diff options
Diffstat (limited to 'vendor/golang.org/x/net/internal')
-rw-r--r-- | vendor/golang.org/x/net/internal/timeseries/timeseries.go | 525 |
1 files changed, 0 insertions, 525 deletions
diff --git a/vendor/golang.org/x/net/internal/timeseries/timeseries.go b/vendor/golang.org/x/net/internal/timeseries/timeseries.go deleted file mode 100644 index 1119f3448..000000000 --- a/vendor/golang.org/x/net/internal/timeseries/timeseries.go +++ /dev/null @@ -1,525 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package timeseries implements a time series structure for stats collection. -package timeseries // import "golang.org/x/net/internal/timeseries" - -import ( - "fmt" - "log" - "time" -) - -const ( - timeSeriesNumBuckets = 64 - minuteHourSeriesNumBuckets = 60 -) - -var timeSeriesResolutions = []time.Duration{ - 1 * time.Second, - 10 * time.Second, - 1 * time.Minute, - 10 * time.Minute, - 1 * time.Hour, - 6 * time.Hour, - 24 * time.Hour, // 1 day - 7 * 24 * time.Hour, // 1 week - 4 * 7 * 24 * time.Hour, // 4 weeks - 16 * 7 * 24 * time.Hour, // 16 weeks -} - -var minuteHourSeriesResolutions = []time.Duration{ - 1 * time.Second, - 1 * time.Minute, -} - -// An Observable is a kind of data that can be aggregated in a time series. -type Observable interface { - Multiply(ratio float64) // Multiplies the data in self by a given ratio - Add(other Observable) // Adds the data from a different observation to self - Clear() // Clears the observation so it can be reused. - CopyFrom(other Observable) // Copies the contents of a given observation to self -} - -// Float attaches the methods of Observable to a float64. -type Float float64 - -// NewFloat returns a Float. -func NewFloat() Observable { - f := Float(0) - return &f -} - -// String returns the float as a string. -func (f *Float) String() string { return fmt.Sprintf("%g", f.Value()) } - -// Value returns the float's value. -func (f *Float) Value() float64 { return float64(*f) } - -func (f *Float) Multiply(ratio float64) { *f *= Float(ratio) } - -func (f *Float) Add(other Observable) { - o := other.(*Float) - *f += *o -} - -func (f *Float) Clear() { *f = 0 } - -func (f *Float) CopyFrom(other Observable) { - o := other.(*Float) - *f = *o -} - -// A Clock tells the current time. -type Clock interface { - Time() time.Time -} - -type defaultClock int - -var defaultClockInstance defaultClock - -func (defaultClock) Time() time.Time { return time.Now() } - -// Information kept per level. Each level consists of a circular list of -// observations. The start of the level may be derived from end and the -// len(buckets) * sizeInMillis. -type tsLevel struct { - oldest int // index to oldest bucketed Observable - newest int // index to newest bucketed Observable - end time.Time // end timestamp for this level - size time.Duration // duration of the bucketed Observable - buckets []Observable // collections of observations - provider func() Observable // used for creating new Observable -} - -func (l *tsLevel) Clear() { - l.oldest = 0 - l.newest = len(l.buckets) - 1 - l.end = time.Time{} - for i := range l.buckets { - if l.buckets[i] != nil { - l.buckets[i].Clear() - l.buckets[i] = nil - } - } -} - -func (l *tsLevel) InitLevel(size time.Duration, numBuckets int, f func() Observable) { - l.size = size - l.provider = f - l.buckets = make([]Observable, numBuckets) -} - -// Keeps a sequence of levels. Each level is responsible for storing data at -// a given resolution. For example, the first level stores data at a one -// minute resolution while the second level stores data at a one hour -// resolution. - -// Each level is represented by a sequence of buckets. Each bucket spans an -// interval equal to the resolution of the level. New observations are added -// to the last bucket. -type timeSeries struct { - provider func() Observable // make more Observable - numBuckets int // number of buckets in each level - levels []*tsLevel // levels of bucketed Observable - lastAdd time.Time // time of last Observable tracked - total Observable // convenient aggregation of all Observable - clock Clock // Clock for getting current time - pending Observable // observations not yet bucketed - pendingTime time.Time // what time are we keeping in pending - dirty bool // if there are pending observations -} - -// init initializes a level according to the supplied criteria. -func (ts *timeSeries) init(resolutions []time.Duration, f func() Observable, numBuckets int, clock Clock) { - ts.provider = f - ts.numBuckets = numBuckets - ts.clock = clock - ts.levels = make([]*tsLevel, len(resolutions)) - - for i := range resolutions { - if i > 0 && resolutions[i-1] >= resolutions[i] { - log.Print("timeseries: resolutions must be monotonically increasing") - break - } - newLevel := new(tsLevel) - newLevel.InitLevel(resolutions[i], ts.numBuckets, ts.provider) - ts.levels[i] = newLevel - } - - ts.Clear() -} - -// Clear removes all observations from the time series. -func (ts *timeSeries) Clear() { - ts.lastAdd = time.Time{} - ts.total = ts.resetObservation(ts.total) - ts.pending = ts.resetObservation(ts.pending) - ts.pendingTime = time.Time{} - ts.dirty = false - - for i := range ts.levels { - ts.levels[i].Clear() - } -} - -// Add records an observation at the current time. -func (ts *timeSeries) Add(observation Observable) { - ts.AddWithTime(observation, ts.clock.Time()) -} - -// AddWithTime records an observation at the specified time. -func (ts *timeSeries) AddWithTime(observation Observable, t time.Time) { - - smallBucketDuration := ts.levels[0].size - - if t.After(ts.lastAdd) { - ts.lastAdd = t - } - - if t.After(ts.pendingTime) { - ts.advance(t) - ts.mergePendingUpdates() - ts.pendingTime = ts.levels[0].end - ts.pending.CopyFrom(observation) - ts.dirty = true - } else if t.After(ts.pendingTime.Add(-1 * smallBucketDuration)) { - // The observation is close enough to go into the pending bucket. - // This compensates for clock skewing and small scheduling delays - // by letting the update stay in the fast path. - ts.pending.Add(observation) - ts.dirty = true - } else { - ts.mergeValue(observation, t) - } -} - -// mergeValue inserts the observation at the specified time in the past into all levels. -func (ts *timeSeries) mergeValue(observation Observable, t time.Time) { - for _, level := range ts.levels { - index := (ts.numBuckets - 1) - int(level.end.Sub(t)/level.size) - if 0 <= index && index < ts.numBuckets { - bucketNumber := (level.oldest + index) % ts.numBuckets - if level.buckets[bucketNumber] == nil { - level.buckets[bucketNumber] = level.provider() - } - level.buckets[bucketNumber].Add(observation) - } - } - ts.total.Add(observation) -} - -// mergePendingUpdates applies the pending updates into all levels. -func (ts *timeSeries) mergePendingUpdates() { - if ts.dirty { - ts.mergeValue(ts.pending, ts.pendingTime) - ts.pending = ts.resetObservation(ts.pending) - ts.dirty = false - } -} - -// advance cycles the buckets at each level until the latest bucket in -// each level can hold the time specified. -func (ts *timeSeries) advance(t time.Time) { - if !t.After(ts.levels[0].end) { - return - } - for i := 0; i < len(ts.levels); i++ { - level := ts.levels[i] - if !level.end.Before(t) { - break - } - - // If the time is sufficiently far, just clear the level and advance - // directly. - if !t.Before(level.end.Add(level.size * time.Duration(ts.numBuckets))) { - for _, b := range level.buckets { - ts.resetObservation(b) - } - level.end = time.Unix(0, (t.UnixNano()/level.size.Nanoseconds())*level.size.Nanoseconds()) - } - - for t.After(level.end) { - level.end = level.end.Add(level.size) - level.newest = level.oldest - level.oldest = (level.oldest + 1) % ts.numBuckets - ts.resetObservation(level.buckets[level.newest]) - } - - t = level.end - } -} - -// Latest returns the sum of the num latest buckets from the level. -func (ts *timeSeries) Latest(level, num int) Observable { - now := ts.clock.Time() - if ts.levels[0].end.Before(now) { - ts.advance(now) - } - - ts.mergePendingUpdates() - - result := ts.provider() - l := ts.levels[level] - index := l.newest - - for i := 0; i < num; i++ { - if l.buckets[index] != nil { - result.Add(l.buckets[index]) - } - if index == 0 { - index = ts.numBuckets - } - index-- - } - - return result -} - -// LatestBuckets returns a copy of the num latest buckets from level. -func (ts *timeSeries) LatestBuckets(level, num int) []Observable { - if level < 0 || level > len(ts.levels) { - log.Print("timeseries: bad level argument: ", level) - return nil - } - if num < 0 || num >= ts.numBuckets { - log.Print("timeseries: bad num argument: ", num) - return nil - } - - results := make([]Observable, num) - now := ts.clock.Time() - if ts.levels[0].end.Before(now) { - ts.advance(now) - } - - ts.mergePendingUpdates() - - l := ts.levels[level] - index := l.newest - - for i := 0; i < num; i++ { - result := ts.provider() - results[i] = result - if l.buckets[index] != nil { - result.CopyFrom(l.buckets[index]) - } - - if index == 0 { - index = ts.numBuckets - } - index -= 1 - } - return results -} - -// ScaleBy updates observations by scaling by factor. -func (ts *timeSeries) ScaleBy(factor float64) { - for _, l := range ts.levels { - for i := 0; i < ts.numBuckets; i++ { - l.buckets[i].Multiply(factor) - } - } - - ts.total.Multiply(factor) - ts.pending.Multiply(factor) -} - -// Range returns the sum of observations added over the specified time range. -// If start or finish times don't fall on bucket boundaries of the same -// level, then return values are approximate answers. -func (ts *timeSeries) Range(start, finish time.Time) Observable { - return ts.ComputeRange(start, finish, 1)[0] -} - -// Recent returns the sum of observations from the last delta. -func (ts *timeSeries) Recent(delta time.Duration) Observable { - now := ts.clock.Time() - return ts.Range(now.Add(-delta), now) -} - -// Total returns the total of all observations. -func (ts *timeSeries) Total() Observable { - ts.mergePendingUpdates() - return ts.total -} - -// ComputeRange computes a specified number of values into a slice using -// the observations recorded over the specified time period. The return -// values are approximate if the start or finish times don't fall on the -// bucket boundaries at the same level or if the number of buckets spanning -// the range is not an integral multiple of num. -func (ts *timeSeries) ComputeRange(start, finish time.Time, num int) []Observable { - if start.After(finish) { - log.Printf("timeseries: start > finish, %v>%v", start, finish) - return nil - } - - if num < 0 { - log.Printf("timeseries: num < 0, %v", num) - return nil - } - - results := make([]Observable, num) - - for _, l := range ts.levels { - if !start.Before(l.end.Add(-l.size * time.Duration(ts.numBuckets))) { - ts.extract(l, start, finish, num, results) - return results - } - } - - // Failed to find a level that covers the desired range. So just - // extract from the last level, even if it doesn't cover the entire - // desired range. - ts.extract(ts.levels[len(ts.levels)-1], start, finish, num, results) - - return results -} - -// RecentList returns the specified number of values in slice over the most -// recent time period of the specified range. -func (ts *timeSeries) RecentList(delta time.Duration, num int) []Observable { - if delta < 0 { - return nil - } - now := ts.clock.Time() - return ts.ComputeRange(now.Add(-delta), now, num) -} - -// extract returns a slice of specified number of observations from a given -// level over a given range. -func (ts *timeSeries) extract(l *tsLevel, start, finish time.Time, num int, results []Observable) { - ts.mergePendingUpdates() - - srcInterval := l.size - dstInterval := finish.Sub(start) / time.Duration(num) - dstStart := start - srcStart := l.end.Add(-srcInterval * time.Duration(ts.numBuckets)) - - srcIndex := 0 - - // Where should scanning start? - if dstStart.After(srcStart) { - advance := dstStart.Sub(srcStart) / srcInterval - srcIndex += int(advance) - srcStart = srcStart.Add(advance * srcInterval) - } - - // The i'th value is computed as show below. - // interval = (finish/start)/num - // i'th value = sum of observation in range - // [ start + i * interval, - // start + (i + 1) * interval ) - for i := 0; i < num; i++ { - results[i] = ts.resetObservation(results[i]) - dstEnd := dstStart.Add(dstInterval) - for srcIndex < ts.numBuckets && srcStart.Before(dstEnd) { - srcEnd := srcStart.Add(srcInterval) - if srcEnd.After(ts.lastAdd) { - srcEnd = ts.lastAdd - } - - if !srcEnd.Before(dstStart) { - srcValue := l.buckets[(srcIndex+l.oldest)%ts.numBuckets] - if !srcStart.Before(dstStart) && !srcEnd.After(dstEnd) { - // dst completely contains src. - if srcValue != nil { - results[i].Add(srcValue) - } - } else { - // dst partially overlaps src. - overlapStart := maxTime(srcStart, dstStart) - overlapEnd := minTime(srcEnd, dstEnd) - base := srcEnd.Sub(srcStart) - fraction := overlapEnd.Sub(overlapStart).Seconds() / base.Seconds() - - used := ts.provider() - if srcValue != nil { - used.CopyFrom(srcValue) - } - used.Multiply(fraction) - results[i].Add(used) - } - - if srcEnd.After(dstEnd) { - break - } - } - srcIndex++ - srcStart = srcStart.Add(srcInterval) - } - dstStart = dstStart.Add(dstInterval) - } -} - -// resetObservation clears the content so the struct may be reused. -func (ts *timeSeries) resetObservation(observation Observable) Observable { - if observation == nil { - observation = ts.provider() - } else { - observation.Clear() - } - return observation -} - -// TimeSeries tracks data at granularities from 1 second to 16 weeks. -type TimeSeries struct { - timeSeries -} - -// NewTimeSeries creates a new TimeSeries using the function provided for creating new Observable. -func NewTimeSeries(f func() Observable) *TimeSeries { - return NewTimeSeriesWithClock(f, defaultClockInstance) -} - -// NewTimeSeriesWithClock creates a new TimeSeries using the function provided for creating new Observable and the clock for -// assigning timestamps. -func NewTimeSeriesWithClock(f func() Observable, clock Clock) *TimeSeries { - ts := new(TimeSeries) - ts.timeSeries.init(timeSeriesResolutions, f, timeSeriesNumBuckets, clock) - return ts -} - -// MinuteHourSeries tracks data at granularities of 1 minute and 1 hour. -type MinuteHourSeries struct { - timeSeries -} - -// NewMinuteHourSeries creates a new MinuteHourSeries using the function provided for creating new Observable. -func NewMinuteHourSeries(f func() Observable) *MinuteHourSeries { - return NewMinuteHourSeriesWithClock(f, defaultClockInstance) -} - -// NewMinuteHourSeriesWithClock creates a new MinuteHourSeries using the function provided for creating new Observable and the clock for -// assigning timestamps. -func NewMinuteHourSeriesWithClock(f func() Observable, clock Clock) *MinuteHourSeries { - ts := new(MinuteHourSeries) - ts.timeSeries.init(minuteHourSeriesResolutions, f, - minuteHourSeriesNumBuckets, clock) - return ts -} - -func (ts *MinuteHourSeries) Minute() Observable { - return ts.timeSeries.Latest(0, 60) -} - -func (ts *MinuteHourSeries) Hour() Observable { - return ts.timeSeries.Latest(1, 60) -} - -func minTime(a, b time.Time) time.Time { - if a.Before(b) { - return a - } - return b -} - -func maxTime(a, b time.Time) time.Time { - if a.After(b) { - return a - } - return b -} |