![PODMAN logo](../../logo/podman-logo-source.svg) # Cirrus-CI Similar to other integrated github CI/CD services, Cirrus utilizes a simple YAML-based configuration/description file: ``.cirrus.yml``. Ref: https://cirrus-ci.org/ ## Workflow All tasks execute in parallel, unless there are conditions or dependencies which alter this behavior. Within each task, each script executes in sequence, so long as any previous script exited successfully. The overall state of each task (pass or fail) is set based on the exit status of the last script to execute. ### ``gating`` Task ***N/B: Steps below are performed by automation*** 1. Launch a purpose-built container in Cirrus's community cluster. For container image details, please see [the contributors guide](https://github.com/containers/libpod/blob/master/CONTRIBUTING.md#go-format-and-lint). 3. ``validate``: Perform standard `make validate` source verification, Should run for less than a minute or two. 4. ``lint``: Execute regular `make lint` to check for any code cruft. Should also run for less than a few minutes. 5. ``vendor``: runs `make vendor` followed by `./hack/tree_status.sh` to check whether the git tree is clean. The reasoning for that is to make sure that the vendor.conf, the code and the vendored packages in ./vendor are in sync at all times. ### ``meta`` Task ***N/B: Steps below are performed by automation*** 1. Launch a container built from definition in ``./contrib/imgts``. 2. Update VM Image metadata to help track usage across all automation. 4. Always exits successfully unless there's a major problem. ### ``testing`` Task ***N/B: Steps below are performed by automation*** 1. After `gating` passes, spin up one VM per `matrix: image_name` item. Once accessible, ``ssh`` into each VM as the `root` user. 2. ``setup_environment.sh``: Configure root's `.bash_profile` for all subsequent scripts (each run in a new shell). Any distribution-specific environment variables are also defined here. For example, setting tags/flags to use compiling. 5. ``integration_test.sh``: Execute integration-testing. This is much more involved, and relies on access to external resources like container images and code from other repositories. Total execution time is capped at 2-hours (includes all the above) but this script normally completes in less than an hour. ### ``special_testing`` Task This task exercises podman under specialized environments or conditions. The specific differences from the ``testing`` task depend upon the contents of the ``$SPECIALMODE`` environment variable. | Value | Meaning | | rootless | Setup a regular user to build/run integration tests. | | in_podman | Setup a container image, build/run integration tests inside container | ***N/B: Steps below are performed by automation*** 1. After `gating` passes, spin up one VM per `matrix: image_name` item. 2. ``setup_environment.sh``: Mostly the same as in ``testing`` task, then specialized depending on ``$SPECIALMODE``. 3. Which tests and how they execute depends on ``$SPECIALMODE``. ### ``optional_testing`` Task ***N/B: Steps below are performed by automation*** 1. Optionally executes in parallel with ``testing``. Requires **prior** to job-start, the magic string ``***CIRRUS: SYSTEM TEST***`` is found in the pull-request *description*. The *description* is the first text-box under the main *summary* line in the github WebUI. 2. ``setup_environment.sh``: Same as for other tasks. 3. ``system_test.sh``: Build both dependencies and libpod, install them, then execute `make localsystem` from the repository root. ### ``test_build_cache_images_task`` Task Modifying the contents of cache-images is tested by making changes to one or more of the ``./contrib/cirrus/packer/*_setup.sh`` files. Then in the PR description, add the magic string: ``***CIRRUS: TEST IMAGES***`` ***N/B: Steps below are performed by automation*** 1. ``setup_environment.sh``: Same as for other tasks. 2. ``build_vm_images.sh``: Utilize [the packer tool](http://packer.io/docs/) to produce new VM images. Create a new VM from each base-image, connect to them with ``ssh``, and perform the steps as defined by the ``$PACKER_BASE/libpod_images.yml`` file: 1. On a base-image VM, as root, copy the current state of the repository into ``/tmp/libpod``. 2. Execute distribution-specific scripts to prepare the image for use. For example, ``fedora_setup.sh``. 3. If successful, shut down each VM and record the names, and dates into a json manifest file. 4. Move the manifest file, into a google storage bucket object. This is a retained as a secondary method for tracking/auditing creation of VM images, should it ever be needed. ***Manual Steps:*** In order to utilize built images, their names must be upated in ``.cirrus.yml``. For example, if the image ``blah-1234`` was produced above: ```yaml env: #### #### Cache-image names to test with ### BLAH_CACHE_IMAGE_NAME: "blah-1234" ``` A new pull-request with that change, will run tasks utilizing that image. ### ``test_built_images`` Task Only runs following successful ``test_build_cache_images_task`` task. Uses images following the standard naming format, with execution of the 'gate', 'testing' and 'rootless_testing' scripts. Validating the images suitability for wide-spread use. ### ``cache_images`` Task Exactly the same as ``test_build_cache_images_task`` task, but only runs on the master branch. Requires a magic string to be in the `HEAD` commit message: ``***CIRRUS: BUILD IMAGES***`` When successful, the manifest file along with all VM disks, are moved into a dedicated google storage bucket, separate from the one used by `test_build_cache_images_task`. These may be used to create new cache-images for PR testing by manually importing them as described above. ### Base-images Base-images are VM disk-images specially prepared for executing as GCE VMs. In particular, they run services on startup similar in purpose/function as the standard 'cloud-init' services. * The google services are required for full support of ssh-key management and GCE OAuth capabilities. Google provides native images in GCE with services pre-installed, for many platforms. For example, RHEL, CentOS, and Ubuntu. * Google does ***not*** provide any images for Fedora or Fedora Atomic Host (as of 11/2018), nor do they provide a base-image prepared to run packer for creating other images in the ``build_vm_images`` Task (above). * Base images do not need to be produced often, but doing so completely manually would be time-consuming and error-prone. Therefor a special semi-automatic *Makefile* target is provided to assist with producing all the base-images: ``libpod_base_images`` To produce new base-images, including an `image-builder-image` (used by the ``cache_images`` Task) some input parameters are required: * ``GCP_PROJECT_ID``: The complete GCP project ID string e.g. foobar-12345 identifying where the images will be stored. * ``GOOGLE_APPLICATION_CREDENTIALS``: A *JSON* file containing credentials for a GCE service account. This can be [a service account](https://cloud.google.com/docs/authentication/production#obtaining_and_providing_service_account_credentials_manually) or [end-user credentials](https://cloud.google.com/docs/authentication/end-user#creating_your_client_credentials) * ``RHEL_IMAGE_FILE`` and ``RHEL_CSUM_FILE`` complete paths to a `rhel-server-ec2-*.raw.xz` and it's cooresponding checksum file. These must be supplied manually because they're not available directly via URL like other images. * ``RHSM_COMMAND`` contains the complete string needed to register the VM for installing package dependencies. The VM will be de-registered upon completion. * Optionally, CSV's may be specified to ``PACKER_BUILDS`` to limit the base-images produced. For example, ``PACKER_BUILDS=fedora,image-builder-image``. If there is an existing 'image-builder-image' within GCE, it may be utilized to produce base-images (in addition to cache-images). However it must be created with support for nested-virtualization, and with elevated cloud privileges (to access GCE, from within the GCE VM). For example: ``` $ alias pgcloud='sudo podman run -it --rm -e AS_ID=$UID -e AS_USER=$USER -v $HOME:$HOME:z quay.io/cevich/gcloud_centos:latest' $ URL=https://www.googleapis.com/auth $ SCOPES=$URL/userinfo.email,$URL/compute,$URL/devstorage.full_control # The --min-cpu-platform is critical for nested-virt. $ pgcloud compute instances create $USER-making-images \ --image-family image-builder-image \ --boot-disk-size "200GB" \ --min-cpu-platform "Intel Haswell" \ --machine-type n1-standard-2 \ --scopes $SCOPES ``` Alternatively, if there is no image-builder-image available yet, a bare-metal CentOS 7 machine with network access to GCE is required. Software dependencies can be obtained from the ``packer/image-builder-image_base_setup.sh`` script. In both cases, the following can be used to setup and build base-images. ``` $ IP_ADDRESS=1.2.3.4 # EXTERNAL_IP from command output above $ rsync -av $PWD centos@$IP_ADDRESS:. $ scp $GOOGLE_APPLICATION_CREDENTIALS centos@$IP_ADDRESS:. $ ssh centos@$IP_ADDRESS ... ``` When ready, change to the ``packer`` sub-directory, and build the images: ``` $ cd libpod/contrib/cirrus/packer $ make libpod_base_images GCP_PROJECT_ID= \ GOOGLE_APPLICATION_CREDENTIALS= \ RHEL_IMAGE_FILE= \ RHEL_CSUM_FILE= \ RHSM_COMMAND= \ PACKER_BUILDS= ``` Assuming this is successful (hence the semi-automatic part), packer will produce a ``packer-manifest.json`` output file. This contains the base-image names suitable for updating in ``.cirrus.yml``, `env` keys ``*_BASE_IMAGE``. On failure, it should be possible to determine the problem from the packer output. Sometimes that means setting `PACKER_LOG=1` and troubleshooting the nested virt calls. It's also possible to observe the (nested) qemu-kvm console output. Simply set the ``TTYDEV`` parameter, for example: ``` $ make libpod_base_images ... TTYDEV=$(tty) ... ```