diff options
Diffstat (limited to 'vendor/gopkg.in/square/go-jose.v2/asymmetric.go')
-rw-r--r-- | vendor/gopkg.in/square/go-jose.v2/asymmetric.go | 591 |
1 files changed, 0 insertions, 591 deletions
diff --git a/vendor/gopkg.in/square/go-jose.v2/asymmetric.go b/vendor/gopkg.in/square/go-jose.v2/asymmetric.go deleted file mode 100644 index 15e9d11a2..000000000 --- a/vendor/gopkg.in/square/go-jose.v2/asymmetric.go +++ /dev/null @@ -1,591 +0,0 @@ -/*- - * Copyright 2014 Square Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package jose - -import ( - "crypto" - "crypto/aes" - "crypto/ecdsa" - "crypto/rand" - "crypto/rsa" - "crypto/sha1" - "crypto/sha256" - "errors" - "fmt" - "math/big" - - "golang.org/x/crypto/ed25519" - "gopkg.in/square/go-jose.v2/cipher" - "gopkg.in/square/go-jose.v2/json" -) - -// A generic RSA-based encrypter/verifier -type rsaEncrypterVerifier struct { - publicKey *rsa.PublicKey -} - -// A generic RSA-based decrypter/signer -type rsaDecrypterSigner struct { - privateKey *rsa.PrivateKey -} - -// A generic EC-based encrypter/verifier -type ecEncrypterVerifier struct { - publicKey *ecdsa.PublicKey -} - -type edEncrypterVerifier struct { - publicKey ed25519.PublicKey -} - -// A key generator for ECDH-ES -type ecKeyGenerator struct { - size int - algID string - publicKey *ecdsa.PublicKey -} - -// A generic EC-based decrypter/signer -type ecDecrypterSigner struct { - privateKey *ecdsa.PrivateKey -} - -type edDecrypterSigner struct { - privateKey ed25519.PrivateKey -} - -// newRSARecipient creates recipientKeyInfo based on the given key. -func newRSARecipient(keyAlg KeyAlgorithm, publicKey *rsa.PublicKey) (recipientKeyInfo, error) { - // Verify that key management algorithm is supported by this encrypter - switch keyAlg { - case RSA1_5, RSA_OAEP, RSA_OAEP_256: - default: - return recipientKeyInfo{}, ErrUnsupportedAlgorithm - } - - if publicKey == nil { - return recipientKeyInfo{}, errors.New("invalid public key") - } - - return recipientKeyInfo{ - keyAlg: keyAlg, - keyEncrypter: &rsaEncrypterVerifier{ - publicKey: publicKey, - }, - }, nil -} - -// newRSASigner creates a recipientSigInfo based on the given key. -func newRSASigner(sigAlg SignatureAlgorithm, privateKey *rsa.PrivateKey) (recipientSigInfo, error) { - // Verify that key management algorithm is supported by this encrypter - switch sigAlg { - case RS256, RS384, RS512, PS256, PS384, PS512: - default: - return recipientSigInfo{}, ErrUnsupportedAlgorithm - } - - if privateKey == nil { - return recipientSigInfo{}, errors.New("invalid private key") - } - - return recipientSigInfo{ - sigAlg: sigAlg, - publicKey: &JSONWebKey{ - Key: &privateKey.PublicKey, - }, - signer: &rsaDecrypterSigner{ - privateKey: privateKey, - }, - }, nil -} - -func newEd25519Signer(sigAlg SignatureAlgorithm, privateKey ed25519.PrivateKey) (recipientSigInfo, error) { - if sigAlg != EdDSA { - return recipientSigInfo{}, ErrUnsupportedAlgorithm - } - - if privateKey == nil { - return recipientSigInfo{}, errors.New("invalid private key") - } - return recipientSigInfo{ - sigAlg: sigAlg, - publicKey: &JSONWebKey{ - Key: privateKey.Public(), - }, - signer: &edDecrypterSigner{ - privateKey: privateKey, - }, - }, nil -} - -// newECDHRecipient creates recipientKeyInfo based on the given key. -func newECDHRecipient(keyAlg KeyAlgorithm, publicKey *ecdsa.PublicKey) (recipientKeyInfo, error) { - // Verify that key management algorithm is supported by this encrypter - switch keyAlg { - case ECDH_ES, ECDH_ES_A128KW, ECDH_ES_A192KW, ECDH_ES_A256KW: - default: - return recipientKeyInfo{}, ErrUnsupportedAlgorithm - } - - if publicKey == nil || !publicKey.Curve.IsOnCurve(publicKey.X, publicKey.Y) { - return recipientKeyInfo{}, errors.New("invalid public key") - } - - return recipientKeyInfo{ - keyAlg: keyAlg, - keyEncrypter: &ecEncrypterVerifier{ - publicKey: publicKey, - }, - }, nil -} - -// newECDSASigner creates a recipientSigInfo based on the given key. -func newECDSASigner(sigAlg SignatureAlgorithm, privateKey *ecdsa.PrivateKey) (recipientSigInfo, error) { - // Verify that key management algorithm is supported by this encrypter - switch sigAlg { - case ES256, ES384, ES512: - default: - return recipientSigInfo{}, ErrUnsupportedAlgorithm - } - - if privateKey == nil { - return recipientSigInfo{}, errors.New("invalid private key") - } - - return recipientSigInfo{ - sigAlg: sigAlg, - publicKey: &JSONWebKey{ - Key: &privateKey.PublicKey, - }, - signer: &ecDecrypterSigner{ - privateKey: privateKey, - }, - }, nil -} - -// Encrypt the given payload and update the object. -func (ctx rsaEncrypterVerifier) encryptKey(cek []byte, alg KeyAlgorithm) (recipientInfo, error) { - encryptedKey, err := ctx.encrypt(cek, alg) - if err != nil { - return recipientInfo{}, err - } - - return recipientInfo{ - encryptedKey: encryptedKey, - header: &rawHeader{}, - }, nil -} - -// Encrypt the given payload. Based on the key encryption algorithm, -// this will either use RSA-PKCS1v1.5 or RSA-OAEP (with SHA-1 or SHA-256). -func (ctx rsaEncrypterVerifier) encrypt(cek []byte, alg KeyAlgorithm) ([]byte, error) { - switch alg { - case RSA1_5: - return rsa.EncryptPKCS1v15(randReader, ctx.publicKey, cek) - case RSA_OAEP: - return rsa.EncryptOAEP(sha1.New(), randReader, ctx.publicKey, cek, []byte{}) - case RSA_OAEP_256: - return rsa.EncryptOAEP(sha256.New(), randReader, ctx.publicKey, cek, []byte{}) - } - - return nil, ErrUnsupportedAlgorithm -} - -// Decrypt the given payload and return the content encryption key. -func (ctx rsaDecrypterSigner) decryptKey(headers rawHeader, recipient *recipientInfo, generator keyGenerator) ([]byte, error) { - return ctx.decrypt(recipient.encryptedKey, headers.getAlgorithm(), generator) -} - -// Decrypt the given payload. Based on the key encryption algorithm, -// this will either use RSA-PKCS1v1.5 or RSA-OAEP (with SHA-1 or SHA-256). -func (ctx rsaDecrypterSigner) decrypt(jek []byte, alg KeyAlgorithm, generator keyGenerator) ([]byte, error) { - // Note: The random reader on decrypt operations is only used for blinding, - // so stubbing is meanlingless (hence the direct use of rand.Reader). - switch alg { - case RSA1_5: - defer func() { - // DecryptPKCS1v15SessionKey sometimes panics on an invalid payload - // because of an index out of bounds error, which we want to ignore. - // This has been fixed in Go 1.3.1 (released 2014/08/13), the recover() - // only exists for preventing crashes with unpatched versions. - // See: https://groups.google.com/forum/#!topic/golang-dev/7ihX6Y6kx9k - // See: https://code.google.com/p/go/source/detail?r=58ee390ff31602edb66af41ed10901ec95904d33 - _ = recover() - }() - - // Perform some input validation. - keyBytes := ctx.privateKey.PublicKey.N.BitLen() / 8 - if keyBytes != len(jek) { - // Input size is incorrect, the encrypted payload should always match - // the size of the public modulus (e.g. using a 2048 bit key will - // produce 256 bytes of output). Reject this since it's invalid input. - return nil, ErrCryptoFailure - } - - cek, _, err := generator.genKey() - if err != nil { - return nil, ErrCryptoFailure - } - - // When decrypting an RSA-PKCS1v1.5 payload, we must take precautions to - // prevent chosen-ciphertext attacks as described in RFC 3218, "Preventing - // the Million Message Attack on Cryptographic Message Syntax". We are - // therefore deliberately ignoring errors here. - _ = rsa.DecryptPKCS1v15SessionKey(rand.Reader, ctx.privateKey, jek, cek) - - return cek, nil - case RSA_OAEP: - // Use rand.Reader for RSA blinding - return rsa.DecryptOAEP(sha1.New(), rand.Reader, ctx.privateKey, jek, []byte{}) - case RSA_OAEP_256: - // Use rand.Reader for RSA blinding - return rsa.DecryptOAEP(sha256.New(), rand.Reader, ctx.privateKey, jek, []byte{}) - } - - return nil, ErrUnsupportedAlgorithm -} - -// Sign the given payload -func (ctx rsaDecrypterSigner) signPayload(payload []byte, alg SignatureAlgorithm) (Signature, error) { - var hash crypto.Hash - - switch alg { - case RS256, PS256: - hash = crypto.SHA256 - case RS384, PS384: - hash = crypto.SHA384 - case RS512, PS512: - hash = crypto.SHA512 - default: - return Signature{}, ErrUnsupportedAlgorithm - } - - hasher := hash.New() - - // According to documentation, Write() on hash never fails - _, _ = hasher.Write(payload) - hashed := hasher.Sum(nil) - - var out []byte - var err error - - switch alg { - case RS256, RS384, RS512: - out, err = rsa.SignPKCS1v15(randReader, ctx.privateKey, hash, hashed) - case PS256, PS384, PS512: - out, err = rsa.SignPSS(randReader, ctx.privateKey, hash, hashed, &rsa.PSSOptions{ - SaltLength: rsa.PSSSaltLengthAuto, - }) - } - - if err != nil { - return Signature{}, err - } - - return Signature{ - Signature: out, - protected: &rawHeader{}, - }, nil -} - -// Verify the given payload -func (ctx rsaEncrypterVerifier) verifyPayload(payload []byte, signature []byte, alg SignatureAlgorithm) error { - var hash crypto.Hash - - switch alg { - case RS256, PS256: - hash = crypto.SHA256 - case RS384, PS384: - hash = crypto.SHA384 - case RS512, PS512: - hash = crypto.SHA512 - default: - return ErrUnsupportedAlgorithm - } - - hasher := hash.New() - - // According to documentation, Write() on hash never fails - _, _ = hasher.Write(payload) - hashed := hasher.Sum(nil) - - switch alg { - case RS256, RS384, RS512: - return rsa.VerifyPKCS1v15(ctx.publicKey, hash, hashed, signature) - case PS256, PS384, PS512: - return rsa.VerifyPSS(ctx.publicKey, hash, hashed, signature, nil) - } - - return ErrUnsupportedAlgorithm -} - -// Encrypt the given payload and update the object. -func (ctx ecEncrypterVerifier) encryptKey(cek []byte, alg KeyAlgorithm) (recipientInfo, error) { - switch alg { - case ECDH_ES: - // ECDH-ES mode doesn't wrap a key, the shared secret is used directly as the key. - return recipientInfo{ - header: &rawHeader{}, - }, nil - case ECDH_ES_A128KW, ECDH_ES_A192KW, ECDH_ES_A256KW: - default: - return recipientInfo{}, ErrUnsupportedAlgorithm - } - - generator := ecKeyGenerator{ - algID: string(alg), - publicKey: ctx.publicKey, - } - - switch alg { - case ECDH_ES_A128KW: - generator.size = 16 - case ECDH_ES_A192KW: - generator.size = 24 - case ECDH_ES_A256KW: - generator.size = 32 - } - - kek, header, err := generator.genKey() - if err != nil { - return recipientInfo{}, err - } - - block, err := aes.NewCipher(kek) - if err != nil { - return recipientInfo{}, err - } - - jek, err := josecipher.KeyWrap(block, cek) - if err != nil { - return recipientInfo{}, err - } - - return recipientInfo{ - encryptedKey: jek, - header: &header, - }, nil -} - -// Get key size for EC key generator -func (ctx ecKeyGenerator) keySize() int { - return ctx.size -} - -// Get a content encryption key for ECDH-ES -func (ctx ecKeyGenerator) genKey() ([]byte, rawHeader, error) { - priv, err := ecdsa.GenerateKey(ctx.publicKey.Curve, randReader) - if err != nil { - return nil, rawHeader{}, err - } - - out := josecipher.DeriveECDHES(ctx.algID, []byte{}, []byte{}, priv, ctx.publicKey, ctx.size) - - b, err := json.Marshal(&JSONWebKey{ - Key: &priv.PublicKey, - }) - if err != nil { - return nil, nil, err - } - - headers := rawHeader{ - headerEPK: makeRawMessage(b), - } - - return out, headers, nil -} - -// Decrypt the given payload and return the content encryption key. -func (ctx ecDecrypterSigner) decryptKey(headers rawHeader, recipient *recipientInfo, generator keyGenerator) ([]byte, error) { - epk, err := headers.getEPK() - if err != nil { - return nil, errors.New("square/go-jose: invalid epk header") - } - if epk == nil { - return nil, errors.New("square/go-jose: missing epk header") - } - - publicKey, ok := epk.Key.(*ecdsa.PublicKey) - if publicKey == nil || !ok { - return nil, errors.New("square/go-jose: invalid epk header") - } - - if !ctx.privateKey.Curve.IsOnCurve(publicKey.X, publicKey.Y) { - return nil, errors.New("square/go-jose: invalid public key in epk header") - } - - apuData, err := headers.getAPU() - if err != nil { - return nil, errors.New("square/go-jose: invalid apu header") - } - apvData, err := headers.getAPV() - if err != nil { - return nil, errors.New("square/go-jose: invalid apv header") - } - - deriveKey := func(algID string, size int) []byte { - return josecipher.DeriveECDHES(algID, apuData.bytes(), apvData.bytes(), ctx.privateKey, publicKey, size) - } - - var keySize int - - algorithm := headers.getAlgorithm() - switch algorithm { - case ECDH_ES: - // ECDH-ES uses direct key agreement, no key unwrapping necessary. - return deriveKey(string(headers.getEncryption()), generator.keySize()), nil - case ECDH_ES_A128KW: - keySize = 16 - case ECDH_ES_A192KW: - keySize = 24 - case ECDH_ES_A256KW: - keySize = 32 - default: - return nil, ErrUnsupportedAlgorithm - } - - key := deriveKey(string(algorithm), keySize) - block, err := aes.NewCipher(key) - if err != nil { - return nil, err - } - - return josecipher.KeyUnwrap(block, recipient.encryptedKey) -} -func (ctx edDecrypterSigner) signPayload(payload []byte, alg SignatureAlgorithm) (Signature, error) { - if alg != EdDSA { - return Signature{}, ErrUnsupportedAlgorithm - } - - sig, err := ctx.privateKey.Sign(randReader, payload, crypto.Hash(0)) - if err != nil { - return Signature{}, err - } - - return Signature{ - Signature: sig, - protected: &rawHeader{}, - }, nil -} - -func (ctx edEncrypterVerifier) verifyPayload(payload []byte, signature []byte, alg SignatureAlgorithm) error { - if alg != EdDSA { - return ErrUnsupportedAlgorithm - } - ok := ed25519.Verify(ctx.publicKey, payload, signature) - if !ok { - return errors.New("square/go-jose: ed25519 signature failed to verify") - } - return nil -} - -// Sign the given payload -func (ctx ecDecrypterSigner) signPayload(payload []byte, alg SignatureAlgorithm) (Signature, error) { - var expectedBitSize int - var hash crypto.Hash - - switch alg { - case ES256: - expectedBitSize = 256 - hash = crypto.SHA256 - case ES384: - expectedBitSize = 384 - hash = crypto.SHA384 - case ES512: - expectedBitSize = 521 - hash = crypto.SHA512 - } - - curveBits := ctx.privateKey.Curve.Params().BitSize - if expectedBitSize != curveBits { - return Signature{}, fmt.Errorf("square/go-jose: expected %d bit key, got %d bits instead", expectedBitSize, curveBits) - } - - hasher := hash.New() - - // According to documentation, Write() on hash never fails - _, _ = hasher.Write(payload) - hashed := hasher.Sum(nil) - - r, s, err := ecdsa.Sign(randReader, ctx.privateKey, hashed) - if err != nil { - return Signature{}, err - } - - keyBytes := curveBits / 8 - if curveBits%8 > 0 { - keyBytes++ - } - - // We serialize the outpus (r and s) into big-endian byte arrays and pad - // them with zeros on the left to make sure the sizes work out. Both arrays - // must be keyBytes long, and the output must be 2*keyBytes long. - rBytes := r.Bytes() - rBytesPadded := make([]byte, keyBytes) - copy(rBytesPadded[keyBytes-len(rBytes):], rBytes) - - sBytes := s.Bytes() - sBytesPadded := make([]byte, keyBytes) - copy(sBytesPadded[keyBytes-len(sBytes):], sBytes) - - out := append(rBytesPadded, sBytesPadded...) - - return Signature{ - Signature: out, - protected: &rawHeader{}, - }, nil -} - -// Verify the given payload -func (ctx ecEncrypterVerifier) verifyPayload(payload []byte, signature []byte, alg SignatureAlgorithm) error { - var keySize int - var hash crypto.Hash - - switch alg { - case ES256: - keySize = 32 - hash = crypto.SHA256 - case ES384: - keySize = 48 - hash = crypto.SHA384 - case ES512: - keySize = 66 - hash = crypto.SHA512 - default: - return ErrUnsupportedAlgorithm - } - - if len(signature) != 2*keySize { - return fmt.Errorf("square/go-jose: invalid signature size, have %d bytes, wanted %d", len(signature), 2*keySize) - } - - hasher := hash.New() - - // According to documentation, Write() on hash never fails - _, _ = hasher.Write(payload) - hashed := hasher.Sum(nil) - - r := big.NewInt(0).SetBytes(signature[:keySize]) - s := big.NewInt(0).SetBytes(signature[keySize:]) - - match := ecdsa.Verify(ctx.publicKey, hashed, r, s) - if !match { - return errors.New("square/go-jose: ecdsa signature failed to verify") - } - - return nil -} |