diff options
Diffstat (limited to 'vendor/github.com/klauspost/compress/huff0/compress.go')
-rw-r--r-- | vendor/github.com/klauspost/compress/huff0/compress.go | 618 |
1 files changed, 618 insertions, 0 deletions
diff --git a/vendor/github.com/klauspost/compress/huff0/compress.go b/vendor/github.com/klauspost/compress/huff0/compress.go new file mode 100644 index 000000000..dd4f7fefb --- /dev/null +++ b/vendor/github.com/klauspost/compress/huff0/compress.go @@ -0,0 +1,618 @@ +package huff0 + +import ( + "fmt" + "runtime" + "sync" +) + +// Compress1X will compress the input. +// The output can be decoded using Decompress1X. +// Supply a Scratch object. The scratch object contains state about re-use, +// So when sharing across independent encodes, be sure to set the re-use policy. +func Compress1X(in []byte, s *Scratch) (out []byte, reUsed bool, err error) { + s, err = s.prepare(in) + if err != nil { + return nil, false, err + } + return compress(in, s, s.compress1X) +} + +// Compress4X will compress the input. The input is split into 4 independent blocks +// and compressed similar to Compress1X. +// The output can be decoded using Decompress4X. +// Supply a Scratch object. The scratch object contains state about re-use, +// So when sharing across independent encodes, be sure to set the re-use policy. +func Compress4X(in []byte, s *Scratch) (out []byte, reUsed bool, err error) { + s, err = s.prepare(in) + if err != nil { + return nil, false, err + } + if false { + // TODO: compress4Xp only slightly faster. + const parallelThreshold = 8 << 10 + if len(in) < parallelThreshold || runtime.GOMAXPROCS(0) == 1 { + return compress(in, s, s.compress4X) + } + return compress(in, s, s.compress4Xp) + } + return compress(in, s, s.compress4X) +} + +func compress(in []byte, s *Scratch, compressor func(src []byte) ([]byte, error)) (out []byte, reUsed bool, err error) { + // Nuke previous table if we cannot reuse anyway. + if s.Reuse == ReusePolicyNone { + s.prevTable = s.prevTable[:0] + } + + // Create histogram, if none was provided. + maxCount := s.maxCount + var canReuse = false + if maxCount == 0 { + maxCount, canReuse = s.countSimple(in) + } else { + canReuse = s.canUseTable(s.prevTable) + } + + // Reset for next run. + s.clearCount = true + s.maxCount = 0 + if maxCount >= len(in) { + if maxCount > len(in) { + return nil, false, fmt.Errorf("maxCount (%d) > length (%d)", maxCount, len(in)) + } + if len(in) == 1 { + return nil, false, ErrIncompressible + } + // One symbol, use RLE + return nil, false, ErrUseRLE + } + if maxCount == 1 || maxCount < (len(in)>>7) { + // Each symbol present maximum once or too well distributed. + return nil, false, ErrIncompressible + } + + if s.Reuse == ReusePolicyPrefer && canReuse { + keepTable := s.cTable + s.cTable = s.prevTable + s.Out, err = compressor(in) + s.cTable = keepTable + if err == nil && len(s.Out) < len(in) { + s.OutData = s.Out + return s.Out, true, nil + } + // Do not attempt to re-use later. + s.prevTable = s.prevTable[:0] + } + + // Calculate new table. + s.optimalTableLog() + err = s.buildCTable() + if err != nil { + return nil, false, err + } + + if false && !s.canUseTable(s.cTable) { + panic("invalid table generated") + } + + if s.Reuse == ReusePolicyAllow && canReuse { + hSize := len(s.Out) + oldSize := s.prevTable.estimateSize(s.count[:s.symbolLen]) + newSize := s.cTable.estimateSize(s.count[:s.symbolLen]) + if oldSize <= hSize+newSize || hSize+12 >= len(in) { + // Retain cTable even if we re-use. + keepTable := s.cTable + s.cTable = s.prevTable + s.Out, err = compressor(in) + s.cTable = keepTable + if len(s.Out) >= len(in) { + return nil, false, ErrIncompressible + } + s.OutData = s.Out + return s.Out, true, nil + } + } + + // Use new table + err = s.cTable.write(s) + if err != nil { + s.OutTable = nil + return nil, false, err + } + s.OutTable = s.Out + + // Compress using new table + s.Out, err = compressor(in) + if err != nil { + s.OutTable = nil + return nil, false, err + } + if len(s.Out) >= len(in) { + s.OutTable = nil + return nil, false, ErrIncompressible + } + // Move current table into previous. + s.prevTable, s.cTable = s.cTable, s.prevTable[:0] + s.OutData = s.Out[len(s.OutTable):] + return s.Out, false, nil +} + +func (s *Scratch) compress1X(src []byte) ([]byte, error) { + return s.compress1xDo(s.Out, src) +} + +func (s *Scratch) compress1xDo(dst, src []byte) ([]byte, error) { + var bw = bitWriter{out: dst} + + // N is length divisible by 4. + n := len(src) + n -= n & 3 + cTable := s.cTable[:256] + + // Encode last bytes. + for i := len(src) & 3; i > 0; i-- { + bw.encSymbol(cTable, src[n+i-1]) + } + if s.actualTableLog <= 8 { + n -= 4 + for ; n >= 0; n -= 4 { + tmp := src[n : n+4] + // tmp should be len 4 + bw.flush32() + bw.encSymbol(cTable, tmp[3]) + bw.encSymbol(cTable, tmp[2]) + bw.encSymbol(cTable, tmp[1]) + bw.encSymbol(cTable, tmp[0]) + } + } else { + n -= 4 + for ; n >= 0; n -= 4 { + tmp := src[n : n+4] + // tmp should be len 4 + bw.flush32() + bw.encSymbol(cTable, tmp[3]) + bw.encSymbol(cTable, tmp[2]) + bw.flush32() + bw.encSymbol(cTable, tmp[1]) + bw.encSymbol(cTable, tmp[0]) + } + } + err := bw.close() + return bw.out, err +} + +var sixZeros [6]byte + +func (s *Scratch) compress4X(src []byte) ([]byte, error) { + if len(src) < 12 { + return nil, ErrIncompressible + } + segmentSize := (len(src) + 3) / 4 + + // Add placeholder for output length + offsetIdx := len(s.Out) + s.Out = append(s.Out, sixZeros[:]...) + + for i := 0; i < 4; i++ { + toDo := src + if len(toDo) > segmentSize { + toDo = toDo[:segmentSize] + } + src = src[len(toDo):] + + var err error + idx := len(s.Out) + s.Out, err = s.compress1xDo(s.Out, toDo) + if err != nil { + return nil, err + } + // Write compressed length as little endian before block. + if i < 3 { + // Last length is not written. + length := len(s.Out) - idx + s.Out[i*2+offsetIdx] = byte(length) + s.Out[i*2+offsetIdx+1] = byte(length >> 8) + } + } + + return s.Out, nil +} + +// compress4Xp will compress 4 streams using separate goroutines. +func (s *Scratch) compress4Xp(src []byte) ([]byte, error) { + if len(src) < 12 { + return nil, ErrIncompressible + } + // Add placeholder for output length + s.Out = s.Out[:6] + + segmentSize := (len(src) + 3) / 4 + var wg sync.WaitGroup + var errs [4]error + wg.Add(4) + for i := 0; i < 4; i++ { + toDo := src + if len(toDo) > segmentSize { + toDo = toDo[:segmentSize] + } + src = src[len(toDo):] + + // Separate goroutine for each block. + go func(i int) { + s.tmpOut[i], errs[i] = s.compress1xDo(s.tmpOut[i][:0], toDo) + wg.Done() + }(i) + } + wg.Wait() + for i := 0; i < 4; i++ { + if errs[i] != nil { + return nil, errs[i] + } + o := s.tmpOut[i] + // Write compressed length as little endian before block. + if i < 3 { + // Last length is not written. + s.Out[i*2] = byte(len(o)) + s.Out[i*2+1] = byte(len(o) >> 8) + } + + // Write output. + s.Out = append(s.Out, o...) + } + return s.Out, nil +} + +// countSimple will create a simple histogram in s.count. +// Returns the biggest count. +// Does not update s.clearCount. +func (s *Scratch) countSimple(in []byte) (max int, reuse bool) { + reuse = true + for _, v := range in { + s.count[v]++ + } + m := uint32(0) + if len(s.prevTable) > 0 { + for i, v := range s.count[:] { + if v > m { + m = v + } + if v > 0 { + s.symbolLen = uint16(i) + 1 + if i >= len(s.prevTable) { + reuse = false + } else { + if s.prevTable[i].nBits == 0 { + reuse = false + } + } + } + } + return int(m), reuse + } + for i, v := range s.count[:] { + if v > m { + m = v + } + if v > 0 { + s.symbolLen = uint16(i) + 1 + } + } + return int(m), false +} + +func (s *Scratch) canUseTable(c cTable) bool { + if len(c) < int(s.symbolLen) { + return false + } + for i, v := range s.count[:s.symbolLen] { + if v != 0 && c[i].nBits == 0 { + return false + } + } + return true +} + +// minTableLog provides the minimum logSize to safely represent a distribution. +func (s *Scratch) minTableLog() uint8 { + minBitsSrc := highBit32(uint32(s.br.remain()-1)) + 1 + minBitsSymbols := highBit32(uint32(s.symbolLen-1)) + 2 + if minBitsSrc < minBitsSymbols { + return uint8(minBitsSrc) + } + return uint8(minBitsSymbols) +} + +// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog +func (s *Scratch) optimalTableLog() { + tableLog := s.TableLog + minBits := s.minTableLog() + maxBitsSrc := uint8(highBit32(uint32(s.br.remain()-1))) - 2 + if maxBitsSrc < tableLog { + // Accuracy can be reduced + tableLog = maxBitsSrc + } + if minBits > tableLog { + tableLog = minBits + } + // Need a minimum to safely represent all symbol values + if tableLog < minTablelog { + tableLog = minTablelog + } + if tableLog > tableLogMax { + tableLog = tableLogMax + } + s.actualTableLog = tableLog +} + +type cTableEntry struct { + val uint16 + nBits uint8 + // We have 8 bits extra +} + +const huffNodesMask = huffNodesLen - 1 + +func (s *Scratch) buildCTable() error { + s.huffSort() + if cap(s.cTable) < maxSymbolValue+1 { + s.cTable = make([]cTableEntry, s.symbolLen, maxSymbolValue+1) + } else { + s.cTable = s.cTable[:s.symbolLen] + for i := range s.cTable { + s.cTable[i] = cTableEntry{} + } + } + + var startNode = int16(s.symbolLen) + nonNullRank := s.symbolLen - 1 + + nodeNb := int16(startNode) + huffNode := s.nodes[1 : huffNodesLen+1] + + // This overlays the slice above, but allows "-1" index lookups. + // Different from reference implementation. + huffNode0 := s.nodes[0 : huffNodesLen+1] + + for huffNode[nonNullRank].count == 0 { + nonNullRank-- + } + + lowS := int16(nonNullRank) + nodeRoot := nodeNb + lowS - 1 + lowN := nodeNb + huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count + huffNode[lowS].parent, huffNode[lowS-1].parent = uint16(nodeNb), uint16(nodeNb) + nodeNb++ + lowS -= 2 + for n := nodeNb; n <= nodeRoot; n++ { + huffNode[n].count = 1 << 30 + } + // fake entry, strong barrier + huffNode0[0].count = 1 << 31 + + // create parents + for nodeNb <= nodeRoot { + var n1, n2 int16 + if huffNode0[lowS+1].count < huffNode0[lowN+1].count { + n1 = lowS + lowS-- + } else { + n1 = lowN + lowN++ + } + if huffNode0[lowS+1].count < huffNode0[lowN+1].count { + n2 = lowS + lowS-- + } else { + n2 = lowN + lowN++ + } + + huffNode[nodeNb].count = huffNode0[n1+1].count + huffNode0[n2+1].count + huffNode0[n1+1].parent, huffNode0[n2+1].parent = uint16(nodeNb), uint16(nodeNb) + nodeNb++ + } + + // distribute weights (unlimited tree height) + huffNode[nodeRoot].nbBits = 0 + for n := nodeRoot - 1; n >= startNode; n-- { + huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1 + } + for n := uint16(0); n <= nonNullRank; n++ { + huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1 + } + s.actualTableLog = s.setMaxHeight(int(nonNullRank)) + maxNbBits := s.actualTableLog + + // fill result into tree (val, nbBits) + if maxNbBits > tableLogMax { + return fmt.Errorf("internal error: maxNbBits (%d) > tableLogMax (%d)", maxNbBits, tableLogMax) + } + var nbPerRank [tableLogMax + 1]uint16 + var valPerRank [tableLogMax + 1]uint16 + for _, v := range huffNode[:nonNullRank+1] { + nbPerRank[v.nbBits]++ + } + // determine stating value per rank + { + min := uint16(0) + for n := maxNbBits; n > 0; n-- { + // get starting value within each rank + valPerRank[n] = min + min += nbPerRank[n] + min >>= 1 + } + } + + // push nbBits per symbol, symbol order + // TODO: changed `s.symbolLen` -> `nonNullRank+1` (micro-opt) + for _, v := range huffNode[:nonNullRank+1] { + s.cTable[v.symbol].nBits = v.nbBits + } + + // assign value within rank, symbol order + for n, val := range s.cTable[:s.symbolLen] { + v := valPerRank[val.nBits] + s.cTable[n].val = v + valPerRank[val.nBits] = v + 1 + } + + return nil +} + +// huffSort will sort symbols, decreasing order. +func (s *Scratch) huffSort() { + type rankPos struct { + base uint32 + current uint32 + } + + // Clear nodes + nodes := s.nodes[:huffNodesLen+1] + s.nodes = nodes + nodes = nodes[1 : huffNodesLen+1] + + // Sort into buckets based on length of symbol count. + var rank [32]rankPos + for _, v := range s.count[:s.symbolLen] { + r := highBit32(v+1) & 31 + rank[r].base++ + } + for n := 30; n > 0; n-- { + rank[n-1].base += rank[n].base + } + for n := range rank[:] { + rank[n].current = rank[n].base + } + for n, c := range s.count[:s.symbolLen] { + r := (highBit32(c+1) + 1) & 31 + pos := rank[r].current + rank[r].current++ + prev := nodes[(pos-1)&huffNodesMask] + for pos > rank[r].base && c > prev.count { + nodes[pos&huffNodesMask] = prev + pos-- + prev = nodes[(pos-1)&huffNodesMask] + } + nodes[pos&huffNodesMask] = nodeElt{count: c, symbol: byte(n)} + } + return +} + +func (s *Scratch) setMaxHeight(lastNonNull int) uint8 { + maxNbBits := s.TableLog + huffNode := s.nodes[1 : huffNodesLen+1] + //huffNode = huffNode[: huffNodesLen] + + largestBits := huffNode[lastNonNull].nbBits + + // early exit : no elt > maxNbBits + if largestBits <= maxNbBits { + return largestBits + } + totalCost := int(0) + baseCost := int(1) << (largestBits - maxNbBits) + n := uint32(lastNonNull) + + for huffNode[n].nbBits > maxNbBits { + totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits)) + huffNode[n].nbBits = maxNbBits + n-- + } + // n stops at huffNode[n].nbBits <= maxNbBits + + for huffNode[n].nbBits == maxNbBits { + n-- + } + // n end at index of smallest symbol using < maxNbBits + + // renorm totalCost + totalCost >>= largestBits - maxNbBits /* note : totalCost is necessarily a multiple of baseCost */ + + // repay normalized cost + { + const noSymbol = 0xF0F0F0F0 + var rankLast [tableLogMax + 2]uint32 + + for i := range rankLast[:] { + rankLast[i] = noSymbol + } + + // Get pos of last (smallest) symbol per rank + { + currentNbBits := uint8(maxNbBits) + for pos := int(n); pos >= 0; pos-- { + if huffNode[pos].nbBits >= currentNbBits { + continue + } + currentNbBits = huffNode[pos].nbBits // < maxNbBits + rankLast[maxNbBits-currentNbBits] = uint32(pos) + } + } + + for totalCost > 0 { + nBitsToDecrease := uint8(highBit32(uint32(totalCost))) + 1 + + for ; nBitsToDecrease > 1; nBitsToDecrease-- { + highPos := rankLast[nBitsToDecrease] + lowPos := rankLast[nBitsToDecrease-1] + if highPos == noSymbol { + continue + } + if lowPos == noSymbol { + break + } + highTotal := huffNode[highPos].count + lowTotal := 2 * huffNode[lowPos].count + if highTotal <= lowTotal { + break + } + } + // only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) + // HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary + // FIXME: try to remove + for (nBitsToDecrease <= tableLogMax) && (rankLast[nBitsToDecrease] == noSymbol) { + nBitsToDecrease++ + } + totalCost -= 1 << (nBitsToDecrease - 1) + if rankLast[nBitsToDecrease-1] == noSymbol { + // this rank is no longer empty + rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease] + } + huffNode[rankLast[nBitsToDecrease]].nbBits++ + if rankLast[nBitsToDecrease] == 0 { + /* special case, reached largest symbol */ + rankLast[nBitsToDecrease] = noSymbol + } else { + rankLast[nBitsToDecrease]-- + if huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease { + rankLast[nBitsToDecrease] = noSymbol /* this rank is now empty */ + } + } + } + + for totalCost < 0 { /* Sometimes, cost correction overshoot */ + if rankLast[1] == noSymbol { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */ + for huffNode[n].nbBits == maxNbBits { + n-- + } + huffNode[n+1].nbBits-- + rankLast[1] = n + 1 + totalCost++ + continue + } + huffNode[rankLast[1]+1].nbBits-- + rankLast[1]++ + totalCost++ + } + } + return maxNbBits +} + +type nodeElt struct { + count uint32 + parent uint16 + symbol byte + nbBits uint8 +} |