package toml import ( "fmt" "strconv" "strings" "time" "unicode/utf8" "github.com/BurntSushi/toml/internal" ) type parser struct { lx *lexer context Key // Full key for the current hash in scope. currentKey string // Base key name for everything except hashes. pos Position // Current position in the TOML file. ordered []Key // List of keys in the order that they appear in the TOML data. mapping map[string]interface{} // Map keyname → key value. types map[string]tomlType // Map keyname → TOML type. implicits map[string]struct{} // Record implicit keys (e.g. "key.group.names"). } func parse(data string) (p *parser, err error) { defer func() { if r := recover(); r != nil { if pErr, ok := r.(ParseError); ok { pErr.input = data err = pErr return } panic(r) } }() // Read over BOM; do this here as the lexer calls utf8.DecodeRuneInString() // which mangles stuff. if strings.HasPrefix(data, "\xff\xfe") || strings.HasPrefix(data, "\xfe\xff") { data = data[2:] } // Examine first few bytes for NULL bytes; this probably means it's a UTF-16 // file (second byte in surrogate pair being NULL). Again, do this here to // avoid having to deal with UTF-8/16 stuff in the lexer. ex := 6 if len(data) < 6 { ex = len(data) } if i := strings.IndexRune(data[:ex], 0); i > -1 { return nil, ParseError{ Message: "files cannot contain NULL bytes; probably using UTF-16; TOML files must be UTF-8", Position: Position{Line: 1, Start: i, Len: 1}, Line: 1, input: data, } } p = &parser{ mapping: make(map[string]interface{}), types: make(map[string]tomlType), lx: lex(data), ordered: make([]Key, 0), implicits: make(map[string]struct{}), } for { item := p.next() if item.typ == itemEOF { break } p.topLevel(item) } return p, nil } func (p *parser) panicItemf(it item, format string, v ...interface{}) { panic(ParseError{ Message: fmt.Sprintf(format, v...), Position: it.pos, Line: it.pos.Len, LastKey: p.current(), }) } func (p *parser) panicf(format string, v ...interface{}) { panic(ParseError{ Message: fmt.Sprintf(format, v...), Position: p.pos, Line: p.pos.Line, LastKey: p.current(), }) } func (p *parser) next() item { it := p.lx.nextItem() //fmt.Printf("ITEM %-18s line %-3d │ %q\n", it.typ, it.line, it.val) if it.typ == itemError { if it.err != nil { panic(ParseError{ Position: it.pos, Line: it.pos.Line, LastKey: p.current(), err: it.err, }) } p.panicItemf(it, "%s", it.val) } return it } func (p *parser) nextPos() item { it := p.next() p.pos = it.pos return it } func (p *parser) bug(format string, v ...interface{}) { panic(fmt.Sprintf("BUG: "+format+"\n\n", v...)) } func (p *parser) expect(typ itemType) item { it := p.next() p.assertEqual(typ, it.typ) return it } func (p *parser) assertEqual(expected, got itemType) { if expected != got { p.bug("Expected '%s' but got '%s'.", expected, got) } } func (p *parser) topLevel(item item) { switch item.typ { case itemCommentStart: // # .. p.expect(itemText) case itemTableStart: // [ .. ] name := p.nextPos() var key Key for ; name.typ != itemTableEnd && name.typ != itemEOF; name = p.next() { key = append(key, p.keyString(name)) } p.assertEqual(itemTableEnd, name.typ) p.addContext(key, false) p.setType("", tomlHash) p.ordered = append(p.ordered, key) case itemArrayTableStart: // [[ .. ]] name := p.nextPos() var key Key for ; name.typ != itemArrayTableEnd && name.typ != itemEOF; name = p.next() { key = append(key, p.keyString(name)) } p.assertEqual(itemArrayTableEnd, name.typ) p.addContext(key, true) p.setType("", tomlArrayHash) p.ordered = append(p.ordered, key) case itemKeyStart: // key = .. outerContext := p.context /// Read all the key parts (e.g. 'a' and 'b' in 'a.b') k := p.nextPos() var key Key for ; k.typ != itemKeyEnd && k.typ != itemEOF; k = p.next() { key = append(key, p.keyString(k)) } p.assertEqual(itemKeyEnd, k.typ) /// The current key is the last part. p.currentKey = key[len(key)-1] /// All the other parts (if any) are the context; need to set each part /// as implicit. context := key[:len(key)-1] for i := range context { p.addImplicitContext(append(p.context, context[i:i+1]...)) } /// Set value. val, typ := p.value(p.next(), false) p.set(p.currentKey, val, typ) p.ordered = append(p.ordered, p.context.add(p.currentKey)) /// Remove the context we added (preserving any context from [tbl] lines). p.context = outerContext p.currentKey = "" default: p.bug("Unexpected type at top level: %s", item.typ) } } // Gets a string for a key (or part of a key in a table name). func (p *parser) keyString(it item) string { switch it.typ { case itemText: return it.val case itemString, itemMultilineString, itemRawString, itemRawMultilineString: s, _ := p.value(it, false) return s.(string) default: p.bug("Unexpected key type: %s", it.typ) } panic("unreachable") } var datetimeRepl = strings.NewReplacer( "z", "Z", "t", "T", " ", "T") // value translates an expected value from the lexer into a Go value wrapped // as an empty interface. func (p *parser) value(it item, parentIsArray bool) (interface{}, tomlType) { switch it.typ { case itemString: return p.replaceEscapes(it, it.val), p.typeOfPrimitive(it) case itemMultilineString: return p.replaceEscapes(it, stripFirstNewline(p.stripEscapedNewlines(it.val))), p.typeOfPrimitive(it) case itemRawString: return it.val, p.typeOfPrimitive(it) case itemRawMultilineString: return stripFirstNewline(it.val), p.typeOfPrimitive(it) case itemInteger: return p.valueInteger(it) case itemFloat: return p.valueFloat(it) case itemBool: switch it.val { case "true": return true, p.typeOfPrimitive(it) case "false": return false, p.typeOfPrimitive(it) default: p.bug("Expected boolean value, but got '%s'.", it.val) } case itemDatetime: return p.valueDatetime(it) case itemArray: return p.valueArray(it) case itemInlineTableStart: return p.valueInlineTable(it, parentIsArray) default: p.bug("Unexpected value type: %s", it.typ) } panic("unreachable") } func (p *parser) valueInteger(it item) (interface{}, tomlType) { if !numUnderscoresOK(it.val) { p.panicItemf(it, "Invalid integer %q: underscores must be surrounded by digits", it.val) } if numHasLeadingZero(it.val) { p.panicItemf(it, "Invalid integer %q: cannot have leading zeroes", it.val) } num, err := strconv.ParseInt(it.val, 0, 64) if err != nil { // Distinguish integer values. Normally, it'd be a bug if the lexer // provides an invalid integer, but it's possible that the number is // out of range of valid values (which the lexer cannot determine). // So mark the former as a bug but the latter as a legitimate user // error. if e, ok := err.(*strconv.NumError); ok && e.Err == strconv.ErrRange { p.panicItemf(it, "Integer '%s' is out of the range of 64-bit signed integers.", it.val) } else { p.bug("Expected integer value, but got '%s'.", it.val) } } return num, p.typeOfPrimitive(it) } func (p *parser) valueFloat(it item) (interface{}, tomlType) { parts := strings.FieldsFunc(it.val, func(r rune) bool { switch r { case '.', 'e', 'E': return true } return false }) for _, part := range parts { if !numUnderscoresOK(part) { p.panicItemf(it, "Invalid float %q: underscores must be surrounded by digits", it.val) } } if len(parts) > 0 && numHasLeadingZero(parts[0]) { p.panicItemf(it, "Invalid float %q: cannot have leading zeroes", it.val) } if !numPeriodsOK(it.val) { // As a special case, numbers like '123.' or '1.e2', // which are valid as far as Go/strconv are concerned, // must be rejected because TOML says that a fractional // part consists of '.' followed by 1+ digits. p.panicItemf(it, "Invalid float %q: '.' must be followed by one or more digits", it.val) } val := strings.Replace(it.val, "_", "", -1) if val == "+nan" || val == "-nan" { // Go doesn't support this, but TOML spec does. val = "nan" } num, err := strconv.ParseFloat(val, 64) if err != nil { if e, ok := err.(*strconv.NumError); ok && e.Err == strconv.ErrRange { p.panicItemf(it, "Float '%s' is out of the range of 64-bit IEEE-754 floating-point numbers.", it.val) } else { p.panicItemf(it, "Invalid float value: %q", it.val) } } return num, p.typeOfPrimitive(it) } var dtTypes = []struct { fmt string zone *time.Location }{ {time.RFC3339Nano, time.Local}, {"2006-01-02T15:04:05.999999999", internal.LocalDatetime}, {"2006-01-02", internal.LocalDate}, {"15:04:05.999999999", internal.LocalTime}, } func (p *parser) valueDatetime(it item) (interface{}, tomlType) { it.val = datetimeRepl.Replace(it.val) var ( t time.Time ok bool err error ) for _, dt := range dtTypes { t, err = time.ParseInLocation(dt.fmt, it.val, dt.zone) if err == nil { ok = true break } } if !ok { p.panicItemf(it, "Invalid TOML Datetime: %q.", it.val) } return t, p.typeOfPrimitive(it) } func (p *parser) valueArray(it item) (interface{}, tomlType) { p.setType(p.currentKey, tomlArray) // p.setType(p.currentKey, typ) var ( types []tomlType // Initialize to a non-nil empty slice. This makes it consistent with // how S = [] decodes into a non-nil slice inside something like struct // { S []string }. See #338 array = []interface{}{} ) for it = p.next(); it.typ != itemArrayEnd; it = p.next() { if it.typ == itemCommentStart { p.expect(itemText) continue } val, typ := p.value(it, true) array = append(array, val) types = append(types, typ) // XXX: types isn't used here, we need it to record the accurate type // information. // // Not entirely sure how to best store this; could use "key[0]", // "key[1]" notation, or maybe store it on the Array type? } return array, tomlArray } func (p *parser) valueInlineTable(it item, parentIsArray bool) (interface{}, tomlType) { var ( hash = make(map[string]interface{}) outerContext = p.context outerKey = p.currentKey ) p.context = append(p.context, p.currentKey) prevContext := p.context p.currentKey = "" p.addImplicit(p.context) p.addContext(p.context, parentIsArray) /// Loop over all table key/value pairs. for it := p.next(); it.typ != itemInlineTableEnd; it = p.next() { if it.typ == itemCommentStart { p.expect(itemText) continue } /// Read all key parts. k := p.nextPos() var key Key for ; k.typ != itemKeyEnd && k.typ != itemEOF; k = p.next() { key = append(key, p.keyString(k)) } p.assertEqual(itemKeyEnd, k.typ) /// The current key is the last part. p.currentKey = key[len(key)-1] /// All the other parts (if any) are the context; need to set each part /// as implicit. context := key[:len(key)-1] for i := range context { p.addImplicitContext(append(p.context, context[i:i+1]...)) } /// Set the value. val, typ := p.value(p.next(), false) p.set(p.currentKey, val, typ) p.ordered = append(p.ordered, p.context.add(p.currentKey)) hash[p.currentKey] = val /// Restore context. p.context = prevContext } p.context = outerContext p.currentKey = outerKey return hash, tomlHash } // numHasLeadingZero checks if this number has leading zeroes, allowing for '0', // +/- signs, and base prefixes. func numHasLeadingZero(s string) bool { if len(s) > 1 && s[0] == '0' && !(s[1] == 'b' || s[1] == 'o' || s[1] == 'x') { // Allow 0b, 0o, 0x return true } if len(s) > 2 && (s[0] == '-' || s[0] == '+') && s[1] == '0' { return true } return false } // numUnderscoresOK checks whether each underscore in s is surrounded by // characters that are not underscores. func numUnderscoresOK(s string) bool { switch s { case "nan", "+nan", "-nan", "inf", "-inf", "+inf": return true } accept := false for _, r := range s { if r == '_' { if !accept { return false } } // isHexadecimal is a superset of all the permissable characters // surrounding an underscore. accept = isHexadecimal(r) } return accept } // numPeriodsOK checks whether every period in s is followed by a digit. func numPeriodsOK(s string) bool { period := false for _, r := range s { if period && !isDigit(r) { return false } period = r == '.' } return !period } // Set the current context of the parser, where the context is either a hash or // an array of hashes, depending on the value of the `array` parameter. // // Establishing the context also makes sure that the key isn't a duplicate, and // will create implicit hashes automatically. func (p *parser) addContext(key Key, array bool) { var ok bool // Always start at the top level and drill down for our context. hashContext := p.mapping keyContext := make(Key, 0) // We only need implicit hashes for key[0:-1] for _, k := range key[0 : len(key)-1] { _, ok = hashContext[k] keyContext = append(keyContext, k) // No key? Make an implicit hash and move on. if !ok { p.addImplicit(keyContext) hashContext[k] = make(map[string]interface{}) } // If the hash context is actually an array of tables, then set // the hash context to the last element in that array. // // Otherwise, it better be a table, since this MUST be a key group (by // virtue of it not being the last element in a key). switch t := hashContext[k].(type) { case []map[string]interface{}: hashContext = t[len(t)-1] case map[string]interface{}: hashContext = t default: p.panicf("Key '%s' was already created as a hash.", keyContext) } } p.context = keyContext if array { // If this is the first element for this array, then allocate a new // list of tables for it. k := key[len(key)-1] if _, ok := hashContext[k]; !ok { hashContext[k] = make([]map[string]interface{}, 0, 4) } // Add a new table. But make sure the key hasn't already been used // for something else. if hash, ok := hashContext[k].([]map[string]interface{}); ok { hashContext[k] = append(hash, make(map[string]interface{})) } else { p.panicf("Key '%s' was already created and cannot be used as an array.", key) } } else { p.setValue(key[len(key)-1], make(map[string]interface{})) } p.context = append(p.context, key[len(key)-1]) } // set calls setValue and setType. func (p *parser) set(key string, val interface{}, typ tomlType) { p.setValue(key, val) p.setType(key, typ) } // setValue sets the given key to the given value in the current context. // It will make sure that the key hasn't already been defined, account for // implicit key groups. func (p *parser) setValue(key string, value interface{}) { var ( tmpHash interface{} ok bool hash = p.mapping keyContext Key ) for _, k := range p.context { keyContext = append(keyContext, k) if tmpHash, ok = hash[k]; !ok { p.bug("Context for key '%s' has not been established.", keyContext) } switch t := tmpHash.(type) { case []map[string]interface{}: // The context is a table of hashes. Pick the most recent table // defined as the current hash. hash = t[len(t)-1] case map[string]interface{}: hash = t default: p.panicf("Key '%s' has already been defined.", keyContext) } } keyContext = append(keyContext, key) if _, ok := hash[key]; ok { // Normally redefining keys isn't allowed, but the key could have been // defined implicitly and it's allowed to be redefined concretely. (See // the `valid/implicit-and-explicit-after.toml` in toml-test) // // But we have to make sure to stop marking it as an implicit. (So that // another redefinition provokes an error.) // // Note that since it has already been defined (as a hash), we don't // want to overwrite it. So our business is done. if p.isArray(keyContext) { p.removeImplicit(keyContext) hash[key] = value return } if p.isImplicit(keyContext) { p.removeImplicit(keyContext) return } // Otherwise, we have a concrete key trying to override a previous // key, which is *always* wrong. p.panicf("Key '%s' has already been defined.", keyContext) } hash[key] = value } // setType sets the type of a particular value at a given key. It should be // called immediately AFTER setValue. // // Note that if `key` is empty, then the type given will be applied to the // current context (which is either a table or an array of tables). func (p *parser) setType(key string, typ tomlType) { keyContext := make(Key, 0, len(p.context)+1) keyContext = append(keyContext, p.context...) if len(key) > 0 { // allow type setting for hashes keyContext = append(keyContext, key) } // Special case to make empty keys ("" = 1) work. // Without it it will set "" rather than `""`. // TODO: why is this needed? And why is this only needed here? if len(keyContext) == 0 { keyContext = Key{""} } p.types[keyContext.String()] = typ } // Implicit keys need to be created when tables are implied in "a.b.c.d = 1" and // "[a.b.c]" (the "a", "b", and "c" hashes are never created explicitly). func (p *parser) addImplicit(key Key) { p.implicits[key.String()] = struct{}{} } func (p *parser) removeImplicit(key Key) { delete(p.implicits, key.String()) } func (p *parser) isImplicit(key Key) bool { _, ok := p.implicits[key.String()]; return ok } func (p *parser) isArray(key Key) bool { return p.types[key.String()] == tomlArray } func (p *parser) addImplicitContext(key Key) { p.addImplicit(key) p.addContext(key, false) } // current returns the full key name of the current context. func (p *parser) current() string { if len(p.currentKey) == 0 { return p.context.String() } if len(p.context) == 0 { return p.currentKey } return fmt.Sprintf("%s.%s", p.context, p.currentKey) } func stripFirstNewline(s string) string { if len(s) > 0 && s[0] == '\n' { return s[1:] } if len(s) > 1 && s[0] == '\r' && s[1] == '\n' { return s[2:] } return s } // Remove newlines inside triple-quoted strings if a line ends with "\". func (p *parser) stripEscapedNewlines(s string) string { split := strings.Split(s, "\n") if len(split) < 1 { return s } escNL := false // Keep track of the last non-blank line was escaped. for i, line := range split { line = strings.TrimRight(line, " \t\r") if len(line) == 0 || line[len(line)-1] != '\\' { split[i] = strings.TrimRight(split[i], "\r") if !escNL && i != len(split)-1 { split[i] += "\n" } continue } escBS := true for j := len(line) - 1; j >= 0 && line[j] == '\\'; j-- { escBS = !escBS } if escNL { line = strings.TrimLeft(line, " \t\r") } escNL = !escBS if escBS { split[i] += "\n" continue } if i == len(split)-1 { p.panicf("invalid escape: '\\ '") } split[i] = line[:len(line)-1] // Remove \ if len(split)-1 > i { split[i+1] = strings.TrimLeft(split[i+1], " \t\r") } } return strings.Join(split, "") } func (p *parser) replaceEscapes(it item, str string) string { replaced := make([]rune, 0, len(str)) s := []byte(str) r := 0 for r < len(s) { if s[r] != '\\' { c, size := utf8.DecodeRune(s[r:]) r += size replaced = append(replaced, c) continue } r += 1 if r >= len(s) { p.bug("Escape sequence at end of string.") return "" } switch s[r] { default: p.bug("Expected valid escape code after \\, but got %q.", s[r]) return "" case ' ', '\t': p.panicItemf(it, "invalid escape: '\\%c'", s[r]) return "" case 'b': replaced = append(replaced, rune(0x0008)) r += 1 case 't': replaced = append(replaced, rune(0x0009)) r += 1 case 'n': replaced = append(replaced, rune(0x000A)) r += 1 case 'f': replaced = append(replaced, rune(0x000C)) r += 1 case 'r': replaced = append(replaced, rune(0x000D)) r += 1 case '"': replaced = append(replaced, rune(0x0022)) r += 1 case '\\': replaced = append(replaced, rune(0x005C)) r += 1 case 'u': // At this point, we know we have a Unicode escape of the form // `uXXXX` at [r, r+5). (Because the lexer guarantees this // for us.) escaped := p.asciiEscapeToUnicode(it, s[r+1:r+5]) replaced = append(replaced, escaped) r += 5 case 'U': // At this point, we know we have a Unicode escape of the form // `uXXXX` at [r, r+9). (Because the lexer guarantees this // for us.) escaped := p.asciiEscapeToUnicode(it, s[r+1:r+9]) replaced = append(replaced, escaped) r += 9 } } return string(replaced) } func (p *parser) asciiEscapeToUnicode(it item, bs []byte) rune { s := string(bs) hex, err := strconv.ParseUint(strings.ToLower(s), 16, 32) if err != nil { p.bug("Could not parse '%s' as a hexadecimal number, but the lexer claims it's OK: %s", s, err) } if !utf8.ValidRune(rune(hex)) { p.panicItemf(it, "Escaped character '\\u%s' is not valid UTF-8.", s) } return rune(hex) }