summaryrefslogtreecommitdiff
path: root/vendor/github.com/mitchellh/mapstructure/mapstructure.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/mitchellh/mapstructure/mapstructure.go')
-rw-r--r--vendor/github.com/mitchellh/mapstructure/mapstructure.go1467
1 files changed, 0 insertions, 1467 deletions
diff --git a/vendor/github.com/mitchellh/mapstructure/mapstructure.go b/vendor/github.com/mitchellh/mapstructure/mapstructure.go
deleted file mode 100644
index 6b81b0067..000000000
--- a/vendor/github.com/mitchellh/mapstructure/mapstructure.go
+++ /dev/null
@@ -1,1467 +0,0 @@
-// Package mapstructure exposes functionality to convert one arbitrary
-// Go type into another, typically to convert a map[string]interface{}
-// into a native Go structure.
-//
-// The Go structure can be arbitrarily complex, containing slices,
-// other structs, etc. and the decoder will properly decode nested
-// maps and so on into the proper structures in the native Go struct.
-// See the examples to see what the decoder is capable of.
-//
-// The simplest function to start with is Decode.
-//
-// Field Tags
-//
-// When decoding to a struct, mapstructure will use the field name by
-// default to perform the mapping. For example, if a struct has a field
-// "Username" then mapstructure will look for a key in the source value
-// of "username" (case insensitive).
-//
-// type User struct {
-// Username string
-// }
-//
-// You can change the behavior of mapstructure by using struct tags.
-// The default struct tag that mapstructure looks for is "mapstructure"
-// but you can customize it using DecoderConfig.
-//
-// Renaming Fields
-//
-// To rename the key that mapstructure looks for, use the "mapstructure"
-// tag and set a value directly. For example, to change the "username" example
-// above to "user":
-//
-// type User struct {
-// Username string `mapstructure:"user"`
-// }
-//
-// Embedded Structs and Squashing
-//
-// Embedded structs are treated as if they're another field with that name.
-// By default, the two structs below are equivalent when decoding with
-// mapstructure:
-//
-// type Person struct {
-// Name string
-// }
-//
-// type Friend struct {
-// Person
-// }
-//
-// type Friend struct {
-// Person Person
-// }
-//
-// This would require an input that looks like below:
-//
-// map[string]interface{}{
-// "person": map[string]interface{}{"name": "alice"},
-// }
-//
-// If your "person" value is NOT nested, then you can append ",squash" to
-// your tag value and mapstructure will treat it as if the embedded struct
-// were part of the struct directly. Example:
-//
-// type Friend struct {
-// Person `mapstructure:",squash"`
-// }
-//
-// Now the following input would be accepted:
-//
-// map[string]interface{}{
-// "name": "alice",
-// }
-//
-// When decoding from a struct to a map, the squash tag squashes the struct
-// fields into a single map. Using the example structs from above:
-//
-// Friend{Person: Person{Name: "alice"}}
-//
-// Will be decoded into a map:
-//
-// map[string]interface{}{
-// "name": "alice",
-// }
-//
-// DecoderConfig has a field that changes the behavior of mapstructure
-// to always squash embedded structs.
-//
-// Remainder Values
-//
-// If there are any unmapped keys in the source value, mapstructure by
-// default will silently ignore them. You can error by setting ErrorUnused
-// in DecoderConfig. If you're using Metadata you can also maintain a slice
-// of the unused keys.
-//
-// You can also use the ",remain" suffix on your tag to collect all unused
-// values in a map. The field with this tag MUST be a map type and should
-// probably be a "map[string]interface{}" or "map[interface{}]interface{}".
-// See example below:
-//
-// type Friend struct {
-// Name string
-// Other map[string]interface{} `mapstructure:",remain"`
-// }
-//
-// Given the input below, Other would be populated with the other
-// values that weren't used (everything but "name"):
-//
-// map[string]interface{}{
-// "name": "bob",
-// "address": "123 Maple St.",
-// }
-//
-// Omit Empty Values
-//
-// When decoding from a struct to any other value, you may use the
-// ",omitempty" suffix on your tag to omit that value if it equates to
-// the zero value. The zero value of all types is specified in the Go
-// specification.
-//
-// For example, the zero type of a numeric type is zero ("0"). If the struct
-// field value is zero and a numeric type, the field is empty, and it won't
-// be encoded into the destination type.
-//
-// type Source {
-// Age int `mapstructure:",omitempty"`
-// }
-//
-// Unexported fields
-//
-// Since unexported (private) struct fields cannot be set outside the package
-// where they are defined, the decoder will simply skip them.
-//
-// For this output type definition:
-//
-// type Exported struct {
-// private string // this unexported field will be skipped
-// Public string
-// }
-//
-// Using this map as input:
-//
-// map[string]interface{}{
-// "private": "I will be ignored",
-// "Public": "I made it through!",
-// }
-//
-// The following struct will be decoded:
-//
-// type Exported struct {
-// private: "" // field is left with an empty string (zero value)
-// Public: "I made it through!"
-// }
-//
-// Other Configuration
-//
-// mapstructure is highly configurable. See the DecoderConfig struct
-// for other features and options that are supported.
-package mapstructure
-
-import (
- "encoding/json"
- "errors"
- "fmt"
- "reflect"
- "sort"
- "strconv"
- "strings"
-)
-
-// DecodeHookFunc is the callback function that can be used for
-// data transformations. See "DecodeHook" in the DecoderConfig
-// struct.
-//
-// The type must be one of DecodeHookFuncType, DecodeHookFuncKind, or
-// DecodeHookFuncValue.
-// Values are a superset of Types (Values can return types), and Types are a
-// superset of Kinds (Types can return Kinds) and are generally a richer thing
-// to use, but Kinds are simpler if you only need those.
-//
-// The reason DecodeHookFunc is multi-typed is for backwards compatibility:
-// we started with Kinds and then realized Types were the better solution,
-// but have a promise to not break backwards compat so we now support
-// both.
-type DecodeHookFunc interface{}
-
-// DecodeHookFuncType is a DecodeHookFunc which has complete information about
-// the source and target types.
-type DecodeHookFuncType func(reflect.Type, reflect.Type, interface{}) (interface{}, error)
-
-// DecodeHookFuncKind is a DecodeHookFunc which knows only the Kinds of the
-// source and target types.
-type DecodeHookFuncKind func(reflect.Kind, reflect.Kind, interface{}) (interface{}, error)
-
-// DecodeHookFuncValue is a DecodeHookFunc which has complete access to both the source and target
-// values.
-type DecodeHookFuncValue func(from reflect.Value, to reflect.Value) (interface{}, error)
-
-// DecoderConfig is the configuration that is used to create a new decoder
-// and allows customization of various aspects of decoding.
-type DecoderConfig struct {
- // DecodeHook, if set, will be called before any decoding and any
- // type conversion (if WeaklyTypedInput is on). This lets you modify
- // the values before they're set down onto the resulting struct. The
- // DecodeHook is called for every map and value in the input. This means
- // that if a struct has embedded fields with squash tags the decode hook
- // is called only once with all of the input data, not once for each
- // embedded struct.
- //
- // If an error is returned, the entire decode will fail with that error.
- DecodeHook DecodeHookFunc
-
- // If ErrorUnused is true, then it is an error for there to exist
- // keys in the original map that were unused in the decoding process
- // (extra keys).
- ErrorUnused bool
-
- // ZeroFields, if set to true, will zero fields before writing them.
- // For example, a map will be emptied before decoded values are put in
- // it. If this is false, a map will be merged.
- ZeroFields bool
-
- // If WeaklyTypedInput is true, the decoder will make the following
- // "weak" conversions:
- //
- // - bools to string (true = "1", false = "0")
- // - numbers to string (base 10)
- // - bools to int/uint (true = 1, false = 0)
- // - strings to int/uint (base implied by prefix)
- // - int to bool (true if value != 0)
- // - string to bool (accepts: 1, t, T, TRUE, true, True, 0, f, F,
- // FALSE, false, False. Anything else is an error)
- // - empty array = empty map and vice versa
- // - negative numbers to overflowed uint values (base 10)
- // - slice of maps to a merged map
- // - single values are converted to slices if required. Each
- // element is weakly decoded. For example: "4" can become []int{4}
- // if the target type is an int slice.
- //
- WeaklyTypedInput bool
-
- // Squash will squash embedded structs. A squash tag may also be
- // added to an individual struct field using a tag. For example:
- //
- // type Parent struct {
- // Child `mapstructure:",squash"`
- // }
- Squash bool
-
- // Metadata is the struct that will contain extra metadata about
- // the decoding. If this is nil, then no metadata will be tracked.
- Metadata *Metadata
-
- // Result is a pointer to the struct that will contain the decoded
- // value.
- Result interface{}
-
- // The tag name that mapstructure reads for field names. This
- // defaults to "mapstructure"
- TagName string
-
- // MatchName is the function used to match the map key to the struct
- // field name or tag. Defaults to `strings.EqualFold`. This can be used
- // to implement case-sensitive tag values, support snake casing, etc.
- MatchName func(mapKey, fieldName string) bool
-}
-
-// A Decoder takes a raw interface value and turns it into structured
-// data, keeping track of rich error information along the way in case
-// anything goes wrong. Unlike the basic top-level Decode method, you can
-// more finely control how the Decoder behaves using the DecoderConfig
-// structure. The top-level Decode method is just a convenience that sets
-// up the most basic Decoder.
-type Decoder struct {
- config *DecoderConfig
-}
-
-// Metadata contains information about decoding a structure that
-// is tedious or difficult to get otherwise.
-type Metadata struct {
- // Keys are the keys of the structure which were successfully decoded
- Keys []string
-
- // Unused is a slice of keys that were found in the raw value but
- // weren't decoded since there was no matching field in the result interface
- Unused []string
-}
-
-// Decode takes an input structure and uses reflection to translate it to
-// the output structure. output must be a pointer to a map or struct.
-func Decode(input interface{}, output interface{}) error {
- config := &DecoderConfig{
- Metadata: nil,
- Result: output,
- }
-
- decoder, err := NewDecoder(config)
- if err != nil {
- return err
- }
-
- return decoder.Decode(input)
-}
-
-// WeakDecode is the same as Decode but is shorthand to enable
-// WeaklyTypedInput. See DecoderConfig for more info.
-func WeakDecode(input, output interface{}) error {
- config := &DecoderConfig{
- Metadata: nil,
- Result: output,
- WeaklyTypedInput: true,
- }
-
- decoder, err := NewDecoder(config)
- if err != nil {
- return err
- }
-
- return decoder.Decode(input)
-}
-
-// DecodeMetadata is the same as Decode, but is shorthand to
-// enable metadata collection. See DecoderConfig for more info.
-func DecodeMetadata(input interface{}, output interface{}, metadata *Metadata) error {
- config := &DecoderConfig{
- Metadata: metadata,
- Result: output,
- }
-
- decoder, err := NewDecoder(config)
- if err != nil {
- return err
- }
-
- return decoder.Decode(input)
-}
-
-// WeakDecodeMetadata is the same as Decode, but is shorthand to
-// enable both WeaklyTypedInput and metadata collection. See
-// DecoderConfig for more info.
-func WeakDecodeMetadata(input interface{}, output interface{}, metadata *Metadata) error {
- config := &DecoderConfig{
- Metadata: metadata,
- Result: output,
- WeaklyTypedInput: true,
- }
-
- decoder, err := NewDecoder(config)
- if err != nil {
- return err
- }
-
- return decoder.Decode(input)
-}
-
-// NewDecoder returns a new decoder for the given configuration. Once
-// a decoder has been returned, the same configuration must not be used
-// again.
-func NewDecoder(config *DecoderConfig) (*Decoder, error) {
- val := reflect.ValueOf(config.Result)
- if val.Kind() != reflect.Ptr {
- return nil, errors.New("result must be a pointer")
- }
-
- val = val.Elem()
- if !val.CanAddr() {
- return nil, errors.New("result must be addressable (a pointer)")
- }
-
- if config.Metadata != nil {
- if config.Metadata.Keys == nil {
- config.Metadata.Keys = make([]string, 0)
- }
-
- if config.Metadata.Unused == nil {
- config.Metadata.Unused = make([]string, 0)
- }
- }
-
- if config.TagName == "" {
- config.TagName = "mapstructure"
- }
-
- if config.MatchName == nil {
- config.MatchName = strings.EqualFold
- }
-
- result := &Decoder{
- config: config,
- }
-
- return result, nil
-}
-
-// Decode decodes the given raw interface to the target pointer specified
-// by the configuration.
-func (d *Decoder) Decode(input interface{}) error {
- return d.decode("", input, reflect.ValueOf(d.config.Result).Elem())
-}
-
-// Decodes an unknown data type into a specific reflection value.
-func (d *Decoder) decode(name string, input interface{}, outVal reflect.Value) error {
- var inputVal reflect.Value
- if input != nil {
- inputVal = reflect.ValueOf(input)
-
- // We need to check here if input is a typed nil. Typed nils won't
- // match the "input == nil" below so we check that here.
- if inputVal.Kind() == reflect.Ptr && inputVal.IsNil() {
- input = nil
- }
- }
-
- if input == nil {
- // If the data is nil, then we don't set anything, unless ZeroFields is set
- // to true.
- if d.config.ZeroFields {
- outVal.Set(reflect.Zero(outVal.Type()))
-
- if d.config.Metadata != nil && name != "" {
- d.config.Metadata.Keys = append(d.config.Metadata.Keys, name)
- }
- }
- return nil
- }
-
- if !inputVal.IsValid() {
- // If the input value is invalid, then we just set the value
- // to be the zero value.
- outVal.Set(reflect.Zero(outVal.Type()))
- if d.config.Metadata != nil && name != "" {
- d.config.Metadata.Keys = append(d.config.Metadata.Keys, name)
- }
- return nil
- }
-
- if d.config.DecodeHook != nil {
- // We have a DecodeHook, so let's pre-process the input.
- var err error
- input, err = DecodeHookExec(d.config.DecodeHook, inputVal, outVal)
- if err != nil {
- return fmt.Errorf("error decoding '%s': %s", name, err)
- }
- }
-
- var err error
- outputKind := getKind(outVal)
- addMetaKey := true
- switch outputKind {
- case reflect.Bool:
- err = d.decodeBool(name, input, outVal)
- case reflect.Interface:
- err = d.decodeBasic(name, input, outVal)
- case reflect.String:
- err = d.decodeString(name, input, outVal)
- case reflect.Int:
- err = d.decodeInt(name, input, outVal)
- case reflect.Uint:
- err = d.decodeUint(name, input, outVal)
- case reflect.Float32:
- err = d.decodeFloat(name, input, outVal)
- case reflect.Struct:
- err = d.decodeStruct(name, input, outVal)
- case reflect.Map:
- err = d.decodeMap(name, input, outVal)
- case reflect.Ptr:
- addMetaKey, err = d.decodePtr(name, input, outVal)
- case reflect.Slice:
- err = d.decodeSlice(name, input, outVal)
- case reflect.Array:
- err = d.decodeArray(name, input, outVal)
- case reflect.Func:
- err = d.decodeFunc(name, input, outVal)
- default:
- // If we reached this point then we weren't able to decode it
- return fmt.Errorf("%s: unsupported type: %s", name, outputKind)
- }
-
- // If we reached here, then we successfully decoded SOMETHING, so
- // mark the key as used if we're tracking metainput.
- if addMetaKey && d.config.Metadata != nil && name != "" {
- d.config.Metadata.Keys = append(d.config.Metadata.Keys, name)
- }
-
- return err
-}
-
-// This decodes a basic type (bool, int, string, etc.) and sets the
-// value to "data" of that type.
-func (d *Decoder) decodeBasic(name string, data interface{}, val reflect.Value) error {
- if val.IsValid() && val.Elem().IsValid() {
- elem := val.Elem()
-
- // If we can't address this element, then its not writable. Instead,
- // we make a copy of the value (which is a pointer and therefore
- // writable), decode into that, and replace the whole value.
- copied := false
- if !elem.CanAddr() {
- copied = true
-
- // Make *T
- copy := reflect.New(elem.Type())
-
- // *T = elem
- copy.Elem().Set(elem)
-
- // Set elem so we decode into it
- elem = copy
- }
-
- // Decode. If we have an error then return. We also return right
- // away if we're not a copy because that means we decoded directly.
- if err := d.decode(name, data, elem); err != nil || !copied {
- return err
- }
-
- // If we're a copy, we need to set te final result
- val.Set(elem.Elem())
- return nil
- }
-
- dataVal := reflect.ValueOf(data)
-
- // If the input data is a pointer, and the assigned type is the dereference
- // of that exact pointer, then indirect it so that we can assign it.
- // Example: *string to string
- if dataVal.Kind() == reflect.Ptr && dataVal.Type().Elem() == val.Type() {
- dataVal = reflect.Indirect(dataVal)
- }
-
- if !dataVal.IsValid() {
- dataVal = reflect.Zero(val.Type())
- }
-
- dataValType := dataVal.Type()
- if !dataValType.AssignableTo(val.Type()) {
- return fmt.Errorf(
- "'%s' expected type '%s', got '%s'",
- name, val.Type(), dataValType)
- }
-
- val.Set(dataVal)
- return nil
-}
-
-func (d *Decoder) decodeString(name string, data interface{}, val reflect.Value) error {
- dataVal := reflect.Indirect(reflect.ValueOf(data))
- dataKind := getKind(dataVal)
-
- converted := true
- switch {
- case dataKind == reflect.String:
- val.SetString(dataVal.String())
- case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
- if dataVal.Bool() {
- val.SetString("1")
- } else {
- val.SetString("0")
- }
- case dataKind == reflect.Int && d.config.WeaklyTypedInput:
- val.SetString(strconv.FormatInt(dataVal.Int(), 10))
- case dataKind == reflect.Uint && d.config.WeaklyTypedInput:
- val.SetString(strconv.FormatUint(dataVal.Uint(), 10))
- case dataKind == reflect.Float32 && d.config.WeaklyTypedInput:
- val.SetString(strconv.FormatFloat(dataVal.Float(), 'f', -1, 64))
- case dataKind == reflect.Slice && d.config.WeaklyTypedInput,
- dataKind == reflect.Array && d.config.WeaklyTypedInput:
- dataType := dataVal.Type()
- elemKind := dataType.Elem().Kind()
- switch elemKind {
- case reflect.Uint8:
- var uints []uint8
- if dataKind == reflect.Array {
- uints = make([]uint8, dataVal.Len(), dataVal.Len())
- for i := range uints {
- uints[i] = dataVal.Index(i).Interface().(uint8)
- }
- } else {
- uints = dataVal.Interface().([]uint8)
- }
- val.SetString(string(uints))
- default:
- converted = false
- }
- default:
- converted = false
- }
-
- if !converted {
- return fmt.Errorf(
- "'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
- name, val.Type(), dataVal.Type(), data)
- }
-
- return nil
-}
-
-func (d *Decoder) decodeInt(name string, data interface{}, val reflect.Value) error {
- dataVal := reflect.Indirect(reflect.ValueOf(data))
- dataKind := getKind(dataVal)
- dataType := dataVal.Type()
-
- switch {
- case dataKind == reflect.Int:
- val.SetInt(dataVal.Int())
- case dataKind == reflect.Uint:
- val.SetInt(int64(dataVal.Uint()))
- case dataKind == reflect.Float32:
- val.SetInt(int64(dataVal.Float()))
- case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
- if dataVal.Bool() {
- val.SetInt(1)
- } else {
- val.SetInt(0)
- }
- case dataKind == reflect.String && d.config.WeaklyTypedInput:
- str := dataVal.String()
- if str == "" {
- str = "0"
- }
-
- i, err := strconv.ParseInt(str, 0, val.Type().Bits())
- if err == nil {
- val.SetInt(i)
- } else {
- return fmt.Errorf("cannot parse '%s' as int: %s", name, err)
- }
- case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number":
- jn := data.(json.Number)
- i, err := jn.Int64()
- if err != nil {
- return fmt.Errorf(
- "error decoding json.Number into %s: %s", name, err)
- }
- val.SetInt(i)
- default:
- return fmt.Errorf(
- "'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
- name, val.Type(), dataVal.Type(), data)
- }
-
- return nil
-}
-
-func (d *Decoder) decodeUint(name string, data interface{}, val reflect.Value) error {
- dataVal := reflect.Indirect(reflect.ValueOf(data))
- dataKind := getKind(dataVal)
- dataType := dataVal.Type()
-
- switch {
- case dataKind == reflect.Int:
- i := dataVal.Int()
- if i < 0 && !d.config.WeaklyTypedInput {
- return fmt.Errorf("cannot parse '%s', %d overflows uint",
- name, i)
- }
- val.SetUint(uint64(i))
- case dataKind == reflect.Uint:
- val.SetUint(dataVal.Uint())
- case dataKind == reflect.Float32:
- f := dataVal.Float()
- if f < 0 && !d.config.WeaklyTypedInput {
- return fmt.Errorf("cannot parse '%s', %f overflows uint",
- name, f)
- }
- val.SetUint(uint64(f))
- case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
- if dataVal.Bool() {
- val.SetUint(1)
- } else {
- val.SetUint(0)
- }
- case dataKind == reflect.String && d.config.WeaklyTypedInput:
- str := dataVal.String()
- if str == "" {
- str = "0"
- }
-
- i, err := strconv.ParseUint(str, 0, val.Type().Bits())
- if err == nil {
- val.SetUint(i)
- } else {
- return fmt.Errorf("cannot parse '%s' as uint: %s", name, err)
- }
- case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number":
- jn := data.(json.Number)
- i, err := strconv.ParseUint(string(jn), 0, 64)
- if err != nil {
- return fmt.Errorf(
- "error decoding json.Number into %s: %s", name, err)
- }
- val.SetUint(i)
- default:
- return fmt.Errorf(
- "'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
- name, val.Type(), dataVal.Type(), data)
- }
-
- return nil
-}
-
-func (d *Decoder) decodeBool(name string, data interface{}, val reflect.Value) error {
- dataVal := reflect.Indirect(reflect.ValueOf(data))
- dataKind := getKind(dataVal)
-
- switch {
- case dataKind == reflect.Bool:
- val.SetBool(dataVal.Bool())
- case dataKind == reflect.Int && d.config.WeaklyTypedInput:
- val.SetBool(dataVal.Int() != 0)
- case dataKind == reflect.Uint && d.config.WeaklyTypedInput:
- val.SetBool(dataVal.Uint() != 0)
- case dataKind == reflect.Float32 && d.config.WeaklyTypedInput:
- val.SetBool(dataVal.Float() != 0)
- case dataKind == reflect.String && d.config.WeaklyTypedInput:
- b, err := strconv.ParseBool(dataVal.String())
- if err == nil {
- val.SetBool(b)
- } else if dataVal.String() == "" {
- val.SetBool(false)
- } else {
- return fmt.Errorf("cannot parse '%s' as bool: %s", name, err)
- }
- default:
- return fmt.Errorf(
- "'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
- name, val.Type(), dataVal.Type(), data)
- }
-
- return nil
-}
-
-func (d *Decoder) decodeFloat(name string, data interface{}, val reflect.Value) error {
- dataVal := reflect.Indirect(reflect.ValueOf(data))
- dataKind := getKind(dataVal)
- dataType := dataVal.Type()
-
- switch {
- case dataKind == reflect.Int:
- val.SetFloat(float64(dataVal.Int()))
- case dataKind == reflect.Uint:
- val.SetFloat(float64(dataVal.Uint()))
- case dataKind == reflect.Float32:
- val.SetFloat(dataVal.Float())
- case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
- if dataVal.Bool() {
- val.SetFloat(1)
- } else {
- val.SetFloat(0)
- }
- case dataKind == reflect.String && d.config.WeaklyTypedInput:
- str := dataVal.String()
- if str == "" {
- str = "0"
- }
-
- f, err := strconv.ParseFloat(str, val.Type().Bits())
- if err == nil {
- val.SetFloat(f)
- } else {
- return fmt.Errorf("cannot parse '%s' as float: %s", name, err)
- }
- case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number":
- jn := data.(json.Number)
- i, err := jn.Float64()
- if err != nil {
- return fmt.Errorf(
- "error decoding json.Number into %s: %s", name, err)
- }
- val.SetFloat(i)
- default:
- return fmt.Errorf(
- "'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
- name, val.Type(), dataVal.Type(), data)
- }
-
- return nil
-}
-
-func (d *Decoder) decodeMap(name string, data interface{}, val reflect.Value) error {
- valType := val.Type()
- valKeyType := valType.Key()
- valElemType := valType.Elem()
-
- // By default we overwrite keys in the current map
- valMap := val
-
- // If the map is nil or we're purposely zeroing fields, make a new map
- if valMap.IsNil() || d.config.ZeroFields {
- // Make a new map to hold our result
- mapType := reflect.MapOf(valKeyType, valElemType)
- valMap = reflect.MakeMap(mapType)
- }
-
- // Check input type and based on the input type jump to the proper func
- dataVal := reflect.Indirect(reflect.ValueOf(data))
- switch dataVal.Kind() {
- case reflect.Map:
- return d.decodeMapFromMap(name, dataVal, val, valMap)
-
- case reflect.Struct:
- return d.decodeMapFromStruct(name, dataVal, val, valMap)
-
- case reflect.Array, reflect.Slice:
- if d.config.WeaklyTypedInput {
- return d.decodeMapFromSlice(name, dataVal, val, valMap)
- }
-
- fallthrough
-
- default:
- return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind())
- }
-}
-
-func (d *Decoder) decodeMapFromSlice(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error {
- // Special case for BC reasons (covered by tests)
- if dataVal.Len() == 0 {
- val.Set(valMap)
- return nil
- }
-
- for i := 0; i < dataVal.Len(); i++ {
- err := d.decode(
- name+"["+strconv.Itoa(i)+"]",
- dataVal.Index(i).Interface(), val)
- if err != nil {
- return err
- }
- }
-
- return nil
-}
-
-func (d *Decoder) decodeMapFromMap(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error {
- valType := val.Type()
- valKeyType := valType.Key()
- valElemType := valType.Elem()
-
- // Accumulate errors
- errors := make([]string, 0)
-
- // If the input data is empty, then we just match what the input data is.
- if dataVal.Len() == 0 {
- if dataVal.IsNil() {
- if !val.IsNil() {
- val.Set(dataVal)
- }
- } else {
- // Set to empty allocated value
- val.Set(valMap)
- }
-
- return nil
- }
-
- for _, k := range dataVal.MapKeys() {
- fieldName := name + "[" + k.String() + "]"
-
- // First decode the key into the proper type
- currentKey := reflect.Indirect(reflect.New(valKeyType))
- if err := d.decode(fieldName, k.Interface(), currentKey); err != nil {
- errors = appendErrors(errors, err)
- continue
- }
-
- // Next decode the data into the proper type
- v := dataVal.MapIndex(k).Interface()
- currentVal := reflect.Indirect(reflect.New(valElemType))
- if err := d.decode(fieldName, v, currentVal); err != nil {
- errors = appendErrors(errors, err)
- continue
- }
-
- valMap.SetMapIndex(currentKey, currentVal)
- }
-
- // Set the built up map to the value
- val.Set(valMap)
-
- // If we had errors, return those
- if len(errors) > 0 {
- return &Error{errors}
- }
-
- return nil
-}
-
-func (d *Decoder) decodeMapFromStruct(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error {
- typ := dataVal.Type()
- for i := 0; i < typ.NumField(); i++ {
- // Get the StructField first since this is a cheap operation. If the
- // field is unexported, then ignore it.
- f := typ.Field(i)
- if f.PkgPath != "" {
- continue
- }
-
- // Next get the actual value of this field and verify it is assignable
- // to the map value.
- v := dataVal.Field(i)
- if !v.Type().AssignableTo(valMap.Type().Elem()) {
- return fmt.Errorf("cannot assign type '%s' to map value field of type '%s'", v.Type(), valMap.Type().Elem())
- }
-
- tagValue := f.Tag.Get(d.config.TagName)
- keyName := f.Name
-
- // If Squash is set in the config, we squash the field down.
- squash := d.config.Squash && v.Kind() == reflect.Struct && f.Anonymous
-
- // Determine the name of the key in the map
- if index := strings.Index(tagValue, ","); index != -1 {
- if tagValue[:index] == "-" {
- continue
- }
- // If "omitempty" is specified in the tag, it ignores empty values.
- if strings.Index(tagValue[index+1:], "omitempty") != -1 && isEmptyValue(v) {
- continue
- }
-
- // If "squash" is specified in the tag, we squash the field down.
- squash = !squash && strings.Index(tagValue[index+1:], "squash") != -1
- if squash {
- // When squashing, the embedded type can be a pointer to a struct.
- if v.Kind() == reflect.Ptr && v.Elem().Kind() == reflect.Struct {
- v = v.Elem()
- }
-
- // The final type must be a struct
- if v.Kind() != reflect.Struct {
- return fmt.Errorf("cannot squash non-struct type '%s'", v.Type())
- }
- }
- keyName = tagValue[:index]
- } else if len(tagValue) > 0 {
- if tagValue == "-" {
- continue
- }
- keyName = tagValue
- }
-
- switch v.Kind() {
- // this is an embedded struct, so handle it differently
- case reflect.Struct:
- x := reflect.New(v.Type())
- x.Elem().Set(v)
-
- vType := valMap.Type()
- vKeyType := vType.Key()
- vElemType := vType.Elem()
- mType := reflect.MapOf(vKeyType, vElemType)
- vMap := reflect.MakeMap(mType)
-
- // Creating a pointer to a map so that other methods can completely
- // overwrite the map if need be (looking at you decodeMapFromMap). The
- // indirection allows the underlying map to be settable (CanSet() == true)
- // where as reflect.MakeMap returns an unsettable map.
- addrVal := reflect.New(vMap.Type())
- reflect.Indirect(addrVal).Set(vMap)
-
- err := d.decode(keyName, x.Interface(), reflect.Indirect(addrVal))
- if err != nil {
- return err
- }
-
- // the underlying map may have been completely overwritten so pull
- // it indirectly out of the enclosing value.
- vMap = reflect.Indirect(addrVal)
-
- if squash {
- for _, k := range vMap.MapKeys() {
- valMap.SetMapIndex(k, vMap.MapIndex(k))
- }
- } else {
- valMap.SetMapIndex(reflect.ValueOf(keyName), vMap)
- }
-
- default:
- valMap.SetMapIndex(reflect.ValueOf(keyName), v)
- }
- }
-
- if val.CanAddr() {
- val.Set(valMap)
- }
-
- return nil
-}
-
-func (d *Decoder) decodePtr(name string, data interface{}, val reflect.Value) (bool, error) {
- // If the input data is nil, then we want to just set the output
- // pointer to be nil as well.
- isNil := data == nil
- if !isNil {
- switch v := reflect.Indirect(reflect.ValueOf(data)); v.Kind() {
- case reflect.Chan,
- reflect.Func,
- reflect.Interface,
- reflect.Map,
- reflect.Ptr,
- reflect.Slice:
- isNil = v.IsNil()
- }
- }
- if isNil {
- if !val.IsNil() && val.CanSet() {
- nilValue := reflect.New(val.Type()).Elem()
- val.Set(nilValue)
- }
-
- return true, nil
- }
-
- // Create an element of the concrete (non pointer) type and decode
- // into that. Then set the value of the pointer to this type.
- valType := val.Type()
- valElemType := valType.Elem()
- if val.CanSet() {
- realVal := val
- if realVal.IsNil() || d.config.ZeroFields {
- realVal = reflect.New(valElemType)
- }
-
- if err := d.decode(name, data, reflect.Indirect(realVal)); err != nil {
- return false, err
- }
-
- val.Set(realVal)
- } else {
- if err := d.decode(name, data, reflect.Indirect(val)); err != nil {
- return false, err
- }
- }
- return false, nil
-}
-
-func (d *Decoder) decodeFunc(name string, data interface{}, val reflect.Value) error {
- // Create an element of the concrete (non pointer) type and decode
- // into that. Then set the value of the pointer to this type.
- dataVal := reflect.Indirect(reflect.ValueOf(data))
- if val.Type() != dataVal.Type() {
- return fmt.Errorf(
- "'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
- name, val.Type(), dataVal.Type(), data)
- }
- val.Set(dataVal)
- return nil
-}
-
-func (d *Decoder) decodeSlice(name string, data interface{}, val reflect.Value) error {
- dataVal := reflect.Indirect(reflect.ValueOf(data))
- dataValKind := dataVal.Kind()
- valType := val.Type()
- valElemType := valType.Elem()
- sliceType := reflect.SliceOf(valElemType)
-
- // If we have a non array/slice type then we first attempt to convert.
- if dataValKind != reflect.Array && dataValKind != reflect.Slice {
- if d.config.WeaklyTypedInput {
- switch {
- // Slice and array we use the normal logic
- case dataValKind == reflect.Slice, dataValKind == reflect.Array:
- break
-
- // Empty maps turn into empty slices
- case dataValKind == reflect.Map:
- if dataVal.Len() == 0 {
- val.Set(reflect.MakeSlice(sliceType, 0, 0))
- return nil
- }
- // Create slice of maps of other sizes
- return d.decodeSlice(name, []interface{}{data}, val)
-
- case dataValKind == reflect.String && valElemType.Kind() == reflect.Uint8:
- return d.decodeSlice(name, []byte(dataVal.String()), val)
-
- // All other types we try to convert to the slice type
- // and "lift" it into it. i.e. a string becomes a string slice.
- default:
- // Just re-try this function with data as a slice.
- return d.decodeSlice(name, []interface{}{data}, val)
- }
- }
-
- return fmt.Errorf(
- "'%s': source data must be an array or slice, got %s", name, dataValKind)
- }
-
- // If the input value is nil, then don't allocate since empty != nil
- if dataVal.IsNil() {
- return nil
- }
-
- valSlice := val
- if valSlice.IsNil() || d.config.ZeroFields {
- // Make a new slice to hold our result, same size as the original data.
- valSlice = reflect.MakeSlice(sliceType, dataVal.Len(), dataVal.Len())
- }
-
- // Accumulate any errors
- errors := make([]string, 0)
-
- for i := 0; i < dataVal.Len(); i++ {
- currentData := dataVal.Index(i).Interface()
- for valSlice.Len() <= i {
- valSlice = reflect.Append(valSlice, reflect.Zero(valElemType))
- }
- currentField := valSlice.Index(i)
-
- fieldName := name + "[" + strconv.Itoa(i) + "]"
- if err := d.decode(fieldName, currentData, currentField); err != nil {
- errors = appendErrors(errors, err)
- }
- }
-
- // Finally, set the value to the slice we built up
- val.Set(valSlice)
-
- // If there were errors, we return those
- if len(errors) > 0 {
- return &Error{errors}
- }
-
- return nil
-}
-
-func (d *Decoder) decodeArray(name string, data interface{}, val reflect.Value) error {
- dataVal := reflect.Indirect(reflect.ValueOf(data))
- dataValKind := dataVal.Kind()
- valType := val.Type()
- valElemType := valType.Elem()
- arrayType := reflect.ArrayOf(valType.Len(), valElemType)
-
- valArray := val
-
- if valArray.Interface() == reflect.Zero(valArray.Type()).Interface() || d.config.ZeroFields {
- // Check input type
- if dataValKind != reflect.Array && dataValKind != reflect.Slice {
- if d.config.WeaklyTypedInput {
- switch {
- // Empty maps turn into empty arrays
- case dataValKind == reflect.Map:
- if dataVal.Len() == 0 {
- val.Set(reflect.Zero(arrayType))
- return nil
- }
-
- // All other types we try to convert to the array type
- // and "lift" it into it. i.e. a string becomes a string array.
- default:
- // Just re-try this function with data as a slice.
- return d.decodeArray(name, []interface{}{data}, val)
- }
- }
-
- return fmt.Errorf(
- "'%s': source data must be an array or slice, got %s", name, dataValKind)
-
- }
- if dataVal.Len() > arrayType.Len() {
- return fmt.Errorf(
- "'%s': expected source data to have length less or equal to %d, got %d", name, arrayType.Len(), dataVal.Len())
-
- }
-
- // Make a new array to hold our result, same size as the original data.
- valArray = reflect.New(arrayType).Elem()
- }
-
- // Accumulate any errors
- errors := make([]string, 0)
-
- for i := 0; i < dataVal.Len(); i++ {
- currentData := dataVal.Index(i).Interface()
- currentField := valArray.Index(i)
-
- fieldName := name + "[" + strconv.Itoa(i) + "]"
- if err := d.decode(fieldName, currentData, currentField); err != nil {
- errors = appendErrors(errors, err)
- }
- }
-
- // Finally, set the value to the array we built up
- val.Set(valArray)
-
- // If there were errors, we return those
- if len(errors) > 0 {
- return &Error{errors}
- }
-
- return nil
-}
-
-func (d *Decoder) decodeStruct(name string, data interface{}, val reflect.Value) error {
- dataVal := reflect.Indirect(reflect.ValueOf(data))
-
- // If the type of the value to write to and the data match directly,
- // then we just set it directly instead of recursing into the structure.
- if dataVal.Type() == val.Type() {
- val.Set(dataVal)
- return nil
- }
-
- dataValKind := dataVal.Kind()
- switch dataValKind {
- case reflect.Map:
- return d.decodeStructFromMap(name, dataVal, val)
-
- case reflect.Struct:
- // Not the most efficient way to do this but we can optimize later if
- // we want to. To convert from struct to struct we go to map first
- // as an intermediary.
-
- // Make a new map to hold our result
- mapType := reflect.TypeOf((map[string]interface{})(nil))
- mval := reflect.MakeMap(mapType)
-
- // Creating a pointer to a map so that other methods can completely
- // overwrite the map if need be (looking at you decodeMapFromMap). The
- // indirection allows the underlying map to be settable (CanSet() == true)
- // where as reflect.MakeMap returns an unsettable map.
- addrVal := reflect.New(mval.Type())
-
- reflect.Indirect(addrVal).Set(mval)
- if err := d.decodeMapFromStruct(name, dataVal, reflect.Indirect(addrVal), mval); err != nil {
- return err
- }
-
- result := d.decodeStructFromMap(name, reflect.Indirect(addrVal), val)
- return result
-
- default:
- return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind())
- }
-}
-
-func (d *Decoder) decodeStructFromMap(name string, dataVal, val reflect.Value) error {
- dataValType := dataVal.Type()
- if kind := dataValType.Key().Kind(); kind != reflect.String && kind != reflect.Interface {
- return fmt.Errorf(
- "'%s' needs a map with string keys, has '%s' keys",
- name, dataValType.Key().Kind())
- }
-
- dataValKeys := make(map[reflect.Value]struct{})
- dataValKeysUnused := make(map[interface{}]struct{})
- for _, dataValKey := range dataVal.MapKeys() {
- dataValKeys[dataValKey] = struct{}{}
- dataValKeysUnused[dataValKey.Interface()] = struct{}{}
- }
-
- errors := make([]string, 0)
-
- // This slice will keep track of all the structs we'll be decoding.
- // There can be more than one struct if there are embedded structs
- // that are squashed.
- structs := make([]reflect.Value, 1, 5)
- structs[0] = val
-
- // Compile the list of all the fields that we're going to be decoding
- // from all the structs.
- type field struct {
- field reflect.StructField
- val reflect.Value
- }
-
- // remainField is set to a valid field set with the "remain" tag if
- // we are keeping track of remaining values.
- var remainField *field
-
- fields := []field{}
- for len(structs) > 0 {
- structVal := structs[0]
- structs = structs[1:]
-
- structType := structVal.Type()
-
- for i := 0; i < structType.NumField(); i++ {
- fieldType := structType.Field(i)
- fieldVal := structVal.Field(i)
- if fieldVal.Kind() == reflect.Ptr && fieldVal.Elem().Kind() == reflect.Struct {
- // Handle embedded struct pointers as embedded structs.
- fieldVal = fieldVal.Elem()
- }
-
- // If "squash" is specified in the tag, we squash the field down.
- squash := d.config.Squash && fieldVal.Kind() == reflect.Struct && fieldType.Anonymous
- remain := false
-
- // We always parse the tags cause we're looking for other tags too
- tagParts := strings.Split(fieldType.Tag.Get(d.config.TagName), ",")
- for _, tag := range tagParts[1:] {
- if tag == "squash" {
- squash = true
- break
- }
-
- if tag == "remain" {
- remain = true
- break
- }
- }
-
- if squash {
- if fieldVal.Kind() != reflect.Struct {
- errors = appendErrors(errors,
- fmt.Errorf("%s: unsupported type for squash: %s", fieldType.Name, fieldVal.Kind()))
- } else {
- structs = append(structs, fieldVal)
- }
- continue
- }
-
- // Build our field
- if remain {
- remainField = &field{fieldType, fieldVal}
- } else {
- // Normal struct field, store it away
- fields = append(fields, field{fieldType, fieldVal})
- }
- }
- }
-
- // for fieldType, field := range fields {
- for _, f := range fields {
- field, fieldValue := f.field, f.val
- fieldName := field.Name
-
- tagValue := field.Tag.Get(d.config.TagName)
- tagValue = strings.SplitN(tagValue, ",", 2)[0]
- if tagValue != "" {
- fieldName = tagValue
- }
-
- rawMapKey := reflect.ValueOf(fieldName)
- rawMapVal := dataVal.MapIndex(rawMapKey)
- if !rawMapVal.IsValid() {
- // Do a slower search by iterating over each key and
- // doing case-insensitive search.
- for dataValKey := range dataValKeys {
- mK, ok := dataValKey.Interface().(string)
- if !ok {
- // Not a string key
- continue
- }
-
- if d.config.MatchName(mK, fieldName) {
- rawMapKey = dataValKey
- rawMapVal = dataVal.MapIndex(dataValKey)
- break
- }
- }
-
- if !rawMapVal.IsValid() {
- // There was no matching key in the map for the value in
- // the struct. Just ignore.
- continue
- }
- }
-
- if !fieldValue.IsValid() {
- // This should never happen
- panic("field is not valid")
- }
-
- // If we can't set the field, then it is unexported or something,
- // and we just continue onwards.
- if !fieldValue.CanSet() {
- continue
- }
-
- // Delete the key we're using from the unused map so we stop tracking
- delete(dataValKeysUnused, rawMapKey.Interface())
-
- // If the name is empty string, then we're at the root, and we
- // don't dot-join the fields.
- if name != "" {
- fieldName = name + "." + fieldName
- }
-
- if err := d.decode(fieldName, rawMapVal.Interface(), fieldValue); err != nil {
- errors = appendErrors(errors, err)
- }
- }
-
- // If we have a "remain"-tagged field and we have unused keys then
- // we put the unused keys directly into the remain field.
- if remainField != nil && len(dataValKeysUnused) > 0 {
- // Build a map of only the unused values
- remain := map[interface{}]interface{}{}
- for key := range dataValKeysUnused {
- remain[key] = dataVal.MapIndex(reflect.ValueOf(key)).Interface()
- }
-
- // Decode it as-if we were just decoding this map onto our map.
- if err := d.decodeMap(name, remain, remainField.val); err != nil {
- errors = appendErrors(errors, err)
- }
-
- // Set the map to nil so we have none so that the next check will
- // not error (ErrorUnused)
- dataValKeysUnused = nil
- }
-
- if d.config.ErrorUnused && len(dataValKeysUnused) > 0 {
- keys := make([]string, 0, len(dataValKeysUnused))
- for rawKey := range dataValKeysUnused {
- keys = append(keys, rawKey.(string))
- }
- sort.Strings(keys)
-
- err := fmt.Errorf("'%s' has invalid keys: %s", name, strings.Join(keys, ", "))
- errors = appendErrors(errors, err)
- }
-
- if len(errors) > 0 {
- return &Error{errors}
- }
-
- // Add the unused keys to the list of unused keys if we're tracking metadata
- if d.config.Metadata != nil {
- for rawKey := range dataValKeysUnused {
- key := rawKey.(string)
- if name != "" {
- key = name + "." + key
- }
-
- d.config.Metadata.Unused = append(d.config.Metadata.Unused, key)
- }
- }
-
- return nil
-}
-
-func isEmptyValue(v reflect.Value) bool {
- switch getKind(v) {
- case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
- return v.Len() == 0
- case reflect.Bool:
- return !v.Bool()
- case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
- return v.Int() == 0
- case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
- return v.Uint() == 0
- case reflect.Float32, reflect.Float64:
- return v.Float() == 0
- case reflect.Interface, reflect.Ptr:
- return v.IsNil()
- }
- return false
-}
-
-func getKind(val reflect.Value) reflect.Kind {
- kind := val.Kind()
-
- switch {
- case kind >= reflect.Int && kind <= reflect.Int64:
- return reflect.Int
- case kind >= reflect.Uint && kind <= reflect.Uint64:
- return reflect.Uint
- case kind >= reflect.Float32 && kind <= reflect.Float64:
- return reflect.Float32
- default:
- return kind
- }
-}