summaryrefslogtreecommitdiff
path: root/vendor/github.com/mailru/easyjson/jlexer/lexer.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/mailru/easyjson/jlexer/lexer.go')
-rw-r--r--vendor/github.com/mailru/easyjson/jlexer/lexer.go1181
1 files changed, 1181 insertions, 0 deletions
diff --git a/vendor/github.com/mailru/easyjson/jlexer/lexer.go b/vendor/github.com/mailru/easyjson/jlexer/lexer.go
new file mode 100644
index 000000000..51f056615
--- /dev/null
+++ b/vendor/github.com/mailru/easyjson/jlexer/lexer.go
@@ -0,0 +1,1181 @@
+// Package jlexer contains a JSON lexer implementation.
+//
+// It is expected that it is mostly used with generated parser code, so the interface is tuned
+// for a parser that knows what kind of data is expected.
+package jlexer
+
+import (
+ "encoding/base64"
+ "encoding/json"
+ "errors"
+ "fmt"
+ "io"
+ "strconv"
+ "unicode"
+ "unicode/utf16"
+ "unicode/utf8"
+)
+
+// tokenKind determines type of a token.
+type tokenKind byte
+
+const (
+ tokenUndef tokenKind = iota // No token.
+ tokenDelim // Delimiter: one of '{', '}', '[' or ']'.
+ tokenString // A string literal, e.g. "abc\u1234"
+ tokenNumber // Number literal, e.g. 1.5e5
+ tokenBool // Boolean literal: true or false.
+ tokenNull // null keyword.
+)
+
+// token describes a single token: type, position in the input and value.
+type token struct {
+ kind tokenKind // Type of a token.
+
+ boolValue bool // Value if a boolean literal token.
+ byteValue []byte // Raw value of a token.
+ delimValue byte
+}
+
+// Lexer is a JSON lexer: it iterates over JSON tokens in a byte slice.
+type Lexer struct {
+ Data []byte // Input data given to the lexer.
+
+ start int // Start of the current token.
+ pos int // Current unscanned position in the input stream.
+ token token // Last scanned token, if token.kind != tokenUndef.
+
+ firstElement bool // Whether current element is the first in array or an object.
+ wantSep byte // A comma or a colon character, which need to occur before a token.
+
+ UseMultipleErrors bool // If we want to use multiple errors.
+ fatalError error // Fatal error occurred during lexing. It is usually a syntax error.
+ multipleErrors []*LexerError // Semantic errors occurred during lexing. Marshalling will be continued after finding this errors.
+}
+
+// FetchToken scans the input for the next token.
+func (r *Lexer) FetchToken() {
+ r.token.kind = tokenUndef
+ r.start = r.pos
+
+ // Check if r.Data has r.pos element
+ // If it doesn't, it mean corrupted input data
+ if len(r.Data) < r.pos {
+ r.errParse("Unexpected end of data")
+ return
+ }
+ // Determine the type of a token by skipping whitespace and reading the
+ // first character.
+ for _, c := range r.Data[r.pos:] {
+ switch c {
+ case ':', ',':
+ if r.wantSep == c {
+ r.pos++
+ r.start++
+ r.wantSep = 0
+ } else {
+ r.errSyntax()
+ }
+
+ case ' ', '\t', '\r', '\n':
+ r.pos++
+ r.start++
+
+ case '"':
+ if r.wantSep != 0 {
+ r.errSyntax()
+ }
+
+ r.token.kind = tokenString
+ r.fetchString()
+ return
+
+ case '{', '[':
+ if r.wantSep != 0 {
+ r.errSyntax()
+ }
+ r.firstElement = true
+ r.token.kind = tokenDelim
+ r.token.delimValue = r.Data[r.pos]
+ r.pos++
+ return
+
+ case '}', ']':
+ if !r.firstElement && (r.wantSep != ',') {
+ r.errSyntax()
+ }
+ r.wantSep = 0
+ r.token.kind = tokenDelim
+ r.token.delimValue = r.Data[r.pos]
+ r.pos++
+ return
+
+ case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-':
+ if r.wantSep != 0 {
+ r.errSyntax()
+ }
+ r.token.kind = tokenNumber
+ r.fetchNumber()
+ return
+
+ case 'n':
+ if r.wantSep != 0 {
+ r.errSyntax()
+ }
+
+ r.token.kind = tokenNull
+ r.fetchNull()
+ return
+
+ case 't':
+ if r.wantSep != 0 {
+ r.errSyntax()
+ }
+
+ r.token.kind = tokenBool
+ r.token.boolValue = true
+ r.fetchTrue()
+ return
+
+ case 'f':
+ if r.wantSep != 0 {
+ r.errSyntax()
+ }
+
+ r.token.kind = tokenBool
+ r.token.boolValue = false
+ r.fetchFalse()
+ return
+
+ default:
+ r.errSyntax()
+ return
+ }
+ }
+ r.fatalError = io.EOF
+ return
+}
+
+// isTokenEnd returns true if the char can follow a non-delimiter token
+func isTokenEnd(c byte) bool {
+ return c == ' ' || c == '\t' || c == '\r' || c == '\n' || c == '[' || c == ']' || c == '{' || c == '}' || c == ',' || c == ':'
+}
+
+// fetchNull fetches and checks remaining bytes of null keyword.
+func (r *Lexer) fetchNull() {
+ r.pos += 4
+ if r.pos > len(r.Data) ||
+ r.Data[r.pos-3] != 'u' ||
+ r.Data[r.pos-2] != 'l' ||
+ r.Data[r.pos-1] != 'l' ||
+ (r.pos != len(r.Data) && !isTokenEnd(r.Data[r.pos])) {
+
+ r.pos -= 4
+ r.errSyntax()
+ }
+}
+
+// fetchTrue fetches and checks remaining bytes of true keyword.
+func (r *Lexer) fetchTrue() {
+ r.pos += 4
+ if r.pos > len(r.Data) ||
+ r.Data[r.pos-3] != 'r' ||
+ r.Data[r.pos-2] != 'u' ||
+ r.Data[r.pos-1] != 'e' ||
+ (r.pos != len(r.Data) && !isTokenEnd(r.Data[r.pos])) {
+
+ r.pos -= 4
+ r.errSyntax()
+ }
+}
+
+// fetchFalse fetches and checks remaining bytes of false keyword.
+func (r *Lexer) fetchFalse() {
+ r.pos += 5
+ if r.pos > len(r.Data) ||
+ r.Data[r.pos-4] != 'a' ||
+ r.Data[r.pos-3] != 'l' ||
+ r.Data[r.pos-2] != 's' ||
+ r.Data[r.pos-1] != 'e' ||
+ (r.pos != len(r.Data) && !isTokenEnd(r.Data[r.pos])) {
+
+ r.pos -= 5
+ r.errSyntax()
+ }
+}
+
+// fetchNumber scans a number literal token.
+func (r *Lexer) fetchNumber() {
+ hasE := false
+ afterE := false
+ hasDot := false
+
+ r.pos++
+ for i, c := range r.Data[r.pos:] {
+ switch {
+ case c >= '0' && c <= '9':
+ afterE = false
+ case c == '.' && !hasDot:
+ hasDot = true
+ case (c == 'e' || c == 'E') && !hasE:
+ hasE = true
+ hasDot = true
+ afterE = true
+ case (c == '+' || c == '-') && afterE:
+ afterE = false
+ default:
+ r.pos += i
+ if !isTokenEnd(c) {
+ r.errSyntax()
+ } else {
+ r.token.byteValue = r.Data[r.start:r.pos]
+ }
+ return
+ }
+ }
+
+ r.pos = len(r.Data)
+ r.token.byteValue = r.Data[r.start:]
+}
+
+// findStringLen tries to scan into the string literal for ending quote char to determine required size.
+// The size will be exact if no escapes are present and may be inexact if there are escaped chars.
+func findStringLen(data []byte) (isValid, hasEscapes bool, length int) {
+ delta := 0
+
+ for i := 0; i < len(data); i++ {
+ switch data[i] {
+ case '\\':
+ i++
+ delta++
+ if i < len(data) && data[i] == 'u' {
+ delta++
+ }
+ case '"':
+ return true, (delta > 0), (i - delta)
+ }
+ }
+
+ return false, false, len(data)
+}
+
+// getu4 decodes \uXXXX from the beginning of s, returning the hex value,
+// or it returns -1.
+func getu4(s []byte) rune {
+ if len(s) < 6 || s[0] != '\\' || s[1] != 'u' {
+ return -1
+ }
+ var val rune
+ for i := 2; i < len(s) && i < 6; i++ {
+ var v byte
+ c := s[i]
+ switch c {
+ case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
+ v = c - '0'
+ case 'a', 'b', 'c', 'd', 'e', 'f':
+ v = c - 'a' + 10
+ case 'A', 'B', 'C', 'D', 'E', 'F':
+ v = c - 'A' + 10
+ default:
+ return -1
+ }
+
+ val <<= 4
+ val |= rune(v)
+ }
+ return val
+}
+
+// processEscape processes a single escape sequence and returns number of bytes processed.
+func (r *Lexer) processEscape(data []byte) (int, error) {
+ if len(data) < 2 {
+ return 0, fmt.Errorf("syntax error at %v", string(data))
+ }
+
+ c := data[1]
+ switch c {
+ case '"', '/', '\\':
+ r.token.byteValue = append(r.token.byteValue, c)
+ return 2, nil
+ case 'b':
+ r.token.byteValue = append(r.token.byteValue, '\b')
+ return 2, nil
+ case 'f':
+ r.token.byteValue = append(r.token.byteValue, '\f')
+ return 2, nil
+ case 'n':
+ r.token.byteValue = append(r.token.byteValue, '\n')
+ return 2, nil
+ case 'r':
+ r.token.byteValue = append(r.token.byteValue, '\r')
+ return 2, nil
+ case 't':
+ r.token.byteValue = append(r.token.byteValue, '\t')
+ return 2, nil
+ case 'u':
+ rr := getu4(data)
+ if rr < 0 {
+ return 0, errors.New("syntax error")
+ }
+
+ read := 6
+ if utf16.IsSurrogate(rr) {
+ rr1 := getu4(data[read:])
+ if dec := utf16.DecodeRune(rr, rr1); dec != unicode.ReplacementChar {
+ read += 6
+ rr = dec
+ } else {
+ rr = unicode.ReplacementChar
+ }
+ }
+ var d [4]byte
+ s := utf8.EncodeRune(d[:], rr)
+ r.token.byteValue = append(r.token.byteValue, d[:s]...)
+ return read, nil
+ }
+
+ return 0, errors.New("syntax error")
+}
+
+// fetchString scans a string literal token.
+func (r *Lexer) fetchString() {
+ r.pos++
+ data := r.Data[r.pos:]
+
+ isValid, hasEscapes, length := findStringLen(data)
+ if !isValid {
+ r.pos += length
+ r.errParse("unterminated string literal")
+ return
+ }
+ if !hasEscapes {
+ r.token.byteValue = data[:length]
+ r.pos += length + 1
+ return
+ }
+
+ r.token.byteValue = make([]byte, 0, length)
+ p := 0
+ for i := 0; i < len(data); {
+ switch data[i] {
+ case '"':
+ r.pos += i + 1
+ r.token.byteValue = append(r.token.byteValue, data[p:i]...)
+ i++
+ return
+
+ case '\\':
+ r.token.byteValue = append(r.token.byteValue, data[p:i]...)
+ off, err := r.processEscape(data[i:])
+ if err != nil {
+ r.errParse(err.Error())
+ return
+ }
+ i += off
+ p = i
+
+ default:
+ i++
+ }
+ }
+ r.errParse("unterminated string literal")
+}
+
+// scanToken scans the next token if no token is currently available in the lexer.
+func (r *Lexer) scanToken() {
+ if r.token.kind != tokenUndef || r.fatalError != nil {
+ return
+ }
+
+ r.FetchToken()
+}
+
+// consume resets the current token to allow scanning the next one.
+func (r *Lexer) consume() {
+ r.token.kind = tokenUndef
+ r.token.delimValue = 0
+}
+
+// Ok returns true if no error (including io.EOF) was encountered during scanning.
+func (r *Lexer) Ok() bool {
+ return r.fatalError == nil
+}
+
+const maxErrorContextLen = 13
+
+func (r *Lexer) errParse(what string) {
+ if r.fatalError == nil {
+ var str string
+ if len(r.Data)-r.pos <= maxErrorContextLen {
+ str = string(r.Data)
+ } else {
+ str = string(r.Data[r.pos:r.pos+maxErrorContextLen-3]) + "..."
+ }
+ r.fatalError = &LexerError{
+ Reason: what,
+ Offset: r.pos,
+ Data: str,
+ }
+ }
+}
+
+func (r *Lexer) errSyntax() {
+ r.errParse("syntax error")
+}
+
+func (r *Lexer) errInvalidToken(expected string) {
+ if r.fatalError != nil {
+ return
+ }
+ if r.UseMultipleErrors {
+ r.pos = r.start
+ r.consume()
+ r.SkipRecursive()
+ switch expected {
+ case "[":
+ r.token.delimValue = ']'
+ r.token.kind = tokenDelim
+ case "{":
+ r.token.delimValue = '}'
+ r.token.kind = tokenDelim
+ }
+ r.addNonfatalError(&LexerError{
+ Reason: fmt.Sprintf("expected %s", expected),
+ Offset: r.start,
+ Data: string(r.Data[r.start:r.pos]),
+ })
+ return
+ }
+
+ var str string
+ if len(r.token.byteValue) <= maxErrorContextLen {
+ str = string(r.token.byteValue)
+ } else {
+ str = string(r.token.byteValue[:maxErrorContextLen-3]) + "..."
+ }
+ r.fatalError = &LexerError{
+ Reason: fmt.Sprintf("expected %s", expected),
+ Offset: r.pos,
+ Data: str,
+ }
+}
+
+func (r *Lexer) GetPos() int {
+ return r.pos
+}
+
+// Delim consumes a token and verifies that it is the given delimiter.
+func (r *Lexer) Delim(c byte) {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+
+ if !r.Ok() || r.token.delimValue != c {
+ r.consume() // errInvalidToken can change token if UseMultipleErrors is enabled.
+ r.errInvalidToken(string([]byte{c}))
+ } else {
+ r.consume()
+ }
+}
+
+// IsDelim returns true if there was no scanning error and next token is the given delimiter.
+func (r *Lexer) IsDelim(c byte) bool {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+ return !r.Ok() || r.token.delimValue == c
+}
+
+// Null verifies that the next token is null and consumes it.
+func (r *Lexer) Null() {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+ if !r.Ok() || r.token.kind != tokenNull {
+ r.errInvalidToken("null")
+ }
+ r.consume()
+}
+
+// IsNull returns true if the next token is a null keyword.
+func (r *Lexer) IsNull() bool {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+ return r.Ok() && r.token.kind == tokenNull
+}
+
+// Skip skips a single token.
+func (r *Lexer) Skip() {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+ r.consume()
+}
+
+// SkipRecursive skips next array or object completely, or just skips a single token if not
+// an array/object.
+//
+// Note: no syntax validation is performed on the skipped data.
+func (r *Lexer) SkipRecursive() {
+ r.scanToken()
+ var start, end byte
+
+ if r.token.delimValue == '{' {
+ start, end = '{', '}'
+ } else if r.token.delimValue == '[' {
+ start, end = '[', ']'
+ } else {
+ r.consume()
+ return
+ }
+
+ r.consume()
+
+ level := 1
+ inQuotes := false
+ wasEscape := false
+
+ for i, c := range r.Data[r.pos:] {
+ switch {
+ case c == start && !inQuotes:
+ level++
+ case c == end && !inQuotes:
+ level--
+ if level == 0 {
+ r.pos += i + 1
+ return
+ }
+ case c == '\\' && inQuotes:
+ wasEscape = !wasEscape
+ continue
+ case c == '"' && inQuotes:
+ inQuotes = wasEscape
+ case c == '"':
+ inQuotes = true
+ }
+ wasEscape = false
+ }
+ r.pos = len(r.Data)
+ r.fatalError = &LexerError{
+ Reason: "EOF reached while skipping array/object or token",
+ Offset: r.pos,
+ Data: string(r.Data[r.pos:]),
+ }
+}
+
+// Raw fetches the next item recursively as a data slice
+func (r *Lexer) Raw() []byte {
+ r.SkipRecursive()
+ if !r.Ok() {
+ return nil
+ }
+ return r.Data[r.start:r.pos]
+}
+
+// IsStart returns whether the lexer is positioned at the start
+// of an input string.
+func (r *Lexer) IsStart() bool {
+ return r.pos == 0
+}
+
+// Consumed reads all remaining bytes from the input, publishing an error if
+// there is anything but whitespace remaining.
+func (r *Lexer) Consumed() {
+ if r.pos > len(r.Data) || !r.Ok() {
+ return
+ }
+
+ for _, c := range r.Data[r.pos:] {
+ if c != ' ' && c != '\t' && c != '\r' && c != '\n' {
+ r.AddError(&LexerError{
+ Reason: "invalid character '" + string(c) + "' after top-level value",
+ Offset: r.pos,
+ Data: string(r.Data[r.pos:]),
+ })
+ return
+ }
+
+ r.pos++
+ r.start++
+ }
+}
+
+func (r *Lexer) unsafeString() (string, []byte) {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+ if !r.Ok() || r.token.kind != tokenString {
+ r.errInvalidToken("string")
+ return "", nil
+ }
+ bytes := r.token.byteValue
+ ret := bytesToStr(r.token.byteValue)
+ r.consume()
+ return ret, bytes
+}
+
+// UnsafeString returns the string value if the token is a string literal.
+//
+// Warning: returned string may point to the input buffer, so the string should not outlive
+// the input buffer. Intended pattern of usage is as an argument to a switch statement.
+func (r *Lexer) UnsafeString() string {
+ ret, _ := r.unsafeString()
+ return ret
+}
+
+// UnsafeBytes returns the byte slice if the token is a string literal.
+func (r *Lexer) UnsafeBytes() []byte {
+ _, ret := r.unsafeString()
+ return ret
+}
+
+// String reads a string literal.
+func (r *Lexer) String() string {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+ if !r.Ok() || r.token.kind != tokenString {
+ r.errInvalidToken("string")
+ return ""
+ }
+ ret := string(r.token.byteValue)
+ r.consume()
+ return ret
+}
+
+// Bytes reads a string literal and base64 decodes it into a byte slice.
+func (r *Lexer) Bytes() []byte {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+ if !r.Ok() || r.token.kind != tokenString {
+ r.errInvalidToken("string")
+ return nil
+ }
+ ret := make([]byte, base64.StdEncoding.DecodedLen(len(r.token.byteValue)))
+ n, err := base64.StdEncoding.Decode(ret, r.token.byteValue)
+ if err != nil {
+ r.fatalError = &LexerError{
+ Reason: err.Error(),
+ }
+ return nil
+ }
+
+ r.consume()
+ return ret[:n]
+}
+
+// Bool reads a true or false boolean keyword.
+func (r *Lexer) Bool() bool {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+ if !r.Ok() || r.token.kind != tokenBool {
+ r.errInvalidToken("bool")
+ return false
+ }
+ ret := r.token.boolValue
+ r.consume()
+ return ret
+}
+
+func (r *Lexer) number() string {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+ if !r.Ok() || r.token.kind != tokenNumber {
+ r.errInvalidToken("number")
+ return ""
+ }
+ ret := bytesToStr(r.token.byteValue)
+ r.consume()
+ return ret
+}
+
+func (r *Lexer) Uint8() uint8 {
+ s := r.number()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseUint(s, 10, 8)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: s,
+ })
+ }
+ return uint8(n)
+}
+
+func (r *Lexer) Uint16() uint16 {
+ s := r.number()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseUint(s, 10, 16)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: s,
+ })
+ }
+ return uint16(n)
+}
+
+func (r *Lexer) Uint32() uint32 {
+ s := r.number()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseUint(s, 10, 32)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: s,
+ })
+ }
+ return uint32(n)
+}
+
+func (r *Lexer) Uint64() uint64 {
+ s := r.number()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseUint(s, 10, 64)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: s,
+ })
+ }
+ return n
+}
+
+func (r *Lexer) Uint() uint {
+ return uint(r.Uint64())
+}
+
+func (r *Lexer) Int8() int8 {
+ s := r.number()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseInt(s, 10, 8)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: s,
+ })
+ }
+ return int8(n)
+}
+
+func (r *Lexer) Int16() int16 {
+ s := r.number()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseInt(s, 10, 16)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: s,
+ })
+ }
+ return int16(n)
+}
+
+func (r *Lexer) Int32() int32 {
+ s := r.number()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseInt(s, 10, 32)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: s,
+ })
+ }
+ return int32(n)
+}
+
+func (r *Lexer) Int64() int64 {
+ s := r.number()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseInt(s, 10, 64)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: s,
+ })
+ }
+ return n
+}
+
+func (r *Lexer) Int() int {
+ return int(r.Int64())
+}
+
+func (r *Lexer) Uint8Str() uint8 {
+ s, b := r.unsafeString()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseUint(s, 10, 8)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: string(b),
+ })
+ }
+ return uint8(n)
+}
+
+func (r *Lexer) Uint16Str() uint16 {
+ s, b := r.unsafeString()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseUint(s, 10, 16)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: string(b),
+ })
+ }
+ return uint16(n)
+}
+
+func (r *Lexer) Uint32Str() uint32 {
+ s, b := r.unsafeString()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseUint(s, 10, 32)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: string(b),
+ })
+ }
+ return uint32(n)
+}
+
+func (r *Lexer) Uint64Str() uint64 {
+ s, b := r.unsafeString()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseUint(s, 10, 64)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: string(b),
+ })
+ }
+ return n
+}
+
+func (r *Lexer) UintStr() uint {
+ return uint(r.Uint64Str())
+}
+
+func (r *Lexer) UintptrStr() uintptr {
+ return uintptr(r.Uint64Str())
+}
+
+func (r *Lexer) Int8Str() int8 {
+ s, b := r.unsafeString()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseInt(s, 10, 8)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: string(b),
+ })
+ }
+ return int8(n)
+}
+
+func (r *Lexer) Int16Str() int16 {
+ s, b := r.unsafeString()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseInt(s, 10, 16)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: string(b),
+ })
+ }
+ return int16(n)
+}
+
+func (r *Lexer) Int32Str() int32 {
+ s, b := r.unsafeString()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseInt(s, 10, 32)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: string(b),
+ })
+ }
+ return int32(n)
+}
+
+func (r *Lexer) Int64Str() int64 {
+ s, b := r.unsafeString()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseInt(s, 10, 64)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: string(b),
+ })
+ }
+ return n
+}
+
+func (r *Lexer) IntStr() int {
+ return int(r.Int64Str())
+}
+
+func (r *Lexer) Float32() float32 {
+ s := r.number()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseFloat(s, 32)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: s,
+ })
+ }
+ return float32(n)
+}
+
+func (r *Lexer) Float32Str() float32 {
+ s, b := r.unsafeString()
+ if !r.Ok() {
+ return 0
+ }
+ n, err := strconv.ParseFloat(s, 32)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: string(b),
+ })
+ }
+ return float32(n)
+}
+
+func (r *Lexer) Float64() float64 {
+ s := r.number()
+ if !r.Ok() {
+ return 0
+ }
+
+ n, err := strconv.ParseFloat(s, 64)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: s,
+ })
+ }
+ return n
+}
+
+func (r *Lexer) Float64Str() float64 {
+ s, b := r.unsafeString()
+ if !r.Ok() {
+ return 0
+ }
+ n, err := strconv.ParseFloat(s, 64)
+ if err != nil {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Reason: err.Error(),
+ Data: string(b),
+ })
+ }
+ return n
+}
+
+func (r *Lexer) Error() error {
+ return r.fatalError
+}
+
+func (r *Lexer) AddError(e error) {
+ if r.fatalError == nil {
+ r.fatalError = e
+ }
+}
+
+func (r *Lexer) AddNonFatalError(e error) {
+ r.addNonfatalError(&LexerError{
+ Offset: r.start,
+ Data: string(r.Data[r.start:r.pos]),
+ Reason: e.Error(),
+ })
+}
+
+func (r *Lexer) addNonfatalError(err *LexerError) {
+ if r.UseMultipleErrors {
+ // We don't want to add errors with the same offset.
+ if len(r.multipleErrors) != 0 && r.multipleErrors[len(r.multipleErrors)-1].Offset == err.Offset {
+ return
+ }
+ r.multipleErrors = append(r.multipleErrors, err)
+ return
+ }
+ r.fatalError = err
+}
+
+func (r *Lexer) GetNonFatalErrors() []*LexerError {
+ return r.multipleErrors
+}
+
+// JsonNumber fetches and json.Number from 'encoding/json' package.
+// Both int, float or string, contains them are valid values
+func (r *Lexer) JsonNumber() json.Number {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+ if !r.Ok() {
+ r.errInvalidToken("json.Number")
+ return json.Number("")
+ }
+
+ switch r.token.kind {
+ case tokenString:
+ return json.Number(r.String())
+ case tokenNumber:
+ return json.Number(r.Raw())
+ case tokenNull:
+ r.Null()
+ return json.Number("")
+ default:
+ r.errSyntax()
+ return json.Number("")
+ }
+}
+
+// Interface fetches an interface{} analogous to the 'encoding/json' package.
+func (r *Lexer) Interface() interface{} {
+ if r.token.kind == tokenUndef && r.Ok() {
+ r.FetchToken()
+ }
+
+ if !r.Ok() {
+ return nil
+ }
+ switch r.token.kind {
+ case tokenString:
+ return r.String()
+ case tokenNumber:
+ return r.Float64()
+ case tokenBool:
+ return r.Bool()
+ case tokenNull:
+ r.Null()
+ return nil
+ }
+
+ if r.token.delimValue == '{' {
+ r.consume()
+
+ ret := map[string]interface{}{}
+ for !r.IsDelim('}') {
+ key := r.String()
+ r.WantColon()
+ ret[key] = r.Interface()
+ r.WantComma()
+ }
+ r.Delim('}')
+
+ if r.Ok() {
+ return ret
+ } else {
+ return nil
+ }
+ } else if r.token.delimValue == '[' {
+ r.consume()
+
+ var ret []interface{}
+ for !r.IsDelim(']') {
+ ret = append(ret, r.Interface())
+ r.WantComma()
+ }
+ r.Delim(']')
+
+ if r.Ok() {
+ return ret
+ } else {
+ return nil
+ }
+ }
+ r.errSyntax()
+ return nil
+}
+
+// WantComma requires a comma to be present before fetching next token.
+func (r *Lexer) WantComma() {
+ r.wantSep = ','
+ r.firstElement = false
+}
+
+// WantColon requires a colon to be present before fetching next token.
+func (r *Lexer) WantColon() {
+ r.wantSep = ':'
+ r.firstElement = false
+}