
+ // get the number of offsets
+ numOffsets = len(w.offsetFreq)
+ for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
+ numOffsets--
+ }
+ if numOffsets == 0 {
+ // We haven't found a single match. If we want to go with the dynamic encoding,
+ // we should count at least one offset to be sure that the offset huffman tree could be encoded.
+ w.offsetFreq[0] = 1
+ numOffsets = 1
+ }
+ w.literalEncoding.generate(w.literalFreq, 15)
+ w.offsetEncoding.generate(w.offsetFreq, 15)
+ return
+}
+
+// writeTokens writes a slice of tokens to the output.
+// codes for literal and offset encoding must be supplied.
+func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
+ if w.err != nil {
+ return
+ }
+ for _, t := range tokens {
+ if t < matchType {
+ w.writeCode(leCodes[t.literal()])
+ continue
+ }
+ // Write the length
+ length := t.length()
+ lengthCode := lengthCode(length)
+ w.writeCode(leCodes[lengthCode+lengthCodesStart])
+ extraLengthBits := uint(lengthExtraBits[lengthCode])
+ if extraLengthBits > 0 {
+ extraLength := int32(length - lengthBase[lengthCode])
+ w.writeBits(extraLength, extraLengthBits)
+ }
+ // Write the offset
+ offset := t.offset()
+ offsetCode := offsetCode(offset)
+ w.writeCode(oeCodes[offsetCode])
+ extraOffsetBits := uint(offsetExtraBits[offsetCode])
+ if extraOffsetBits > 0 {
+ extraOffset := int32(offset - offsetBase[offsetCode])
+ w.writeBits(extraOffset, extraOffsetBits)
+ }
+ }
+}
+
+// huffOffset is a static offset encoder used for huffman only encoding.
+// It can be reused since we will not be encoding offset values.
+var huffOffset *huffmanEncoder
+
+func init() {
+ w := newHuffmanBitWriter(nil)
+ w.offsetFreq[0] = 1
+ huffOffset = newHuffmanEncoder(offsetCodeCount)
+ huffOffset.generate(w.offsetFreq, 15)
+}
+
+// writeBlockHuff encodes a block of bytes as either
+// Huffman encoded literals or uncompressed bytes if the
+// results only gains very little from compression.
+func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte) {
+ if w.err != nil {
+ return
+ }
+
+ // Clear histogram
+ for i := range w.literalFreq {
+ w.literalFreq[i] = 0
+ }
+
+ // Add everything as literals
+ histogram(input, w.literalFreq)
+
+ w.literalFreq[endBlockMarker] = 1
+
+ const numLiterals = endBlockMarker + 1
+ const numOffsets = 1
+
+ w.literalEncoding.generate(w.literalFreq, 15)
+
+ // Figure out smallest code.
+ // Always use dynamic Huffman or Store
+ var numCodegens int
+
+ // Generate codegen and codegenFrequencies, which indicates how to encode
+ // the literalEncoding and the offsetEncoding.
+ w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
+ w.codegenEncoding.generate(w.codegenFreq[:], 7)
+ size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0)
+
+ // Store bytes, if we don't get a reasonable improvement.
+ if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
+ w.writeStoredHeader(len(input), eof)
+ w.writeBytes(input)
+ return
+ }
+
+ // Huffman.
+ w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
+ encoding := w.literalEncoding.codes[:257]
+ n := w.nbytes
+ for _, t := range input {
+ // Bitwriting inlined, ~30% speedup
+ c := encoding[t]
+ w.bits |= uint64(c.code) << w.nbits
+ w.nbits += uint(c.len)
+ if w.nbits < 48 {
+ continue
+ }
+ // Store 6 bytes
+ bits := w.bits
+ w.bits >>= 48
+ w.nbits -= 48
+ bytes := w.bytes[n : n+6]
+ bytes[0] = byte(bits)
+ bytes[1] = byte(bits >> 8)
+ bytes[2] = byte(bits >> 16)
+ bytes[3] = byte(bits >> 24)
+ bytes[4] = byte(bits >> 32)
+ bytes[5] = byte(bits >> 40)
+ n += 6
+ if n < bufferFlushSize {
+ continue
+ }
+ w.write(w.bytes[:n])
+ if w.err != nil {
+ return // Return early in the event of write failures
+ }
+ n = 0
+ }
+ w.nbytes = n
+ w.writeCode(encoding[endBlockMarker])
+}
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_code.go b/vendor/github.com/klauspost/compress/flate/huffman_code.go
new file mode 100644
index 000000000..bdcbd823b
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/huffman_code.go
@@ -0,0 +1,344 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "math"
+ "sort"
+)
+
+// hcode is a huffman code with a bit code and bit length.
+type hcode struct {
+ code, len uint16
+}
+
+type huffmanEncoder struct {
+ codes []hcode
+ freqcache []literalNode
+ bitCount [17]int32
+ lns byLiteral // stored to avoid repeated allocation in generate
+ lfs byFreq // stored to avoid repeated allocation in generate
+}
+
+type literalNode struct {
+ literal uint16
+ freq int32
+}
+
+// A levelInfo describes the state of the constructed tree for a given depth.
+type levelInfo struct {
+ // Our level. for better printing
+ level int32
+
+ // The frequency of the last node at this level
+ lastFreq int32
+
+ // The frequency of the next character to add to this level
+ nextCharFreq int32
+
+ // The frequency of the next pair (from level below) to add to this level.
+ // Only valid if the "needed" value of the next lower level is 0.
+ nextPairFreq int32
+
+ // The number of chains remaining to generate for this level before moving
+ // up to the next level
+ needed int32
+}
+
+// set sets the code and length of an hcode.
+func (h *hcode) set(code uint16, length uint16) {
+ h.len = length
+ h.code = code
+}
+
+func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
+
+func newHuffmanEncoder(size int) *huffmanEncoder {
+ return &huffmanEncoder{codes: make([]hcode, size)}
+}
+
+// Generates a HuffmanCode corresponding to the fixed literal table
+func generateFixedLiteralEncoding() *huffmanEncoder {
+ h := newHuffmanEncoder(maxNumLit)
+ codes := h.codes
+ var ch uint16
+ for ch = 0; ch < maxNumLit; ch++ {
+ var bits uint16
+ var size uint16
+ switch {
+ case ch < 144:
+ // size 8, 000110000 .. 10111111
+ bits = ch + 48
+ size = 8
+ break
+ case ch < 256:
+ // size 9, 110010000 .. 111111111
+ bits = ch + 400 - 144
+ size = 9
+ break
+ case ch < 280:
+ // size 7, 0000000 .. 0010111
+ bits = ch - 256
+ size = 7
+ break
+ default:
+ // size 8, 11000000 .. 11000111
+ bits = ch + 192 - 280
+ size = 8
+ }
+ codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
+ }
+ return h
+}
+
+func generateFixedOffsetEncoding() *huffmanEncoder {
+ h := newHuffmanEncoder(30)
+ codes := h.codes
+ for ch := range codes {
+ codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
+ }
+ return h
+}
+
+var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
+var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
+
+func (h *huffmanEncoder) bitLength(freq []int32) int {
+ var total int
+ for i, f := range freq {
+ if f != 0 {
+ total += int(f) * int(h.codes[i].len)
+ }
+ }
+ return total
+}
+
+const maxBitsLimit = 16
+
+// Return the number of literals assigned to each bit size in the Huffman encoding
+//
+// This method is only called when list.length >= 3
+// The cases of 0, 1, and 2 literals are handled by special case code.
+//
+// list An array of the literals with non-zero frequencies
+// and their associated frequencies. The array is in order of increasing
+// frequency, and has as its last element a special element with frequency
+// MaxInt32
+// maxBits The maximum number of bits that should be used to encode any literal.
+// Must be less than 16.
+// return An integer array in which array[i] indicates the number of literals
+// that should be encoded in i bits.
+func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
+ if maxBits >= maxBitsLimit {
+ panic("flate: maxBits too large")
+ }
+ n := int32(len(list))
+ list = list[0 : n+1]
+ list[n] = maxNode()
+
+ // The tree can't have greater depth than n - 1, no matter what. This
+ // saves a little bit of work in some small cases
+ if maxBits > n-1 {
+ maxBits = n - 1
+ }
+
+ // Create information about each of the levels.
+ // A bogus "Level 0" whose sole purpose is so that
+ // level1.prev.needed==0. This makes level1.nextPairFreq
+ // be a legitimate value that never gets chosen.
+ var levels [maxBitsLimit]levelInfo
+ // leafCounts[i] counts the number of literals at the left
+ // of ancestors of the rightmost node at level i.
+ // leafCounts[i][j] is the number of literals at the left
+ // of the level j ancestor.
+ var leafCounts [maxBitsLimit][maxBitsLimit]int32
+
+ for level := int32(1); level <= maxBits; level++ {
+ // For every level, the first two items are the first two characters.
+ // We initialize the levels as if we had already figured this out.
+ levels[level] = levelInfo{
+ level: level,
+ lastFreq: list[1].freq,
+ nextCharFreq: list[2].freq,
+ nextPairFreq: list[0].freq + list[1].freq,
+ }
+ leafCounts[level][level] = 2
+ if level == 1 {
+ levels[level].nextPairFreq = math.MaxInt32
+ }
+ }
+
+ // We need a total of 2*n - 2 items at top level and have already generated 2.
+ levels[maxBits].needed = 2*n - 4
+
+ level := maxBits
+ for {
+ l := &levels[level]
+ if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
+ // We've run out of both leafs and pairs.
+ // End all calculations for this level.
+ // To make sure we never come back to this level or any lower level,
+ // set nextPairFreq impossibly large.
+ l.needed = 0
+ levels[level+1].nextPairFreq = math.MaxInt32
+ level++
+ continue
+ }
+
+ prevFreq := l.lastFreq
+ if l.nextCharFreq < l.nextPairFreq {
+ // The next item on this row is a leaf node.
+ n := leafCounts[level][level] + 1
+ l.lastFreq = l.nextCharFreq
+ // Lower leafCounts are the same of the previous node.
+ leafCounts[level][level] = n
+ l.nextCharFreq = list[n].freq
+ } else {
+ // The next item on this row is a pair from the previous row.
+ // nextPairFreq isn't valid until we generate two
+ // more values in the level below
+ l.lastFreq = l.nextPairFreq
+ // Take leaf counts from the lower level, except counts[level] remains the same.
+ copy(leafCounts[level][:level], leafCounts[level-1][:level])
+ levels[l.level-1].needed = 2
+ }
+
+ if l.needed--; l.needed == 0 {
+ // We've done everything we need to do for this level.
+ // Continue calculating one level up. Fill in nextPairFreq
+ // of that level with the sum of the two nodes we've just calculated on
+ // this level.
+ if l.level == maxBits {
+ // All done!
+ break
+ }
+ levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
+ level++
+ } else {
+ // If we stole from below, move down temporarily to replenish it.
+ for levels[level-1].needed > 0 {
+ level--
+ }
+ }
+ }
+
+ // Somethings is wrong if at the end, the top level is null or hasn't used
+ // all of the leaves.
+ if leafCounts[maxBits][maxBits] != n {
+ panic("leafCounts[maxBits][maxBits] != n")
+ }
+
+ bitCount := h.bitCount[:maxBits+1]
+ bits := 1
+ counts := &leafCounts[maxBits]
+ for level := maxBits; level > 0; level-- {
+ // chain.leafCount gives the number of literals requiring at least "bits"
+ // bits to encode.
+ bitCount[bits] = counts[level] - counts[level-1]
+ bits++
+ }
+ return bitCount
+}
+
+// Look at the leaves and assign them a bit count and an encoding as specified
+// in RFC 1951 3.2.2
+func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
+ code := uint16(0)
+ for n, bits := range bitCount {
+ code <<= 1
+ if n == 0 || bits == 0 {
+ continue
+ }
+ // The literals list[len(list)-bits] .. list[len(list)-bits]
+ // are encoded using "bits" bits, and get the values
+ // code, code + 1, .... The code values are
+ // assigned in literal order (not frequency order).
+ chunk := list[len(list)-int(bits):]
+
+ h.lns.sort(chunk)
+ for _, node := range chunk {
+ h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
+ code++
+ }
+ list = list[0 : len(list)-int(bits)]
+ }
+}
+
+// Update this Huffman Code object to be the minimum code for the specified frequency count.
+//
+// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
+// maxBits The maximum number of bits to use for any literal.
+func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
+ if h.freqcache == nil {
+ // Allocate a reusable buffer with the longest possible frequency table.
+ // Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
+ // The largest of these is maxNumLit, so we allocate for that case.
+ h.freqcache = make([]literalNode, maxNumLit+1)
+ }
+ list := h.freqcache[:len(freq)+1]
+ // Number of non-zero literals
+ count := 0
+ // Set list to be the set of all non-zero literals and their frequencies
+ for i, f := range freq {
+ if f != 0 {
+ list[count] = literalNode{uint16(i), f}
+ count++
+ } else {
+ list[count] = literalNode{}
+ h.codes[i].len = 0
+ }
+ }
+ list[len(freq)] = literalNode{}
+
+ list = list[:count]
+ if count <= 2 {
+ // Handle the small cases here, because they are awkward for the general case code. With
+ // two or fewer literals, everything has bit length 1.
+ for i, node := range list {
+ // "list" is in order of increasing literal value.
+ h.codes[node.literal].set(uint16(i), 1)
+ }
+ return
+ }
+ h.lfs.sort(list)
+
+ // Get the number of literals for each bit count
+ bitCount := h.bitCounts(list, maxBits)
+ // And do the assignment
+ h.assignEncodingAndSize(bitCount, list)
+}
+
+type byLiteral []literalNode
+
+func (s *byLiteral) sort(a []literalNode) {
+ *s = byLiteral(a)
+ sort.Sort(s)
+}
+
+func (s byLiteral) Len() int { return len(s) }
+
+func (s byLiteral) Less(i, j int) bool {
+ return s[i].literal < s[j].literal
+}
+
+func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
+
+type byFreq []literalNode
+
+func (s *byFreq) sort(a []literalNode) {
+ *s = byFreq(a)
+ sort.Sort(s)
+}
+
+func (s byFreq) Len() int { return len(s) }
+
+func (s byFreq) Less(i, j int) bool {
+ if s[i].freq == s[j].freq {
+ return s[i].literal < s[j].literal
+ }
+ return s[i].freq < s[j].freq
+}
+
+func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
diff --git a/vendor/github.com/klauspost/compress/flate/inflate.go b/vendor/github.com/klauspost/compress/flate/inflate.go
new file mode 100644
index 000000000..800d0ce9e
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/inflate.go
@@ -0,0 +1,880 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package flate implements the DEFLATE compressed data format, described in
+// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file
+// formats.
+package flate
+
+import (
+ "bufio"
+ "io"
+ "math/bits"
+ "strconv"
+ "sync"
+)
+
+const (
+ maxCodeLen = 16 // max length of Huffman code
+ maxCodeLenMask = 15 // mask for max length of Huffman code
+ // The next three numbers come from the RFC section 3.2.7, with the
+ // additional proviso in section 3.2.5 which implies that distance codes
+ // 30 and 31 should never occur in compressed data.
+ maxNumLit = 286
+ maxNumDist = 30
+ numCodes = 19 // number of codes in Huffman meta-code
+)
+
+// Initialize the fixedHuffmanDecoder only once upon first use.
+var fixedOnce sync.Once
+var fixedHuffmanDecoder huffmanDecoder
+
+// A CorruptInputError reports the presence of corrupt input at a given offset.
+type CorruptInputError int64
+
+func (e CorruptInputError) Error() string {
+ return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
+}
+
+// An InternalError reports an error in the flate code itself.
+type InternalError string
+
+func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
+
+// A ReadError reports an error encountered while reading input.
+//
+// Deprecated: No longer returned.
+type ReadError struct {
+ Offset int64 // byte offset where error occurred
+ Err error // error returned by underlying Read
+}
+
+func (e *ReadError) Error() string {
+ return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
+}
+
+// A WriteError reports an error encountered while writing output.
+//
+// Deprecated: No longer returned.
+type WriteError struct {
+ Offset int64 // byte offset where error occurred
+ Err error // error returned by underlying Write
+}
+
+func (e *WriteError) Error() string {
+ return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
+}
+
+// Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
+// to switch to a new underlying Reader. This permits reusing a ReadCloser
+// instead of allocating a new one.
+type Resetter interface {
+ // Reset discards any buffered data and resets the Resetter as if it was
+ // newly initialized with the given reader.
+ Reset(r io.Reader, dict []byte) error
+}
+
+// The data structure for decoding Huffman tables is based on that of
+// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
+// For codes smaller than the table width, there are multiple entries
+// (each combination of trailing bits has the same value). For codes
+// larger than the table width, the table contains a link to an overflow
+// table. The width of each entry in the link table is the maximum code
+// size minus the chunk width.
+//
+// Note that you can do a lookup in the table even without all bits
+// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
+// have the property that shorter codes come before longer ones, the
+// bit length estimate in the result is a lower bound on the actual
+// number of bits.
+//
+// See the following:
+// http://www.gzip.org/algorithm.txt
+
+// chunk & 15 is number of bits
+// chunk >> 4 is value, including table link
+
+const (
+ huffmanChunkBits = 9
+ huffmanNumChunks = 1 << huffmanChunkBits
+ huffmanCountMask = 15
+ huffmanValueShift = 4
+)
+
+type huffmanDecoder struct {
+ min int // the minimum code length
+ chunks *[huffmanNumChunks]uint32 // chunks as described above
+ links [][]uint32 // overflow links
+ linkMask uint32 // mask the width of the link table
+}
+
+// Initialize Huffman decoding tables from array of code lengths.
+// Following this function, h is guaranteed to be initialized into a complete
+// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
+// degenerate case where the tree has only a single symbol with length 1. Empty
+// trees are permitted.
+func (h *huffmanDecoder) init(lengths []int) bool {
+ // Sanity enables additional runtime tests during Huffman
+ // table construction. It's intended to be used during
+ // development to supplement the currently ad-hoc unit tests.
+ const sanity = false
+
+ if h.chunks == nil {
+ h.chunks = &[huffmanNumChunks]uint32{}
+ }
+ if h.min != 0 {
+ *h = huffmanDecoder{chunks: h.chunks, links: h.links}
+ }
+
+ // Count number of codes of each length,
+ // compute min and max length.
+ var count [maxCodeLen]int
+ var min, max int
+ for _, n := range lengths {
+ if n == 0 {
+ continue
+ }
+ if min == 0 || n < min {
+ min = n
+ }
+ if n > max {
+ max = n
+ }
+ count[n&maxCodeLenMask]++
+ }
+
+ // Empty tree. The decompressor.huffSym function will fail later if the tree
+ // is used. Technically, an empty tree is only valid for the HDIST tree and
+ // not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
+ // is guaranteed to fail since it will attempt to use the tree to decode the
+ // codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
+ // guaranteed to fail later since the compressed data section must be
+ // composed of at least one symbol (the end-of-block marker).
+ if max == 0 {
+ return true
+ }
+
+ code := 0
+ var nextcode [maxCodeLen]int
+ for i := min; i <= max; i++ {
+ code <<= 1
+ nextcode[i&maxCodeLenMask] = code
+ code += count[i&maxCodeLenMask]
+ }
+
+ // Check that the coding is complete (i.e., that we've
+ // assigned all 2-to-the-max possible bit sequences).
+ // Exception: To be compatible with zlib, we also need to
+ // accept degenerate single-code codings. See also
+ // TestDegenerateHuffmanCoding.
+ if code != 1<<uint(max) && !(code == 1 && max == 1) {
+ return false
+ }
+
+ h.min = min
+ chunks := h.chunks[:]
+ for i := range chunks {
+ chunks[i] = 0
+ }
+
+ if max > huffmanChunkBits {
+ numLinks := 1 << (uint(max) - huffmanChunkBits)
+ h.linkMask = uint32(numLinks - 1)
+
+ // create link tables
+ link := nextcode[huffmanChunkBits+1] >> 1
+ if cap(h.links) < huffmanNumChunks-link {
+ h.links = make([][]uint32, huffmanNumChunks-link)
+ } else {
+ h.links = h.links[:huffmanNumChunks-link]
+ }
+ for j := uint(link); j < huffmanNumChunks; j++ {
+ reverse := int(bits.Reverse16(uint16(j)))
+ reverse >>= uint(16 - huffmanChunkBits)
+ off := j - uint(link)
+ if sanity && h.chunks[reverse] != 0 {
+ panic("impossible: overwriting existing chunk")
+ }
+ h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
+ if cap(h.links[off]) < numLinks {
+ h.links[off] = make([]uint32, numLinks)
+ } else {
+ links := h.links[off][:0]
+ h.links[off] = links[:numLinks]
+ }
+ }
+ } else {
+ h.links = h.links[:0]
+ }
+
+ for i, n := range lengths {
+ if n == 0 {
+ continue
+ }
+ code := nextcode[n]
+ nextcode[n]++
+ chunk := uint32(i<<huffmanValueShift | n)
+ reverse := int(bits.Reverse16(uint16(code)))
+ reverse >>= uint(16 - n)
+ if n <= huffmanChunkBits {
+ for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
+ // We should never need to overwrite
+ // an existing chunk. Also, 0 is
+ // never a valid chunk, because the
+ // lower 4 "count" bits should be
+ // between 1 and 15.
+ if sanity && h.chunks[off] != 0 {
+ panic("impossible: overwriting existing chunk")
+ }
+ h.chunks[off] = chunk
+ }
+ } else {
+ j := reverse & (huffmanNumChunks - 1)
+ if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
+ // Longer codes should have been
+ // associated with a link table above.
+ panic("impossible: not an indirect chunk")
+ }
+ value := h.chunks[j] >> huffmanValueShift
+ linktab := h.links[value]
+ reverse >>= huffmanChunkBits
+ for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
+ if sanity && linktab[off] != 0 {
+ panic("impossible: overwriting existing chunk")
+ }
+ linktab[off] = chunk
+ }
+ }
+ }
+
+ if sanity {
+ // Above we've sanity checked that we never overwrote
+ // an existing entry. Here we additionally check that
+ // we filled the tables completely.
+ for i, chunk := range h.chunks {
+ if chunk == 0 {
+ // As an exception, in the degenerate
+ // single-code case, we allow odd
+ // chunks to be missing.
+ if code == 1 && i%2 == 1 {
+ continue
+ }
+ panic("impossible: missing chunk")
+ }
+ }
+ for _, linktab := range h.links {
+ for _, chunk := range linktab {
+ if chunk == 0 {
+ panic("impossible: missing chunk")
+ }
+ }
+ }
+ }
+
+ return true
+}
+
+// The actual read interface needed by NewReader.
+// If the passed in io.Reader does not also have ReadByte,
+// the NewReader will introduce its own buffering.
+type Reader interface {
+ io.Reader
+ io.ByteReader
+}
+
+// Decompress state.
+type decompressor struct {
+ // Input source.
+ r Reader
+ roffset int64
+
+ // Input bits, in top of b.
+ b uint32
+ nb uint
+
+ // Huffman decoders for literal/length, distance.
+ h1, h2 huffmanDecoder
+
+ // Length arrays used to define Huffman codes.
+ bits *[maxNumLit + maxNumDist]int
+ codebits *[numCodes]int
+
+ // Output history, buffer.
+ dict dictDecoder
+
+ // Temporary buffer (avoids repeated allocation).
+ buf [4]byte
+
+ // Next step in the decompression,
+ // and decompression state.
+ step func(*decompressor)
+ stepState int
+ final bool
+ err error
+ toRead []byte
+ hl, hd *huffmanDecoder
+ copyLen int
+ copyDist int
+}
+
+func (f *decompressor) nextBlock() {
+ for f.nb < 1+2 {
+ if f.err = f.moreBits(); f.err != nil {
+ return
+ }
+ }
+ f.final = f.b&1 == 1
+ f.b >>= 1
+ typ := f.b & 3
+ f.b >>= 2
+ f.nb -= 1 + 2
+ switch typ {
+ case 0:
+ f.dataBlock()
+ case 1:
+ // compressed, fixed Huffman tables
+ f.hl = &fixedHuffmanDecoder
+ f.hd = nil
+ f.huffmanBlock()
+ case 2:
+ // compressed, dynamic Huffman tables
+ if f.err = f.readHuffman(); f.err != nil {
+ break
+ }
+ f.hl = &f.h1
+ f.hd = &f.h2
+ f.huffmanBlock()
+ default:
+ // 3 is reserved.
+ f.err = CorruptInputError(f.roffset)
+ }
+}
+
+func (f *decompressor) Read(b []byte) (int, error) {
+ for {
+ if len(f.toRead) > 0 {
+ n := copy(b, f.toRead)
+ f.toRead = f.toRead[n:]
+ if len(f.toRead) == 0 {
+ return n, f.err
+ }
+ return n, nil
+ }
+ if f.err != nil {
+ return 0, f.err
+ }
+ f.step(f)
+ if f.err != nil && len(f.toRead) == 0 {
+ f.toRead = f.dict.readFlush() // Flush what's left in case of error
+ }
+ }
+}
+
+// Support the io.WriteTo interface for io.Copy and friends.
+func (f *decompressor) WriteTo(w io.Writer) (int64, error) {
+ total := int64(0)
+ flushed := false
+ for {
+ if len(f.toRead) > 0 {
+ n, err := w.Write(f.toRead)
+ total += int64(n)
+ if err != nil {
+ f.err = err
+ return total, err
+ }
+ if n != len(f.toRead) {
+ return total, io.ErrShortWrite
+ }
+ f.toRead = f.toRead[:0]
+ }
+ if f.err != nil && flushed {
+ if f.err == io.EOF {
+ return total, nil
+ }
+ return total, f.err
+ }
+ if f.err == nil {
+ f.step(f)
+ }
+ if len(f.toRead) == 0 && f.err != nil && !flushed {
+ f.toRead = f.dict.readFlush() // Flush what's left in case of error
+ flushed = true
+ }
+ }
+}
+
+func (f *decompressor) Close() error {
+ if f.err == io.EOF {
+ return nil
+ }
+ return f.err
+}
+
+// RFC 1951 section 3.2.7.
+// Compression with dynamic Huffman codes
+
+var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
+
+func (f *decompressor) readHuffman() error {
+ // HLIT[5], HDIST[5], HCLEN[4].
+ for f.nb < 5+5+4 {
+ if err := f.moreBits(); err != nil {
+ return err
+ }
+ }
+ nlit := int(f.b&0x1F) + 257
+ if nlit > maxNumLit {
+ return CorruptInputError(f.roffset)
+ }
+ f.b >>= 5
+ ndist := int(f.b&0x1F) + 1
+ if ndist > maxNumDist {
+ return CorruptInputError(f.roffset)
+ }
+ f.b >>= 5
+ nclen := int(f.b&0xF) + 4
+ // numCodes is 19, so nclen is always valid.
+ f.b >>= 4
+ f.nb -= 5 + 5 + 4
+
+ // (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
+ for i := 0; i < nclen; i++ {
+ for f.nb < 3 {
+ if err := f.moreBits(); err != nil {
+ return err
+ }
+ }
+ f.codebits[codeOrder[i]] = int(f.b & 0x7)
+ f.b >>= 3
+ f.nb -= 3
+ }
+ for i := nclen; i < len(codeOrder); i++ {
+ f.codebits[codeOrder[i]] = 0
+ }
+ if !f.h1.init(f.codebits[0:]) {
+ return CorruptInputError(f.roffset)
+ }
+
+ // HLIT + 257 code lengths, HDIST + 1 code lengths,
+ // using the code length Huffman code.
+ for i, n := 0, nlit+ndist; i < n; {
+ x, err := f.huffSym(&f.h1)
+ if err != nil {
+ return err
+ }
+ if x < 16 {
+ // Actual length.
+ f.bits[i] = x
+ i++
+ continue
+ }
+ // Repeat previous length or zero.
+ var rep int
+ var nb uint
+ var b int
+ switch x {
+ default:
+ return InternalError("unexpected length code")
+ case 16:
+ rep = 3
+ nb = 2
+ if i == 0 {
+ return CorruptInputError(f.roffset)
+ }
+ b = f.bits[i-1]
+ case 17:
+ rep = 3
+ nb = 3
+ b = 0
+ case 18:
+ rep = 11
+ nb = 7
+ b = 0
+ }
+ for f.nb < nb {
+ if err := f.moreBits(); err != nil {
+ return err
+ }
+ }
+ rep += int(f.b & uint32(1<<nb-1))
+ f.b >>= nb
+ f.nb -= nb
+ if i+rep > n {
+ return CorruptInputError(f.roffset)
+ }
+ for j := 0; j < rep; j++ {
+ f.bits[i] = b
+ i++
+ }
+ }
+
+ if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
+ return CorruptInputError(f.roffset)
+ }
+
+ // As an optimization, we can initialize the min bits to read at a time
+ // for the HLIT tree to the length of the EOB marker since we know that
+ // every block must terminate with one. This preserves the property that
+ // we never read any extra bytes after the end of the DEFLATE stream.
+ if f.h1.min < f.bits[endBlockMarker] {
+ f.h1.min = f.bits[endBlockMarker]
+ }
+
+ return nil
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBlock() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ v, err := f.huffSym(f.hl)
+ if err != nil {
+ f.err = err
+ return
+ }
+ var n uint // number of bits extra
+ var length int
+ switch {
+ case v < 256:
+ f.dict.writeByte(byte(v))
+ if f.dict.availWrite() == 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).huffmanBlock
+ f.stepState = stateInit
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ n = 0
+ case v < 269:
+ length = v*2 - (265*2 - 11)
+ n = 1
+ case v < 273:
+ length = v*4 - (269*4 - 19)
+ n = 2
+ case v < 277:
+ length = v*8 - (273*8 - 35)
+ n = 3
+ case v < 281:
+ length = v*16 - (277*16 - 67)
+ n = 4
+ case v < 285:
+ length = v*32 - (281*32 - 131)
+ n = 5
+ case v < maxNumLit:
+ length = 258
+ n = 0
+ default:
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ if n > 0 {
+ for f.nb < n {
+ if err = f.moreBits(); err != nil {
+ f.err = err
+ return
+ }
+ }
+ length += int(f.b & uint32(1<<n-1))
+ f.b >>= n
+ f.nb -= n
+ }
+
+ var dist int
+ if f.hd == nil {
+ for f.nb < 5 {
+ if err = f.moreBits(); err != nil {
+ f.err = err
+ return
+ }
+ }
+ dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3)))
+ f.b >>= 5
+ f.nb -= 5
+ } else {
+ if dist, err = f.huffSym(f.hd); err != nil {
+ f.err = err
+ return
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << nb
+ for f.nb < nb {
+ if err = f.moreBits(); err != nil {
+ f.err = err
+ return
+ }
+ }
+ extra |= int(f.b & uint32(1<<nb-1))
+ f.b >>= nb
+ f.nb -= nb
+ dist = 1<<(nb+1) + 1 + extra
+ default:
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > f.dict.histSize() {
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, dist
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if f.dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).huffmanBlock // We need to continue this work
+ f.stepState = stateDict
+ return
+ }
+ goto readLiteral
+ }
+}
+
+// Copy a single uncompressed data block from input to output.
+func (f *decompressor) dataBlock() {
+ // Uncompressed.
+ // Discard current half-byte.
+ f.nb = 0
+ f.b = 0
+
+ // Length then ones-complement of length.
+ nr, err := io.ReadFull(f.r, f.buf[0:4])
+ f.roffset += int64(nr)
+ if err != nil {
+ f.err = noEOF(err)
+ return
+ }
+ n := int(f.buf[0]) | int(f.buf[1])<<8
+ nn := int(f.buf[2]) | int(f.buf[3])<<8
+ if uint16(nn) != uint16(^n) {
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ if n == 0 {
+ f.toRead = f.dict.readFlush()
+ f.finishBlock()
+ return
+ }
+
+ f.copyLen = n
+ f.copyData()
+}
+
+// copyData copies f.copyLen bytes from the underlying reader into f.hist.
+// It pauses for reads when f.hist is full.
+func (f *decompressor) copyData() {
+ buf := f.dict.writeSlice()
+ if len(buf) > f.copyLen {
+ buf = buf[:f.copyLen]
+ }
+
+ cnt, err := io.ReadFull(f.r, buf)
+ f.roffset += int64(cnt)
+ f.copyLen -= cnt
+ f.dict.writeMark(cnt)
+ if err != nil {
+ f.err = noEOF(err)
+ return
+ }
+
+ if f.dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).copyData
+ return
+ }
+ f.finishBlock()
+}
+
+func (f *decompressor) finishBlock() {
+ if f.final {
+ if f.dict.availRead() > 0 {
+ f.toRead = f.dict.readFlush()
+ }
+ f.err = io.EOF
+ }
+ f.step = (*decompressor).nextBlock
+}
+
+// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
+func noEOF(e error) error {
+ if e == io.EOF {
+ return io.ErrUnexpectedEOF
+ }
+ return e
+}
+
+func (f *decompressor) moreBits() error {
+ c, err := f.r.ReadByte()
+ if err != nil {
+ return noEOF(err)
+ }
+ f.roffset++
+ f.b |= uint32(c) << f.nb
+ f.nb += 8
+ return nil
+}
+
+// Read the next Huffman-encoded symbol from f according to h.
+func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(h.min)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ nb, b := f.nb, f.b
+ for {
+ for nb < n {
+ c, err := f.r.ReadByte()
+ if err != nil {
+ f.b = b
+ f.nb = nb
+ return 0, noEOF(err)
+ }
+ f.roffset++
+ b |= uint32(c) << (nb & 31)
+ nb += 8
+ }
+ chunk := h.chunks[b&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= nb {
+ if n == 0 {
+ f.b = b
+ f.nb = nb
+ f.err = CorruptInputError(f.roffset)
+ return 0, f.err
+ }
+ f.b = b >> (n & 31)
+ f.nb = nb - n
+ return int(chunk >> huffmanValueShift), nil
+ }
+ }
+}
+
+func makeReader(r io.Reader) Reader {
+ if rr, ok := r.(Reader); ok {
+ return rr
+ }
+ return bufio.NewReader(r)
+}
+
+func fixedHuffmanDecoderInit() {
+ fixedOnce.Do(func() {
+ // These come from the RFC section 3.2.6.
+ var bits [288]int
+ for i := 0; i < 144; i++ {
+ bits[i] = 8
+ }
+ for i := 144; i < 256; i++ {
+ bits[i] = 9
+ }
+ for i := 256; i < 280; i++ {
+ bits[i] = 7
+ }
+ for i := 280; i < 288; i++ {
+ bits[i] = 8
+ }
+ fixedHuffmanDecoder.init(bits[:])
+ })
+}
+
+func (f *decompressor) Reset(r io.Reader, dict []byte) error {
+ *f = decompressor{
+ r: makeReader(r),
+ bits: f.bits,
+ codebits: f.codebits,
+ h1: f.h1,
+ h2: f.h2,
+ dict: f.dict,
+ step: (*decompressor).nextBlock,
+ }
+ f.dict.init(maxMatchOffset, dict)
+ return nil
+}
+
+// NewReader returns a new ReadCloser that can be used
+// to read the uncompressed version of r.
+// If r does not also implement io.ByteReader,
+// the decompressor may read more data than necessary from r.
+// It is the caller's responsibility to call Close on the ReadCloser
+// when finished reading.
+//
+// The ReadCloser returned by NewReader also implements Resetter.
+func NewReader(r io.Reader) io.ReadCloser {
+ fixedHuffmanDecoderInit()
+
+ var f decompressor
+ f.r = makeReader(r)
+ f.bits = new([maxNumLit + maxNumDist]int)
+ f.codebits = new([numCodes]int)
+ f.step = (*decompressor).nextBlock
+ f.dict.init(maxMatchOffset, nil)
+ return &f
+}
+
+// NewReaderDict is like NewReader but initializes the reader
+// with a preset dictionary. The returned Reader behaves as if
+// the uncompressed data stream started with the given dictionary,
+// which has already been read. NewReaderDict is typically used
+// to read data compressed by NewWriterDict.
+//
+// The ReadCloser returned by NewReader also implements Resetter.
+func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
+ fixedHuffmanDecoderInit()
+
+ var f decompressor
+ f.r = makeReader(r)
+ f.bits = new([maxNumLit + maxNumDist]int)
+ f.codebits = new([numCodes]int)
+ f.step = (*decompressor).nextBlock
+ f.dict.init(maxMatchOffset, dict)
+ return &f
+}
diff --git a/vendor/github.com/klauspost/compress/flate/reverse_bits.go b/vendor/github.com/klauspost/compress/flate/reverse_bits.go
new file mode 100644
index 000000000..c1a02720d
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/reverse_bits.go
@@ -0,0 +1,48 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+var reverseByte = [256]byte{
+ 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
+ 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
+ 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
+ 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
+ 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
+ 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
+ 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
+ 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
+ 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
+ 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
+ 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
+ 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
+ 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
+ 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
+ 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
+ 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
+ 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
+ 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
+ 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
+ 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
+ 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
+ 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
+ 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
+ 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
+ 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
+ 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
+ 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
+ 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
+ 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
+ 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
+ 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
+ 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
+}
+
+func reverseUint16(v uint16) uint16 {
+ return uint16(reverseByte[v>>8]) | uint16(reverseByte[v&0xFF])<<8
+}
+
+func reverseBits(number uint16, bitLength byte) uint16 {
+ return reverseUint16(number << uint8(16-bitLength))
+}
diff --git a/vendor/github.com/klauspost/compress/flate/snappy.go b/vendor/github.com/klauspost/compress/flate/snappy.go
new file mode 100644
index 000000000..d853320a7
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/snappy.go
@@ -0,0 +1,900 @@
+// Copyright 2011 The Snappy-Go Authors. All rights reserved.
+// Modified for deflate by Klaus Post (c) 2015.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+// emitLiteral writes a literal chunk and returns the number of bytes written.
+func emitLiteral(dst *tokens, lit []byte) {
+ ol := int(dst.n)
+ for i, v := range lit {
+ dst.tokens[(i+ol)&maxStoreBlockSize] = token(v)
+ }
+ dst.n += uint16(len(lit))
+}
+
+// emitCopy writes a copy chunk and returns the number of bytes written.
+func emitCopy(dst *tokens, offset, length int) {
+ dst.tokens[dst.n] = matchToken(uint32(length-3), uint32(offset-minOffsetSize))
+ dst.n++
+}
+
+type snappyEnc interface {
+ Encode(dst *tokens, src []byte)
+ Reset()
+}
+
+func newSnappy(level int) snappyEnc {
+ switch level {
+ case 1:
+ return &snappyL1{}
+ case 2:
+ return &snappyL2{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
+ case 3:
+ return &snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
+ case 4:
+ return &snappyL4{snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}}
+ default:
+ panic("invalid level specified")
+ }
+}
+
+const (
+ tableBits = 14 // Bits used in the table
+ tableSize = 1 << tableBits // Size of the table
+ tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
+ tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
+ baseMatchOffset = 1 // The smallest match offset
+ baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
+ maxMatchOffset = 1 << 15 // The largest match offset
+)
+
+func load32(b []byte, i int) uint32 {
+ b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
+ return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
+}
+
+func load64(b []byte, i int) uint64 {
+ b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
+ return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
+ uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
+}
+
+func hash(u uint32) uint32 {
+ return (u * 0x1e35a7bd) >> tableShift
+}
+
+// snappyL1 encapsulates level 1 compression
+type snappyL1 struct{}
+
+func (e *snappyL1) Reset() {}
+
+func (e *snappyL1) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 16 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ return
+ }
+
+ // Initialize the hash table.
+ //
+ // The table element type is uint16, as s < sLimit and sLimit < len(src)
+ // and len(src) <= maxStoreBlockSize and maxStoreBlockSize == 65535.
+ var table [tableSize]uint16
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := len(src) - inputMargin
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ nextEmit := 0
+
+ // The encoded form must start with a literal, as there are no previous
+ // bytes to copy, so we start looking for hash matches at s == 1.
+ s := 1
+ nextHash := hash(load32(src, s))
+
+ for {
+ // Copied from the C++ snappy implementation:
+ //
+ // Heuristic match skipping: If 32 bytes are scanned with no matches
+ // found, start looking only at every other byte. If 32 more bytes are
+ // scanned (or skipped), look at every third byte, etc.. When a match
+ // is found, immediately go back to looking at every byte. This is a
+ // small loss (~5% performance, ~0.1% density) for compressible data
+ // due to more bookkeeping, but for non-compressible data (such as
+ // JPEG) it's a huge win since the compressor quickly "realizes" the
+ // data is incompressible and doesn't bother looking for matches
+ // everywhere.
+ //
+ // The "skip" variable keeps track of how many bytes there are since
+ // the last match; dividing it by 32 (ie. right-shifting by five) gives
+ // the number of bytes to move ahead for each iteration.
+ skip := 32
+
+ nextS := s
+ candidate := 0
+ for {
+ s = nextS
+ bytesBetweenHashLookups := skip >> 5
+ nextS = s + bytesBetweenHashLookups
+ skip += bytesBetweenHashLookups
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ candidate = int(table[nextHash&tableMask])
+ table[nextHash&tableMask] = uint16(s)
+ nextHash = hash(load32(src, nextS))
+ if s-candidate <= maxMatchOffset && load32(src, s) == load32(src, candidate) {
+ break
+ }
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+ emitLiteral(dst, src[nextEmit:s])
+
+ // Call emitCopy, and then see if another emitCopy could be our next
+ // move. Repeat until we find no match for the input immediately after
+ // what was consumed by the last emitCopy call.
+ //
+ // If we exit this loop normally then we need to call emitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can
+ // exit this loop via goto if we get close to exhausting the input.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+ base := s
+
+ // Extend the 4-byte match as long as possible.
+ //
+ // This is an inlined version of Snappy's:
+ // s = extendMatch(src, candidate+4, s+4)
+ s += 4
+ s1 := base + maxMatchLength
+ if s1 > len(src) {
+ s1 = len(src)
+ }
+ a := src[s:s1]
+ b := src[candidate+4:]
+ b = b[:len(a)]
+ l := len(a)
+ for i := range a {
+ if a[i] != b[i] {
+ l = i
+ break
+ }
+ }
+ s += l
+
+ // matchToken is flate's equivalent of Snappy's emitCopy.
+ dst.tokens[dst.n] = matchToken(uint32(s-base-baseMatchLength), uint32(base-candidate-baseMatchOffset))
+ dst.n++
+ nextEmit = s
+ if s >= sLimit {
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-1 and at s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load64(src, s-1)
+ prevHash := hash(uint32(x >> 0))
+ table[prevHash&tableMask] = uint16(s - 1)
+ currHash := hash(uint32(x >> 8))
+ candidate = int(table[currHash&tableMask])
+ table[currHash&tableMask] = uint16(s)
+ if s-candidate > maxMatchOffset || uint32(x>>8) != load32(src, candidate) {
+ nextHash = hash(uint32(x >> 16))
+ s++
+ break
+ }
+ }
+ }
+
+emitRemainder:
+ if nextEmit < len(src) {
+ emitLiteral(dst, src[nextEmit:])
+ }
+}
+
+type tableEntry struct {
+ val uint32
+ offset int32
+}
+
+func load3232(b []byte, i int32) uint32 {
+ b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
+ return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
+}
+
+func load6432(b []byte, i int32) uint64 {
+ b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
+ return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
+ uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
+}
+
+// snappyGen maintains the table for matches,
+// and the previous byte block for level 2.
+// This is the generic implementation.
+type snappyGen struct {
+ prev []byte
+ cur int32
+}
+
+// snappyGen maintains the table for matches,
+// and the previous byte block for level 2.
+// This is the generic implementation.
+type snappyL2 struct {
+ snappyGen
+ table [tableSize]tableEntry
+}
+
+// EncodeL2 uses a similar algorithm to level 1, but is capable
+// of matching across blocks giving better compression at a small slowdown.
+func (e *snappyL2) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 8 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // Protect against e.cur wraparound.
+ if e.cur > 1<<30 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntry{}
+ }
+ e.cur = maxStoreBlockSize
+ }
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ e.cur += maxStoreBlockSize
+ e.prev = e.prev[:0]
+ return
+ }
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ nextEmit := int32(0)
+ s := int32(0)
+ cv := load3232(src, s)
+ nextHash := hash(cv)
+
+ for {
+ // Copied from the C++ snappy implementation:
+ //
+ // Heuristic match skipping: If 32 bytes are scanned with no matches
+ // found, start looking only at every other byte. If 32 more bytes are
+ // scanned (or skipped), look at every third byte, etc.. When a match
+ // is found, immediately go back to looking at every byte. This is a
+ // small loss (~5% performance, ~0.1% density) for compressible data
+ // due to more bookkeeping, but for non-compressible data (such as
+ // JPEG) it's a huge win since the compressor quickly "realizes" the
+ // data is incompressible and doesn't bother looking for matches
+ // everywhere.
+ //
+ // The "skip" variable keeps track of how many bytes there are since
+ // the last match; dividing it by 32 (ie. right-shifting by five) gives
+ // the number of bytes to move ahead for each iteration.
+ skip := int32(32)
+
+ nextS := s
+ var candidate tableEntry
+ for {
+ s = nextS
+ bytesBetweenHashLookups := skip >> 5
+ nextS = s + bytesBetweenHashLookups
+ skip += bytesBetweenHashLookups
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ candidate = e.table[nextHash&tableMask]
+ now := load3232(src, nextS)
+ e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv}
+ nextHash = hash(now)
+
+ offset := s - (candidate.offset - e.cur)
+ if offset > maxMatchOffset || cv != candidate.val {
+ // Out of range or not matched.
+ cv = now
+ continue
+ }
+ break
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+ emitLiteral(dst, src[nextEmit:s])
+
+ // Call emitCopy, and then see if another emitCopy could be our next
+ // move. Repeat until we find no match for the input immediately after
+ // what was consumed by the last emitCopy call.
+ //
+ // If we exit this loop normally then we need to call emitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can
+ // exit this loop via goto if we get close to exhausting the input.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+
+ // Extend the 4-byte match as long as possible.
+ //
+ s += 4
+ t := candidate.offset - e.cur + 4
+ l := e.matchlen(s, t, src)
+
+ // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
+ dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
+ dst.n++
+ s += l
+ nextEmit = s
+ if s >= sLimit {
+ t += l
+ // Index first pair after match end.
+ if int(t+4) < len(src) && t > 0 {
+ cv := load3232(src, t)
+ e.table[hash(cv)&tableMask] = tableEntry{offset: t + e.cur, val: cv}
+ }
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-1 and at s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load6432(src, s-1)
+ prevHash := hash(uint32(x))
+ e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)}
+ x >>= 8
+ currHash := hash(uint32(x))
+ candidate = e.table[currHash&tableMask]
+ e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)}
+
+ offset := s - (candidate.offset - e.cur)
+ if offset > maxMatchOffset || uint32(x) != candidate.val {
+ cv = uint32(x >> 8)
+ nextHash = hash(cv)
+ s++
+ break
+ }
+ }
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ emitLiteral(dst, src[nextEmit:])
+ }
+ e.cur += int32(len(src))
+ e.prev = e.prev[:len(src)]
+ copy(e.prev, src)
+}
+
+type tableEntryPrev struct {
+ Cur tableEntry
+ Prev tableEntry
+}
+
+// snappyL3
+type snappyL3 struct {
+ snappyGen
+ table [tableSize]tableEntryPrev
+}
+
+// Encode uses a similar algorithm to level 2, will check up to two candidates.
+func (e *snappyL3) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 8 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // Protect against e.cur wraparound.
+ if e.cur > 1<<30 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntryPrev{}
+ }
+ e.snappyGen = snappyGen{cur: maxStoreBlockSize, prev: e.prev[:0]}
+ }
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ e.cur += maxStoreBlockSize
+ e.prev = e.prev[:0]
+ return
+ }
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ nextEmit := int32(0)
+ s := int32(0)
+ cv := load3232(src, s)
+ nextHash := hash(cv)
+
+ for {
+ // Copied from the C++ snappy implementation:
+ //
+ // Heuristic match skipping: If 32 bytes are scanned with no matches
+ // found, start looking only at every other byte. If 32 more bytes are
+ // scanned (or skipped), look at every third byte, etc.. When a match
+ // is found, immediately go back to looking at every byte. This is a
+ // small loss (~5% performance, ~0.1% density) for compressible data
+ // due to more bookkeeping, but for non-compressible data (such as
+ // JPEG) it's a huge win since the compressor quickly "realizes" the
+ // data is incompressible and doesn't bother looking for matches
+ // everywhere.
+ //
+ // The "skip" variable keeps track of how many bytes there are since
+ // the last match; dividing it by 32 (ie. right-shifting by five) gives
+ // the number of bytes to move ahead for each iteration.
+ skip := int32(32)
+
+ nextS := s
+ var candidate tableEntry
+ for {
+ s = nextS
+ bytesBetweenHashLookups := skip >> 5
+ nextS = s + bytesBetweenHashLookups
+ skip += bytesBetweenHashLookups
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ candidates := e.table[nextHash&tableMask]
+ now := load3232(src, nextS)
+ e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
+ nextHash = hash(now)
+
+ // Check both candidates
+ candidate = candidates.Cur
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ break
+ }
+ } else {
+ // We only check if value mismatches.
+ // Offset will always be invalid in other cases.
+ candidate = candidates.Prev
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ break
+ }
+ }
+ }
+ cv = now
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+ emitLiteral(dst, src[nextEmit:s])
+
+ // Call emitCopy, and then see if another emitCopy could be our next
+ // move. Repeat until we find no match for the input immediately after
+ // what was consumed by the last emitCopy call.
+ //
+ // If we exit this loop normally then we need to call emitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can
+ // exit this loop via goto if we get close to exhausting the input.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+
+ // Extend the 4-byte match as long as possible.
+ //
+ s += 4
+ t := candidate.offset - e.cur + 4
+ l := e.matchlen(s, t, src)
+
+ // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
+ dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
+ dst.n++
+ s += l
+ nextEmit = s
+ if s >= sLimit {
+ t += l
+ // Index first pair after match end.
+ if int(t+4) < len(src) && t > 0 {
+ cv := load3232(src, t)
+ nextHash = hash(cv)
+ e.table[nextHash&tableMask] = tableEntryPrev{
+ Prev: e.table[nextHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + t, val: cv},
+ }
+ }
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-3 to s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load6432(src, s-3)
+ prevHash := hash(uint32(x))
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 3, val: uint32(x)},
+ }
+ x >>= 8
+ prevHash = hash(uint32(x))
+
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
+ }
+ x >>= 8
+ prevHash = hash(uint32(x))
+
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
+ }
+ x >>= 8
+ currHash := hash(uint32(x))
+ candidates := e.table[currHash&tableMask]
+ cv = uint32(x)
+ e.table[currHash&tableMask] = tableEntryPrev{
+ Prev: candidates.Cur,
+ Cur: tableEntry{offset: s + e.cur, val: cv},
+ }
+
+ // Check both candidates
+ candidate = candidates.Cur
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ continue
+ }
+ } else {
+ // We only check if value mismatches.
+ // Offset will always be invalid in other cases.
+ candidate = candidates.Prev
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ continue
+ }
+ }
+ }
+ cv = uint32(x >> 8)
+ nextHash = hash(cv)
+ s++
+ break
+ }
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ emitLiteral(dst, src[nextEmit:])
+ }
+ e.cur += int32(len(src))
+ e.prev = e.prev[:len(src)]
+ copy(e.prev, src)
+}
+
+// snappyL4
+type snappyL4 struct {
+ snappyL3
+}
+
+// Encode uses a similar algorithm to level 3,
+// but will check up to two candidates if first isn't long enough.
+func (e *snappyL4) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 8 - 3
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ matchLenGood = 12
+ )
+
+ // Protect against e.cur wraparound.
+ if e.cur > 1<<30 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntryPrev{}
+ }
+ e.snappyGen = snappyGen{cur: maxStoreBlockSize, prev: e.prev[:0]}
+ }
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ e.cur += maxStoreBlockSize
+ e.prev = e.prev[:0]
+ return
+ }
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ nextEmit := int32(0)
+ s := int32(0)
+ cv := load3232(src, s)
+ nextHash := hash(cv)
+
+ for {
+ // Copied from the C++ snappy implementation:
+ //
+ // Heuristic match skipping: If 32 bytes are scanned with no matches
+ // found, start looking only at every other byte. If 32 more bytes are
+ // scanned (or skipped), look at every third byte, etc.. When a match
+ // is found, immediately go back to looking at every byte. This is a
+ // small loss (~5% performance, ~0.1% density) for compressible data
+ // due to more bookkeeping, but for non-compressible data (such as
+ // JPEG) it's a huge win since the compressor quickly "realizes" the
+ // data is incompressible and doesn't bother looking for matches
+ // everywhere.
+ //
+ // The "skip" variable keeps track of how many bytes there are since
+ // the last match; dividing it by 32 (ie. right-shifting by five) gives
+ // the number of bytes to move ahead for each iteration.
+ skip := int32(32)
+
+ nextS := s
+ var candidate tableEntry
+ var candidateAlt tableEntry
+ for {
+ s = nextS
+ bytesBetweenHashLookups := skip >> 5
+ nextS = s + bytesBetweenHashLookups
+ skip += bytesBetweenHashLookups
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ candidates := e.table[nextHash&tableMask]
+ now := load3232(src, nextS)
+ e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
+ nextHash = hash(now)
+
+ // Check both candidates
+ candidate = candidates.Cur
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset < maxMatchOffset {
+ offset = s - (candidates.Prev.offset - e.cur)
+ if cv == candidates.Prev.val && offset < maxMatchOffset {
+ candidateAlt = candidates.Prev
+ }
+ break
+ }
+ } else {
+ // We only check if value mismatches.
+ // Offset will always be invalid in other cases.
+ candidate = candidates.Prev
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset < maxMatchOffset {
+ break
+ }
+ }
+ }
+ cv = now
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+ emitLiteral(dst, src[nextEmit:s])
+
+ // Call emitCopy, and then see if another emitCopy could be our next
+ // move. Repeat until we find no match for the input immediately after
+ // what was consumed by the last emitCopy call.
+ //
+ // If we exit this loop normally then we need to call emitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can
+ // exit this loop via goto if we get close to exhausting the input.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+
+ // Extend the 4-byte match as long as possible.
+ //
+ s += 4
+ t := candidate.offset - e.cur + 4
+ l := e.matchlen(s, t, src)
+ // Try alternative candidate if match length < matchLenGood.
+ if l < matchLenGood-4 && candidateAlt.offset != 0 {
+ t2 := candidateAlt.offset - e.cur + 4
+ l2 := e.matchlen(s, t2, src)
+ if l2 > l {
+ l = l2
+ t = t2
+ }
+ }
+ // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
+ dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
+ dst.n++
+ s += l
+ nextEmit = s
+ if s >= sLimit {
+ t += l
+ // Index first pair after match end.
+ if int(t+4) < len(src) && t > 0 {
+ cv := load3232(src, t)
+ nextHash = hash(cv)
+ e.table[nextHash&tableMask] = tableEntryPrev{
+ Prev: e.table[nextHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + t, val: cv},
+ }
+ }
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-3 to s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load6432(src, s-3)
+ prevHash := hash(uint32(x))
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 3, val: uint32(x)},
+ }
+ x >>= 8
+ prevHash = hash(uint32(x))
+
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
+ }
+ x >>= 8
+ prevHash = hash(uint32(x))
+
+ e.table[prevHash&tableMask] = tableEntryPrev{
+ Prev: e.table[prevHash&tableMask].Cur,
+ Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
+ }
+ x >>= 8
+ currHash := hash(uint32(x))
+ candidates := e.table[currHash&tableMask]
+ cv = uint32(x)
+ e.table[currHash&tableMask] = tableEntryPrev{
+ Prev: candidates.Cur,
+ Cur: tableEntry{offset: s + e.cur, val: cv},
+ }
+
+ // Check both candidates
+ candidate = candidates.Cur
+ candidateAlt = tableEntry{}
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ offset = s - (candidates.Prev.offset - e.cur)
+ if cv == candidates.Prev.val && offset <= maxMatchOffset {
+ candidateAlt = candidates.Prev
+ }
+ continue
+ }
+ } else {
+ // We only check if value mismatches.
+ // Offset will always be invalid in other cases.
+ candidate = candidates.Prev
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ continue
+ }
+ }
+ }
+ cv = uint32(x >> 8)
+ nextHash = hash(cv)
+ s++
+ break
+ }
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ emitLiteral(dst, src[nextEmit:])
+ }
+ e.cur += int32(len(src))
+ e.prev = e.prev[:len(src)]
+ copy(e.prev, src)
+}
+
+func (e *snappyGen) matchlen(s, t int32, src []byte) int32 {
+ s1 := int(s) + maxMatchLength - 4
+ if s1 > len(src) {
+ s1 = len(src)
+ }
+
+ // If we are inside the current block
+ if t >= 0 {
+ b := src[t:]
+ a := src[s:s1]
+ b = b[:len(a)]
+ // Extend the match to be as long as possible.
+ for i := range a {
+ if a[i] != b[i] {
+ return int32(i)
+ }
+ }
+ return int32(len(a))
+ }
+
+ // We found a match in the previous block.
+ tp := int32(len(e.prev)) + t
+ if tp < 0 {
+ return 0
+ }
+
+ // Extend the match to be as long as possible.
+ a := src[s:s1]
+ b := e.prev[tp:]
+ if len(b) > len(a) {
+ b = b[:len(a)]
+ }
+ a = a[:len(b)]
+ for i := range b {
+ if a[i] != b[i] {
+ return int32(i)
+ }
+ }
+
+ // If we reached our limit, we matched everything we are
+ // allowed to in the previous block and we return.
+ n := int32(len(b))
+ if int(s+n) == s1 {
+ return n
+ }
+
+ // Continue looking for more matches in the current block.
+ a = src[s+n : s1]
+ b = src[:len(a)]
+ for i := range a {
+ if a[i] != b[i] {
+ return int32(i) + n
+ }
+ }
+ return int32(len(a)) + n
+}
+
+// Reset the encoding table.
+func (e *snappyGen) Reset() {
+ e.prev = e.prev[:0]
+ e.cur += maxMatchOffset
+}
diff --git a/vendor/github.com/klauspost/compress/flate/token.go b/vendor/github.com/klauspost/compress/flate/token.go
new file mode 100644
index 000000000..4f275ea61
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/token.go
@@ -0,0 +1,115 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import "fmt"
+
+const (
+ // 2 bits: type 0 = literal 1=EOF 2=Match 3=Unused
+ // 8 bits: xlength = length - MIN_MATCH_LENGTH
+ // 22 bits xoffset = offset - MIN_OFFSET_SIZE, or literal
+ lengthShift = 22
+ offsetMask = 1<<lengthShift - 1
+ typeMask = 3 << 30
+ literalType = 0 << 30
+ matchType = 1 << 30
+)
+
+// The length code for length X (MIN_MATCH_LENGTH <= X <= MAX_MATCH_LENGTH)
+// is lengthCodes[length - MIN_MATCH_LENGTH]
+var lengthCodes = [...]uint32{
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 8,
+ 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
+ 13, 13, 13, 13, 14, 14, 14, 14, 15, 15,
+ 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
+ 17, 17, 17, 17, 17, 17, 17, 17, 18, 18,
+ 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
+ 19, 19, 19, 19, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 28,
+}
+
+var offsetCodes = [...]uint32{
+ 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
+ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
+ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+}
+
+type token uint32
+
+type tokens struct {
+ tokens [maxStoreBlockSize + 1]token
+ n uint16 // Must be able to contain maxStoreBlockSize
+}
+
+// Convert a literal into a literal token.
+func literalToken(literal uint32) token { return token(literalType + literal) }
+
+// Convert a < xlength, xoffset > pair into a match token.
+func matchToken(xlength uint32, xoffset uint32) token {
+ return token(matchType + xlength<<lengthShift + xoffset)
+}
+
+func matchTokend(xlength uint32, xoffset uint32) token {
+ if xlength > maxMatchLength || xoffset > maxMatchOffset {
+ panic(fmt.Sprintf("Invalid match: len: %d, offset: %d\n", xlength, xoffset))
+ return token(matchType)
+ }
+ return token(matchType + xlength<<lengthShift + xoffset)
+}
+
+// Returns the type of a token
+func (t token) typ() uint32 { return uint32(t) & typeMask }
+
+// Returns the literal of a literal token
+func (t token) literal() uint32 { return uint32(t - literalType) }
+
+// Returns the extra offset of a match token
+func (t token) offset() uint32 { return uint32(t) & offsetMask }
+
+func (t token) length() uint32 { return uint32((t - matchType) >> lengthShift) }
+
+func lengthCode(len uint32) uint32 { return lengthCodes[len] }
+
+// Returns the offset code corresponding to a specific offset
+func offsetCode(off uint32) uint32 {
+ if off < uint32(len(offsetCodes)) {
+ return offsetCodes[off]
+ } else if off>>7 < uint32(len(offsetCodes)) {
+ return offsetCodes[off>>7] + 14
+ } else {
+ return offsetCodes[off>>14] + 28
+ }
+}