diff options
Diffstat (limited to 'vendor/github.com/mitchellh/mapstructure/mapstructure.go')
-rw-r--r-- | vendor/github.com/mitchellh/mapstructure/mapstructure.go | 1467 |
1 files changed, 0 insertions, 1467 deletions
diff --git a/vendor/github.com/mitchellh/mapstructure/mapstructure.go b/vendor/github.com/mitchellh/mapstructure/mapstructure.go deleted file mode 100644 index 6b81b0067..000000000 --- a/vendor/github.com/mitchellh/mapstructure/mapstructure.go +++ /dev/null @@ -1,1467 +0,0 @@ -// Package mapstructure exposes functionality to convert one arbitrary -// Go type into another, typically to convert a map[string]interface{} -// into a native Go structure. -// -// The Go structure can be arbitrarily complex, containing slices, -// other structs, etc. and the decoder will properly decode nested -// maps and so on into the proper structures in the native Go struct. -// See the examples to see what the decoder is capable of. -// -// The simplest function to start with is Decode. -// -// Field Tags -// -// When decoding to a struct, mapstructure will use the field name by -// default to perform the mapping. For example, if a struct has a field -// "Username" then mapstructure will look for a key in the source value -// of "username" (case insensitive). -// -// type User struct { -// Username string -// } -// -// You can change the behavior of mapstructure by using struct tags. -// The default struct tag that mapstructure looks for is "mapstructure" -// but you can customize it using DecoderConfig. -// -// Renaming Fields -// -// To rename the key that mapstructure looks for, use the "mapstructure" -// tag and set a value directly. For example, to change the "username" example -// above to "user": -// -// type User struct { -// Username string `mapstructure:"user"` -// } -// -// Embedded Structs and Squashing -// -// Embedded structs are treated as if they're another field with that name. -// By default, the two structs below are equivalent when decoding with -// mapstructure: -// -// type Person struct { -// Name string -// } -// -// type Friend struct { -// Person -// } -// -// type Friend struct { -// Person Person -// } -// -// This would require an input that looks like below: -// -// map[string]interface{}{ -// "person": map[string]interface{}{"name": "alice"}, -// } -// -// If your "person" value is NOT nested, then you can append ",squash" to -// your tag value and mapstructure will treat it as if the embedded struct -// were part of the struct directly. Example: -// -// type Friend struct { -// Person `mapstructure:",squash"` -// } -// -// Now the following input would be accepted: -// -// map[string]interface{}{ -// "name": "alice", -// } -// -// When decoding from a struct to a map, the squash tag squashes the struct -// fields into a single map. Using the example structs from above: -// -// Friend{Person: Person{Name: "alice"}} -// -// Will be decoded into a map: -// -// map[string]interface{}{ -// "name": "alice", -// } -// -// DecoderConfig has a field that changes the behavior of mapstructure -// to always squash embedded structs. -// -// Remainder Values -// -// If there are any unmapped keys in the source value, mapstructure by -// default will silently ignore them. You can error by setting ErrorUnused -// in DecoderConfig. If you're using Metadata you can also maintain a slice -// of the unused keys. -// -// You can also use the ",remain" suffix on your tag to collect all unused -// values in a map. The field with this tag MUST be a map type and should -// probably be a "map[string]interface{}" or "map[interface{}]interface{}". -// See example below: -// -// type Friend struct { -// Name string -// Other map[string]interface{} `mapstructure:",remain"` -// } -// -// Given the input below, Other would be populated with the other -// values that weren't used (everything but "name"): -// -// map[string]interface{}{ -// "name": "bob", -// "address": "123 Maple St.", -// } -// -// Omit Empty Values -// -// When decoding from a struct to any other value, you may use the -// ",omitempty" suffix on your tag to omit that value if it equates to -// the zero value. The zero value of all types is specified in the Go -// specification. -// -// For example, the zero type of a numeric type is zero ("0"). If the struct -// field value is zero and a numeric type, the field is empty, and it won't -// be encoded into the destination type. -// -// type Source { -// Age int `mapstructure:",omitempty"` -// } -// -// Unexported fields -// -// Since unexported (private) struct fields cannot be set outside the package -// where they are defined, the decoder will simply skip them. -// -// For this output type definition: -// -// type Exported struct { -// private string // this unexported field will be skipped -// Public string -// } -// -// Using this map as input: -// -// map[string]interface{}{ -// "private": "I will be ignored", -// "Public": "I made it through!", -// } -// -// The following struct will be decoded: -// -// type Exported struct { -// private: "" // field is left with an empty string (zero value) -// Public: "I made it through!" -// } -// -// Other Configuration -// -// mapstructure is highly configurable. See the DecoderConfig struct -// for other features and options that are supported. -package mapstructure - -import ( - "encoding/json" - "errors" - "fmt" - "reflect" - "sort" - "strconv" - "strings" -) - -// DecodeHookFunc is the callback function that can be used for -// data transformations. See "DecodeHook" in the DecoderConfig -// struct. -// -// The type must be one of DecodeHookFuncType, DecodeHookFuncKind, or -// DecodeHookFuncValue. -// Values are a superset of Types (Values can return types), and Types are a -// superset of Kinds (Types can return Kinds) and are generally a richer thing -// to use, but Kinds are simpler if you only need those. -// -// The reason DecodeHookFunc is multi-typed is for backwards compatibility: -// we started with Kinds and then realized Types were the better solution, -// but have a promise to not break backwards compat so we now support -// both. -type DecodeHookFunc interface{} - -// DecodeHookFuncType is a DecodeHookFunc which has complete information about -// the source and target types. -type DecodeHookFuncType func(reflect.Type, reflect.Type, interface{}) (interface{}, error) - -// DecodeHookFuncKind is a DecodeHookFunc which knows only the Kinds of the -// source and target types. -type DecodeHookFuncKind func(reflect.Kind, reflect.Kind, interface{}) (interface{}, error) - -// DecodeHookFuncValue is a DecodeHookFunc which has complete access to both the source and target -// values. -type DecodeHookFuncValue func(from reflect.Value, to reflect.Value) (interface{}, error) - -// DecoderConfig is the configuration that is used to create a new decoder -// and allows customization of various aspects of decoding. -type DecoderConfig struct { - // DecodeHook, if set, will be called before any decoding and any - // type conversion (if WeaklyTypedInput is on). This lets you modify - // the values before they're set down onto the resulting struct. The - // DecodeHook is called for every map and value in the input. This means - // that if a struct has embedded fields with squash tags the decode hook - // is called only once with all of the input data, not once for each - // embedded struct. - // - // If an error is returned, the entire decode will fail with that error. - DecodeHook DecodeHookFunc - - // If ErrorUnused is true, then it is an error for there to exist - // keys in the original map that were unused in the decoding process - // (extra keys). - ErrorUnused bool - - // ZeroFields, if set to true, will zero fields before writing them. - // For example, a map will be emptied before decoded values are put in - // it. If this is false, a map will be merged. - ZeroFields bool - - // If WeaklyTypedInput is true, the decoder will make the following - // "weak" conversions: - // - // - bools to string (true = "1", false = "0") - // - numbers to string (base 10) - // - bools to int/uint (true = 1, false = 0) - // - strings to int/uint (base implied by prefix) - // - int to bool (true if value != 0) - // - string to bool (accepts: 1, t, T, TRUE, true, True, 0, f, F, - // FALSE, false, False. Anything else is an error) - // - empty array = empty map and vice versa - // - negative numbers to overflowed uint values (base 10) - // - slice of maps to a merged map - // - single values are converted to slices if required. Each - // element is weakly decoded. For example: "4" can become []int{4} - // if the target type is an int slice. - // - WeaklyTypedInput bool - - // Squash will squash embedded structs. A squash tag may also be - // added to an individual struct field using a tag. For example: - // - // type Parent struct { - // Child `mapstructure:",squash"` - // } - Squash bool - - // Metadata is the struct that will contain extra metadata about - // the decoding. If this is nil, then no metadata will be tracked. - Metadata *Metadata - - // Result is a pointer to the struct that will contain the decoded - // value. - Result interface{} - - // The tag name that mapstructure reads for field names. This - // defaults to "mapstructure" - TagName string - - // MatchName is the function used to match the map key to the struct - // field name or tag. Defaults to `strings.EqualFold`. This can be used - // to implement case-sensitive tag values, support snake casing, etc. - MatchName func(mapKey, fieldName string) bool -} - -// A Decoder takes a raw interface value and turns it into structured -// data, keeping track of rich error information along the way in case -// anything goes wrong. Unlike the basic top-level Decode method, you can -// more finely control how the Decoder behaves using the DecoderConfig -// structure. The top-level Decode method is just a convenience that sets -// up the most basic Decoder. -type Decoder struct { - config *DecoderConfig -} - -// Metadata contains information about decoding a structure that -// is tedious or difficult to get otherwise. -type Metadata struct { - // Keys are the keys of the structure which were successfully decoded - Keys []string - - // Unused is a slice of keys that were found in the raw value but - // weren't decoded since there was no matching field in the result interface - Unused []string -} - -// Decode takes an input structure and uses reflection to translate it to -// the output structure. output must be a pointer to a map or struct. -func Decode(input interface{}, output interface{}) error { - config := &DecoderConfig{ - Metadata: nil, - Result: output, - } - - decoder, err := NewDecoder(config) - if err != nil { - return err - } - - return decoder.Decode(input) -} - -// WeakDecode is the same as Decode but is shorthand to enable -// WeaklyTypedInput. See DecoderConfig for more info. -func WeakDecode(input, output interface{}) error { - config := &DecoderConfig{ - Metadata: nil, - Result: output, - WeaklyTypedInput: true, - } - - decoder, err := NewDecoder(config) - if err != nil { - return err - } - - return decoder.Decode(input) -} - -// DecodeMetadata is the same as Decode, but is shorthand to -// enable metadata collection. See DecoderConfig for more info. -func DecodeMetadata(input interface{}, output interface{}, metadata *Metadata) error { - config := &DecoderConfig{ - Metadata: metadata, - Result: output, - } - - decoder, err := NewDecoder(config) - if err != nil { - return err - } - - return decoder.Decode(input) -} - -// WeakDecodeMetadata is the same as Decode, but is shorthand to -// enable both WeaklyTypedInput and metadata collection. See -// DecoderConfig for more info. -func WeakDecodeMetadata(input interface{}, output interface{}, metadata *Metadata) error { - config := &DecoderConfig{ - Metadata: metadata, - Result: output, - WeaklyTypedInput: true, - } - - decoder, err := NewDecoder(config) - if err != nil { - return err - } - - return decoder.Decode(input) -} - -// NewDecoder returns a new decoder for the given configuration. Once -// a decoder has been returned, the same configuration must not be used -// again. -func NewDecoder(config *DecoderConfig) (*Decoder, error) { - val := reflect.ValueOf(config.Result) - if val.Kind() != reflect.Ptr { - return nil, errors.New("result must be a pointer") - } - - val = val.Elem() - if !val.CanAddr() { - return nil, errors.New("result must be addressable (a pointer)") - } - - if config.Metadata != nil { - if config.Metadata.Keys == nil { - config.Metadata.Keys = make([]string, 0) - } - - if config.Metadata.Unused == nil { - config.Metadata.Unused = make([]string, 0) - } - } - - if config.TagName == "" { - config.TagName = "mapstructure" - } - - if config.MatchName == nil { - config.MatchName = strings.EqualFold - } - - result := &Decoder{ - config: config, - } - - return result, nil -} - -// Decode decodes the given raw interface to the target pointer specified -// by the configuration. -func (d *Decoder) Decode(input interface{}) error { - return d.decode("", input, reflect.ValueOf(d.config.Result).Elem()) -} - -// Decodes an unknown data type into a specific reflection value. -func (d *Decoder) decode(name string, input interface{}, outVal reflect.Value) error { - var inputVal reflect.Value - if input != nil { - inputVal = reflect.ValueOf(input) - - // We need to check here if input is a typed nil. Typed nils won't - // match the "input == nil" below so we check that here. - if inputVal.Kind() == reflect.Ptr && inputVal.IsNil() { - input = nil - } - } - - if input == nil { - // If the data is nil, then we don't set anything, unless ZeroFields is set - // to true. - if d.config.ZeroFields { - outVal.Set(reflect.Zero(outVal.Type())) - - if d.config.Metadata != nil && name != "" { - d.config.Metadata.Keys = append(d.config.Metadata.Keys, name) - } - } - return nil - } - - if !inputVal.IsValid() { - // If the input value is invalid, then we just set the value - // to be the zero value. - outVal.Set(reflect.Zero(outVal.Type())) - if d.config.Metadata != nil && name != "" { - d.config.Metadata.Keys = append(d.config.Metadata.Keys, name) - } - return nil - } - - if d.config.DecodeHook != nil { - // We have a DecodeHook, so let's pre-process the input. - var err error - input, err = DecodeHookExec(d.config.DecodeHook, inputVal, outVal) - if err != nil { - return fmt.Errorf("error decoding '%s': %s", name, err) - } - } - - var err error - outputKind := getKind(outVal) - addMetaKey := true - switch outputKind { - case reflect.Bool: - err = d.decodeBool(name, input, outVal) - case reflect.Interface: - err = d.decodeBasic(name, input, outVal) - case reflect.String: - err = d.decodeString(name, input, outVal) - case reflect.Int: - err = d.decodeInt(name, input, outVal) - case reflect.Uint: - err = d.decodeUint(name, input, outVal) - case reflect.Float32: - err = d.decodeFloat(name, input, outVal) - case reflect.Struct: - err = d.decodeStruct(name, input, outVal) - case reflect.Map: - err = d.decodeMap(name, input, outVal) - case reflect.Ptr: - addMetaKey, err = d.decodePtr(name, input, outVal) - case reflect.Slice: - err = d.decodeSlice(name, input, outVal) - case reflect.Array: - err = d.decodeArray(name, input, outVal) - case reflect.Func: - err = d.decodeFunc(name, input, outVal) - default: - // If we reached this point then we weren't able to decode it - return fmt.Errorf("%s: unsupported type: %s", name, outputKind) - } - - // If we reached here, then we successfully decoded SOMETHING, so - // mark the key as used if we're tracking metainput. - if addMetaKey && d.config.Metadata != nil && name != "" { - d.config.Metadata.Keys = append(d.config.Metadata.Keys, name) - } - - return err -} - -// This decodes a basic type (bool, int, string, etc.) and sets the -// value to "data" of that type. -func (d *Decoder) decodeBasic(name string, data interface{}, val reflect.Value) error { - if val.IsValid() && val.Elem().IsValid() { - elem := val.Elem() - - // If we can't address this element, then its not writable. Instead, - // we make a copy of the value (which is a pointer and therefore - // writable), decode into that, and replace the whole value. - copied := false - if !elem.CanAddr() { - copied = true - - // Make *T - copy := reflect.New(elem.Type()) - - // *T = elem - copy.Elem().Set(elem) - - // Set elem so we decode into it - elem = copy - } - - // Decode. If we have an error then return. We also return right - // away if we're not a copy because that means we decoded directly. - if err := d.decode(name, data, elem); err != nil || !copied { - return err - } - - // If we're a copy, we need to set te final result - val.Set(elem.Elem()) - return nil - } - - dataVal := reflect.ValueOf(data) - - // If the input data is a pointer, and the assigned type is the dereference - // of that exact pointer, then indirect it so that we can assign it. - // Example: *string to string - if dataVal.Kind() == reflect.Ptr && dataVal.Type().Elem() == val.Type() { - dataVal = reflect.Indirect(dataVal) - } - - if !dataVal.IsValid() { - dataVal = reflect.Zero(val.Type()) - } - - dataValType := dataVal.Type() - if !dataValType.AssignableTo(val.Type()) { - return fmt.Errorf( - "'%s' expected type '%s', got '%s'", - name, val.Type(), dataValType) - } - - val.Set(dataVal) - return nil -} - -func (d *Decoder) decodeString(name string, data interface{}, val reflect.Value) error { - dataVal := reflect.Indirect(reflect.ValueOf(data)) - dataKind := getKind(dataVal) - - converted := true - switch { - case dataKind == reflect.String: - val.SetString(dataVal.String()) - case dataKind == reflect.Bool && d.config.WeaklyTypedInput: - if dataVal.Bool() { - val.SetString("1") - } else { - val.SetString("0") - } - case dataKind == reflect.Int && d.config.WeaklyTypedInput: - val.SetString(strconv.FormatInt(dataVal.Int(), 10)) - case dataKind == reflect.Uint && d.config.WeaklyTypedInput: - val.SetString(strconv.FormatUint(dataVal.Uint(), 10)) - case dataKind == reflect.Float32 && d.config.WeaklyTypedInput: - val.SetString(strconv.FormatFloat(dataVal.Float(), 'f', -1, 64)) - case dataKind == reflect.Slice && d.config.WeaklyTypedInput, - dataKind == reflect.Array && d.config.WeaklyTypedInput: - dataType := dataVal.Type() - elemKind := dataType.Elem().Kind() - switch elemKind { - case reflect.Uint8: - var uints []uint8 - if dataKind == reflect.Array { - uints = make([]uint8, dataVal.Len(), dataVal.Len()) - for i := range uints { - uints[i] = dataVal.Index(i).Interface().(uint8) - } - } else { - uints = dataVal.Interface().([]uint8) - } - val.SetString(string(uints)) - default: - converted = false - } - default: - converted = false - } - - if !converted { - return fmt.Errorf( - "'%s' expected type '%s', got unconvertible type '%s', value: '%v'", - name, val.Type(), dataVal.Type(), data) - } - - return nil -} - -func (d *Decoder) decodeInt(name string, data interface{}, val reflect.Value) error { - dataVal := reflect.Indirect(reflect.ValueOf(data)) - dataKind := getKind(dataVal) - dataType := dataVal.Type() - - switch { - case dataKind == reflect.Int: - val.SetInt(dataVal.Int()) - case dataKind == reflect.Uint: - val.SetInt(int64(dataVal.Uint())) - case dataKind == reflect.Float32: - val.SetInt(int64(dataVal.Float())) - case dataKind == reflect.Bool && d.config.WeaklyTypedInput: - if dataVal.Bool() { - val.SetInt(1) - } else { - val.SetInt(0) - } - case dataKind == reflect.String && d.config.WeaklyTypedInput: - str := dataVal.String() - if str == "" { - str = "0" - } - - i, err := strconv.ParseInt(str, 0, val.Type().Bits()) - if err == nil { - val.SetInt(i) - } else { - return fmt.Errorf("cannot parse '%s' as int: %s", name, err) - } - case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number": - jn := data.(json.Number) - i, err := jn.Int64() - if err != nil { - return fmt.Errorf( - "error decoding json.Number into %s: %s", name, err) - } - val.SetInt(i) - default: - return fmt.Errorf( - "'%s' expected type '%s', got unconvertible type '%s', value: '%v'", - name, val.Type(), dataVal.Type(), data) - } - - return nil -} - -func (d *Decoder) decodeUint(name string, data interface{}, val reflect.Value) error { - dataVal := reflect.Indirect(reflect.ValueOf(data)) - dataKind := getKind(dataVal) - dataType := dataVal.Type() - - switch { - case dataKind == reflect.Int: - i := dataVal.Int() - if i < 0 && !d.config.WeaklyTypedInput { - return fmt.Errorf("cannot parse '%s', %d overflows uint", - name, i) - } - val.SetUint(uint64(i)) - case dataKind == reflect.Uint: - val.SetUint(dataVal.Uint()) - case dataKind == reflect.Float32: - f := dataVal.Float() - if f < 0 && !d.config.WeaklyTypedInput { - return fmt.Errorf("cannot parse '%s', %f overflows uint", - name, f) - } - val.SetUint(uint64(f)) - case dataKind == reflect.Bool && d.config.WeaklyTypedInput: - if dataVal.Bool() { - val.SetUint(1) - } else { - val.SetUint(0) - } - case dataKind == reflect.String && d.config.WeaklyTypedInput: - str := dataVal.String() - if str == "" { - str = "0" - } - - i, err := strconv.ParseUint(str, 0, val.Type().Bits()) - if err == nil { - val.SetUint(i) - } else { - return fmt.Errorf("cannot parse '%s' as uint: %s", name, err) - } - case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number": - jn := data.(json.Number) - i, err := strconv.ParseUint(string(jn), 0, 64) - if err != nil { - return fmt.Errorf( - "error decoding json.Number into %s: %s", name, err) - } - val.SetUint(i) - default: - return fmt.Errorf( - "'%s' expected type '%s', got unconvertible type '%s', value: '%v'", - name, val.Type(), dataVal.Type(), data) - } - - return nil -} - -func (d *Decoder) decodeBool(name string, data interface{}, val reflect.Value) error { - dataVal := reflect.Indirect(reflect.ValueOf(data)) - dataKind := getKind(dataVal) - - switch { - case dataKind == reflect.Bool: - val.SetBool(dataVal.Bool()) - case dataKind == reflect.Int && d.config.WeaklyTypedInput: - val.SetBool(dataVal.Int() != 0) - case dataKind == reflect.Uint && d.config.WeaklyTypedInput: - val.SetBool(dataVal.Uint() != 0) - case dataKind == reflect.Float32 && d.config.WeaklyTypedInput: - val.SetBool(dataVal.Float() != 0) - case dataKind == reflect.String && d.config.WeaklyTypedInput: - b, err := strconv.ParseBool(dataVal.String()) - if err == nil { - val.SetBool(b) - } else if dataVal.String() == "" { - val.SetBool(false) - } else { - return fmt.Errorf("cannot parse '%s' as bool: %s", name, err) - } - default: - return fmt.Errorf( - "'%s' expected type '%s', got unconvertible type '%s', value: '%v'", - name, val.Type(), dataVal.Type(), data) - } - - return nil -} - -func (d *Decoder) decodeFloat(name string, data interface{}, val reflect.Value) error { - dataVal := reflect.Indirect(reflect.ValueOf(data)) - dataKind := getKind(dataVal) - dataType := dataVal.Type() - - switch { - case dataKind == reflect.Int: - val.SetFloat(float64(dataVal.Int())) - case dataKind == reflect.Uint: - val.SetFloat(float64(dataVal.Uint())) - case dataKind == reflect.Float32: - val.SetFloat(dataVal.Float()) - case dataKind == reflect.Bool && d.config.WeaklyTypedInput: - if dataVal.Bool() { - val.SetFloat(1) - } else { - val.SetFloat(0) - } - case dataKind == reflect.String && d.config.WeaklyTypedInput: - str := dataVal.String() - if str == "" { - str = "0" - } - - f, err := strconv.ParseFloat(str, val.Type().Bits()) - if err == nil { - val.SetFloat(f) - } else { - return fmt.Errorf("cannot parse '%s' as float: %s", name, err) - } - case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number": - jn := data.(json.Number) - i, err := jn.Float64() - if err != nil { - return fmt.Errorf( - "error decoding json.Number into %s: %s", name, err) - } - val.SetFloat(i) - default: - return fmt.Errorf( - "'%s' expected type '%s', got unconvertible type '%s', value: '%v'", - name, val.Type(), dataVal.Type(), data) - } - - return nil -} - -func (d *Decoder) decodeMap(name string, data interface{}, val reflect.Value) error { - valType := val.Type() - valKeyType := valType.Key() - valElemType := valType.Elem() - - // By default we overwrite keys in the current map - valMap := val - - // If the map is nil or we're purposely zeroing fields, make a new map - if valMap.IsNil() || d.config.ZeroFields { - // Make a new map to hold our result - mapType := reflect.MapOf(valKeyType, valElemType) - valMap = reflect.MakeMap(mapType) - } - - // Check input type and based on the input type jump to the proper func - dataVal := reflect.Indirect(reflect.ValueOf(data)) - switch dataVal.Kind() { - case reflect.Map: - return d.decodeMapFromMap(name, dataVal, val, valMap) - - case reflect.Struct: - return d.decodeMapFromStruct(name, dataVal, val, valMap) - - case reflect.Array, reflect.Slice: - if d.config.WeaklyTypedInput { - return d.decodeMapFromSlice(name, dataVal, val, valMap) - } - - fallthrough - - default: - return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind()) - } -} - -func (d *Decoder) decodeMapFromSlice(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error { - // Special case for BC reasons (covered by tests) - if dataVal.Len() == 0 { - val.Set(valMap) - return nil - } - - for i := 0; i < dataVal.Len(); i++ { - err := d.decode( - name+"["+strconv.Itoa(i)+"]", - dataVal.Index(i).Interface(), val) - if err != nil { - return err - } - } - - return nil -} - -func (d *Decoder) decodeMapFromMap(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error { - valType := val.Type() - valKeyType := valType.Key() - valElemType := valType.Elem() - - // Accumulate errors - errors := make([]string, 0) - - // If the input data is empty, then we just match what the input data is. - if dataVal.Len() == 0 { - if dataVal.IsNil() { - if !val.IsNil() { - val.Set(dataVal) - } - } else { - // Set to empty allocated value - val.Set(valMap) - } - - return nil - } - - for _, k := range dataVal.MapKeys() { - fieldName := name + "[" + k.String() + "]" - - // First decode the key into the proper type - currentKey := reflect.Indirect(reflect.New(valKeyType)) - if err := d.decode(fieldName, k.Interface(), currentKey); err != nil { - errors = appendErrors(errors, err) - continue - } - - // Next decode the data into the proper type - v := dataVal.MapIndex(k).Interface() - currentVal := reflect.Indirect(reflect.New(valElemType)) - if err := d.decode(fieldName, v, currentVal); err != nil { - errors = appendErrors(errors, err) - continue - } - - valMap.SetMapIndex(currentKey, currentVal) - } - - // Set the built up map to the value - val.Set(valMap) - - // If we had errors, return those - if len(errors) > 0 { - return &Error{errors} - } - - return nil -} - -func (d *Decoder) decodeMapFromStruct(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error { - typ := dataVal.Type() - for i := 0; i < typ.NumField(); i++ { - // Get the StructField first since this is a cheap operation. If the - // field is unexported, then ignore it. - f := typ.Field(i) - if f.PkgPath != "" { - continue - } - - // Next get the actual value of this field and verify it is assignable - // to the map value. - v := dataVal.Field(i) - if !v.Type().AssignableTo(valMap.Type().Elem()) { - return fmt.Errorf("cannot assign type '%s' to map value field of type '%s'", v.Type(), valMap.Type().Elem()) - } - - tagValue := f.Tag.Get(d.config.TagName) - keyName := f.Name - - // If Squash is set in the config, we squash the field down. - squash := d.config.Squash && v.Kind() == reflect.Struct && f.Anonymous - - // Determine the name of the key in the map - if index := strings.Index(tagValue, ","); index != -1 { - if tagValue[:index] == "-" { - continue - } - // If "omitempty" is specified in the tag, it ignores empty values. - if strings.Index(tagValue[index+1:], "omitempty") != -1 && isEmptyValue(v) { - continue - } - - // If "squash" is specified in the tag, we squash the field down. - squash = !squash && strings.Index(tagValue[index+1:], "squash") != -1 - if squash { - // When squashing, the embedded type can be a pointer to a struct. - if v.Kind() == reflect.Ptr && v.Elem().Kind() == reflect.Struct { - v = v.Elem() - } - - // The final type must be a struct - if v.Kind() != reflect.Struct { - return fmt.Errorf("cannot squash non-struct type '%s'", v.Type()) - } - } - keyName = tagValue[:index] - } else if len(tagValue) > 0 { - if tagValue == "-" { - continue - } - keyName = tagValue - } - - switch v.Kind() { - // this is an embedded struct, so handle it differently - case reflect.Struct: - x := reflect.New(v.Type()) - x.Elem().Set(v) - - vType := valMap.Type() - vKeyType := vType.Key() - vElemType := vType.Elem() - mType := reflect.MapOf(vKeyType, vElemType) - vMap := reflect.MakeMap(mType) - - // Creating a pointer to a map so that other methods can completely - // overwrite the map if need be (looking at you decodeMapFromMap). The - // indirection allows the underlying map to be settable (CanSet() == true) - // where as reflect.MakeMap returns an unsettable map. - addrVal := reflect.New(vMap.Type()) - reflect.Indirect(addrVal).Set(vMap) - - err := d.decode(keyName, x.Interface(), reflect.Indirect(addrVal)) - if err != nil { - return err - } - - // the underlying map may have been completely overwritten so pull - // it indirectly out of the enclosing value. - vMap = reflect.Indirect(addrVal) - - if squash { - for _, k := range vMap.MapKeys() { - valMap.SetMapIndex(k, vMap.MapIndex(k)) - } - } else { - valMap.SetMapIndex(reflect.ValueOf(keyName), vMap) - } - - default: - valMap.SetMapIndex(reflect.ValueOf(keyName), v) - } - } - - if val.CanAddr() { - val.Set(valMap) - } - - return nil -} - -func (d *Decoder) decodePtr(name string, data interface{}, val reflect.Value) (bool, error) { - // If the input data is nil, then we want to just set the output - // pointer to be nil as well. - isNil := data == nil - if !isNil { - switch v := reflect.Indirect(reflect.ValueOf(data)); v.Kind() { - case reflect.Chan, - reflect.Func, - reflect.Interface, - reflect.Map, - reflect.Ptr, - reflect.Slice: - isNil = v.IsNil() - } - } - if isNil { - if !val.IsNil() && val.CanSet() { - nilValue := reflect.New(val.Type()).Elem() - val.Set(nilValue) - } - - return true, nil - } - - // Create an element of the concrete (non pointer) type and decode - // into that. Then set the value of the pointer to this type. - valType := val.Type() - valElemType := valType.Elem() - if val.CanSet() { - realVal := val - if realVal.IsNil() || d.config.ZeroFields { - realVal = reflect.New(valElemType) - } - - if err := d.decode(name, data, reflect.Indirect(realVal)); err != nil { - return false, err - } - - val.Set(realVal) - } else { - if err := d.decode(name, data, reflect.Indirect(val)); err != nil { - return false, err - } - } - return false, nil -} - -func (d *Decoder) decodeFunc(name string, data interface{}, val reflect.Value) error { - // Create an element of the concrete (non pointer) type and decode - // into that. Then set the value of the pointer to this type. - dataVal := reflect.Indirect(reflect.ValueOf(data)) - if val.Type() != dataVal.Type() { - return fmt.Errorf( - "'%s' expected type '%s', got unconvertible type '%s', value: '%v'", - name, val.Type(), dataVal.Type(), data) - } - val.Set(dataVal) - return nil -} - -func (d *Decoder) decodeSlice(name string, data interface{}, val reflect.Value) error { - dataVal := reflect.Indirect(reflect.ValueOf(data)) - dataValKind := dataVal.Kind() - valType := val.Type() - valElemType := valType.Elem() - sliceType := reflect.SliceOf(valElemType) - - // If we have a non array/slice type then we first attempt to convert. - if dataValKind != reflect.Array && dataValKind != reflect.Slice { - if d.config.WeaklyTypedInput { - switch { - // Slice and array we use the normal logic - case dataValKind == reflect.Slice, dataValKind == reflect.Array: - break - - // Empty maps turn into empty slices - case dataValKind == reflect.Map: - if dataVal.Len() == 0 { - val.Set(reflect.MakeSlice(sliceType, 0, 0)) - return nil - } - // Create slice of maps of other sizes - return d.decodeSlice(name, []interface{}{data}, val) - - case dataValKind == reflect.String && valElemType.Kind() == reflect.Uint8: - return d.decodeSlice(name, []byte(dataVal.String()), val) - - // All other types we try to convert to the slice type - // and "lift" it into it. i.e. a string becomes a string slice. - default: - // Just re-try this function with data as a slice. - return d.decodeSlice(name, []interface{}{data}, val) - } - } - - return fmt.Errorf( - "'%s': source data must be an array or slice, got %s", name, dataValKind) - } - - // If the input value is nil, then don't allocate since empty != nil - if dataVal.IsNil() { - return nil - } - - valSlice := val - if valSlice.IsNil() || d.config.ZeroFields { - // Make a new slice to hold our result, same size as the original data. - valSlice = reflect.MakeSlice(sliceType, dataVal.Len(), dataVal.Len()) - } - - // Accumulate any errors - errors := make([]string, 0) - - for i := 0; i < dataVal.Len(); i++ { - currentData := dataVal.Index(i).Interface() - for valSlice.Len() <= i { - valSlice = reflect.Append(valSlice, reflect.Zero(valElemType)) - } - currentField := valSlice.Index(i) - - fieldName := name + "[" + strconv.Itoa(i) + "]" - if err := d.decode(fieldName, currentData, currentField); err != nil { - errors = appendErrors(errors, err) - } - } - - // Finally, set the value to the slice we built up - val.Set(valSlice) - - // If there were errors, we return those - if len(errors) > 0 { - return &Error{errors} - } - - return nil -} - -func (d *Decoder) decodeArray(name string, data interface{}, val reflect.Value) error { - dataVal := reflect.Indirect(reflect.ValueOf(data)) - dataValKind := dataVal.Kind() - valType := val.Type() - valElemType := valType.Elem() - arrayType := reflect.ArrayOf(valType.Len(), valElemType) - - valArray := val - - if valArray.Interface() == reflect.Zero(valArray.Type()).Interface() || d.config.ZeroFields { - // Check input type - if dataValKind != reflect.Array && dataValKind != reflect.Slice { - if d.config.WeaklyTypedInput { - switch { - // Empty maps turn into empty arrays - case dataValKind == reflect.Map: - if dataVal.Len() == 0 { - val.Set(reflect.Zero(arrayType)) - return nil - } - - // All other types we try to convert to the array type - // and "lift" it into it. i.e. a string becomes a string array. - default: - // Just re-try this function with data as a slice. - return d.decodeArray(name, []interface{}{data}, val) - } - } - - return fmt.Errorf( - "'%s': source data must be an array or slice, got %s", name, dataValKind) - - } - if dataVal.Len() > arrayType.Len() { - return fmt.Errorf( - "'%s': expected source data to have length less or equal to %d, got %d", name, arrayType.Len(), dataVal.Len()) - - } - - // Make a new array to hold our result, same size as the original data. - valArray = reflect.New(arrayType).Elem() - } - - // Accumulate any errors - errors := make([]string, 0) - - for i := 0; i < dataVal.Len(); i++ { - currentData := dataVal.Index(i).Interface() - currentField := valArray.Index(i) - - fieldName := name + "[" + strconv.Itoa(i) + "]" - if err := d.decode(fieldName, currentData, currentField); err != nil { - errors = appendErrors(errors, err) - } - } - - // Finally, set the value to the array we built up - val.Set(valArray) - - // If there were errors, we return those - if len(errors) > 0 { - return &Error{errors} - } - - return nil -} - -func (d *Decoder) decodeStruct(name string, data interface{}, val reflect.Value) error { - dataVal := reflect.Indirect(reflect.ValueOf(data)) - - // If the type of the value to write to and the data match directly, - // then we just set it directly instead of recursing into the structure. - if dataVal.Type() == val.Type() { - val.Set(dataVal) - return nil - } - - dataValKind := dataVal.Kind() - switch dataValKind { - case reflect.Map: - return d.decodeStructFromMap(name, dataVal, val) - - case reflect.Struct: - // Not the most efficient way to do this but we can optimize later if - // we want to. To convert from struct to struct we go to map first - // as an intermediary. - - // Make a new map to hold our result - mapType := reflect.TypeOf((map[string]interface{})(nil)) - mval := reflect.MakeMap(mapType) - - // Creating a pointer to a map so that other methods can completely - // overwrite the map if need be (looking at you decodeMapFromMap). The - // indirection allows the underlying map to be settable (CanSet() == true) - // where as reflect.MakeMap returns an unsettable map. - addrVal := reflect.New(mval.Type()) - - reflect.Indirect(addrVal).Set(mval) - if err := d.decodeMapFromStruct(name, dataVal, reflect.Indirect(addrVal), mval); err != nil { - return err - } - - result := d.decodeStructFromMap(name, reflect.Indirect(addrVal), val) - return result - - default: - return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind()) - } -} - -func (d *Decoder) decodeStructFromMap(name string, dataVal, val reflect.Value) error { - dataValType := dataVal.Type() - if kind := dataValType.Key().Kind(); kind != reflect.String && kind != reflect.Interface { - return fmt.Errorf( - "'%s' needs a map with string keys, has '%s' keys", - name, dataValType.Key().Kind()) - } - - dataValKeys := make(map[reflect.Value]struct{}) - dataValKeysUnused := make(map[interface{}]struct{}) - for _, dataValKey := range dataVal.MapKeys() { - dataValKeys[dataValKey] = struct{}{} - dataValKeysUnused[dataValKey.Interface()] = struct{}{} - } - - errors := make([]string, 0) - - // This slice will keep track of all the structs we'll be decoding. - // There can be more than one struct if there are embedded structs - // that are squashed. - structs := make([]reflect.Value, 1, 5) - structs[0] = val - - // Compile the list of all the fields that we're going to be decoding - // from all the structs. - type field struct { - field reflect.StructField - val reflect.Value - } - - // remainField is set to a valid field set with the "remain" tag if - // we are keeping track of remaining values. - var remainField *field - - fields := []field{} - for len(structs) > 0 { - structVal := structs[0] - structs = structs[1:] - - structType := structVal.Type() - - for i := 0; i < structType.NumField(); i++ { - fieldType := structType.Field(i) - fieldVal := structVal.Field(i) - if fieldVal.Kind() == reflect.Ptr && fieldVal.Elem().Kind() == reflect.Struct { - // Handle embedded struct pointers as embedded structs. - fieldVal = fieldVal.Elem() - } - - // If "squash" is specified in the tag, we squash the field down. - squash := d.config.Squash && fieldVal.Kind() == reflect.Struct && fieldType.Anonymous - remain := false - - // We always parse the tags cause we're looking for other tags too - tagParts := strings.Split(fieldType.Tag.Get(d.config.TagName), ",") - for _, tag := range tagParts[1:] { - if tag == "squash" { - squash = true - break - } - - if tag == "remain" { - remain = true - break - } - } - - if squash { - if fieldVal.Kind() != reflect.Struct { - errors = appendErrors(errors, - fmt.Errorf("%s: unsupported type for squash: %s", fieldType.Name, fieldVal.Kind())) - } else { - structs = append(structs, fieldVal) - } - continue - } - - // Build our field - if remain { - remainField = &field{fieldType, fieldVal} - } else { - // Normal struct field, store it away - fields = append(fields, field{fieldType, fieldVal}) - } - } - } - - // for fieldType, field := range fields { - for _, f := range fields { - field, fieldValue := f.field, f.val - fieldName := field.Name - - tagValue := field.Tag.Get(d.config.TagName) - tagValue = strings.SplitN(tagValue, ",", 2)[0] - if tagValue != "" { - fieldName = tagValue - } - - rawMapKey := reflect.ValueOf(fieldName) - rawMapVal := dataVal.MapIndex(rawMapKey) - if !rawMapVal.IsValid() { - // Do a slower search by iterating over each key and - // doing case-insensitive search. - for dataValKey := range dataValKeys { - mK, ok := dataValKey.Interface().(string) - if !ok { - // Not a string key - continue - } - - if d.config.MatchName(mK, fieldName) { - rawMapKey = dataValKey - rawMapVal = dataVal.MapIndex(dataValKey) - break - } - } - - if !rawMapVal.IsValid() { - // There was no matching key in the map for the value in - // the struct. Just ignore. - continue - } - } - - if !fieldValue.IsValid() { - // This should never happen - panic("field is not valid") - } - - // If we can't set the field, then it is unexported or something, - // and we just continue onwards. - if !fieldValue.CanSet() { - continue - } - - // Delete the key we're using from the unused map so we stop tracking - delete(dataValKeysUnused, rawMapKey.Interface()) - - // If the name is empty string, then we're at the root, and we - // don't dot-join the fields. - if name != "" { - fieldName = name + "." + fieldName - } - - if err := d.decode(fieldName, rawMapVal.Interface(), fieldValue); err != nil { - errors = appendErrors(errors, err) - } - } - - // If we have a "remain"-tagged field and we have unused keys then - // we put the unused keys directly into the remain field. - if remainField != nil && len(dataValKeysUnused) > 0 { - // Build a map of only the unused values - remain := map[interface{}]interface{}{} - for key := range dataValKeysUnused { - remain[key] = dataVal.MapIndex(reflect.ValueOf(key)).Interface() - } - - // Decode it as-if we were just decoding this map onto our map. - if err := d.decodeMap(name, remain, remainField.val); err != nil { - errors = appendErrors(errors, err) - } - - // Set the map to nil so we have none so that the next check will - // not error (ErrorUnused) - dataValKeysUnused = nil - } - - if d.config.ErrorUnused && len(dataValKeysUnused) > 0 { - keys := make([]string, 0, len(dataValKeysUnused)) - for rawKey := range dataValKeysUnused { - keys = append(keys, rawKey.(string)) - } - sort.Strings(keys) - - err := fmt.Errorf("'%s' has invalid keys: %s", name, strings.Join(keys, ", ")) - errors = appendErrors(errors, err) - } - - if len(errors) > 0 { - return &Error{errors} - } - - // Add the unused keys to the list of unused keys if we're tracking metadata - if d.config.Metadata != nil { - for rawKey := range dataValKeysUnused { - key := rawKey.(string) - if name != "" { - key = name + "." + key - } - - d.config.Metadata.Unused = append(d.config.Metadata.Unused, key) - } - } - - return nil -} - -func isEmptyValue(v reflect.Value) bool { - switch getKind(v) { - case reflect.Array, reflect.Map, reflect.Slice, reflect.String: - return v.Len() == 0 - case reflect.Bool: - return !v.Bool() - case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: - return v.Int() == 0 - case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: - return v.Uint() == 0 - case reflect.Float32, reflect.Float64: - return v.Float() == 0 - case reflect.Interface, reflect.Ptr: - return v.IsNil() - } - return false -} - -func getKind(val reflect.Value) reflect.Kind { - kind := val.Kind() - - switch { - case kind >= reflect.Int && kind <= reflect.Int64: - return reflect.Int - case kind >= reflect.Uint && kind <= reflect.Uint64: - return reflect.Uint - case kind >= reflect.Float32 && kind <= reflect.Float64: - return reflect.Float32 - default: - return kind - } -} |