// Copyright 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package intervalset provides an abtraction for dealing with sets of // 1-dimensional spans, such as sets of time ranges. The Set type provides set // arithmetic and enumeration methods based on an Interval interface. // // DISCLAIMER: This library is not yet stable, so expect breaking changes. package intervalset import ( "fmt" "sort" "strings" ) // Interval is the interface for a continuous or discrete span. The interval is // assumed to be inclusive of the starting point and exclusive of the ending // point. // // All methods in the interface are non-destructive: Calls to the methods should // not modify the interval. Furthermore, the implementation assumes an interval // will not be mutated by user code, either. type Interval interface { // Intersect returns the intersection of an interval with another // interval. The function may panic if the other interval is incompatible. Intersect(Interval) Interval // Before returns true if the interval is completely before another interval. Before(Interval) bool // IsZero returns true for the zero value of an interval. IsZero() bool // Bisect returns two intervals, one on the lower side of x and one on the // upper side of x, corresponding to the subtraction of x from the original // interval. The returned intervals are always within the range of the // original interval. Bisect(x Interval) (Interval, Interval) // Adjoin returns the union of two intervals, if the intervals are exactly // adjacent, or the zero interval if they are not. Adjoin(Interval) Interval // Encompass returns an interval that covers the exact extents of two // intervals. Encompass(Interval) Interval } // Set is a set of interval objects used for type Set struct { //non-overlapping intervals intervals []Interval // factory is needed when the extents of the empty set are needed. factory intervalFactory } // SetInput is an interface implemented by Set and ImmutableSet. It is used when // one of these types type must take a set as an argument. type SetInput interface { // Extent returns the Interval defined by the minimum and maximum values of // the set. Extent() Interval // IntervalsBetween iterates over the intervals within extents set and calls f // with each. If f returns false, iteration ceases. // // Any interval within the set that overlaps partially with extents is truncated // before being passed to f. IntervalsBetween(extents Interval, f IntervalReceiver) } // NewSet returns a new set given a sorted slice of intervals. This function // panics if the intervals are not sorted. func NewSet(intervals []Interval) *Set { return NewSetV1(intervals, oldBehaviorFactory.makeZero) } // NewSetV1 returns a new set given a sorted slice of intervals. This function // panics if the intervals are not sorted. // // NewSetV1 will be renamed and will replace NewSet in the v1 release. func NewSetV1(intervals []Interval, makeZero func() Interval) *Set { if err := CheckSorted(intervals); err != nil { panic(err) } return &Set{intervals, makeIntervalFactor(makeZero)} } // CheckSorted checks that interval[i+1] is not before interval[i] for all // relevant elements of the input slice. Nil is returned when len(intervals) is // 0 or 1. func CheckSorted(intervals []Interval) error { for i := 0; i < len(intervals)-1; i++ { if !intervals[i].Before(intervals[i+1]) { return fmt.Errorf("!intervals[%d].Before(intervals[%d]) for %s, %s", i, i+1, intervals[i], intervals[i+1]) } } return nil } // Empty returns a new, empty set of intervals. func Empty() *Set { return EmptyV1(oldBehaviorFactory.makeZero) } // EmptyV1 returns a new, empty set of intervals using the semantics of the V1 // API, which will require a factory method for construction of an empty interval. func EmptyV1(makeZero func() Interval) *Set { return &Set{nil, makeIntervalFactor(makeZero)} } // Copy returns a copy of a set that may be mutated without affecting the original. func (s *Set) Copy() *Set { return &Set{append([]Interval(nil), s.intervals...), s.factory} } // String returns a human-friendly representation of the set. func (s *Set) String() string { var strs []string for _, x := range s.intervals { strs = append(strs, fmt.Sprintf("%s", x)) } return fmt.Sprintf("{%s}", strings.Join(strs, ", ")) } // Extent returns the Interval defined by the minimum and maximum values of the // set. func (s *Set) Extent() Interval { if len(s.intervals) == 0 { return s.factory.makeZero() } return s.intervals[0].Encompass(s.intervals[len(s.intervals)-1]) } // Add adds all the elements of another set to this set. func (s *Set) Add(b SetInput) { // Deal with nil extent. See https://github.com/google/go-intervals/issues/6. bExtent := b.Extent() if bExtent == nil { return // no changes needed } // Loop through the intervals of x b.IntervalsBetween(bExtent, func(x Interval) bool { s.insert(x) return true }) } // Contains reports whether an interval is entirely contained by the set. func (s *Set) Contains(ival Interval) bool { // Loop through the intervals of x next := s.iterator(ival, true) for setInterval := next(); setInterval != nil; setInterval = next() { left, right := ival.Bisect(setInterval) if !left.IsZero() { return false } ival = right } return ival.IsZero() } // adjoinOrAppend adds an interval to the end of intervals unless that value // directly adjoins the last element of intervals, in which case the last // element will be replaced by the adjoined interval. func adjoinOrAppend(intervals []Interval, x Interval) []Interval { lastIndex := len(intervals) - 1 if lastIndex == -1 { return append(intervals, x) } adjoined := intervals[lastIndex].Adjoin(x) if adjoined.IsZero() { return append(intervals, x) } intervals[lastIndex] = adjoined return intervals } func (s *Set) insert(insertion Interval) { if s.Contains(insertion) { return } // TODO(reddaly): Something like Java's ArrayList would allow both O(log(n)) // insertion and O(log(n)) lookup. For now, we have O(log(n)) lookup and O(n) // insertion. var newIntervals []Interval push := func(x Interval) { newIntervals = adjoinOrAppend(newIntervals, x) } inserted := false for _, x := range s.intervals { if inserted { push(x) continue } if insertion.Before(x) { push(insertion) push(x) inserted = true continue } // [===left===)[==x===)[===right===) left, right := insertion.Bisect(x) if !left.IsZero() { push(left) } push(x) // Replace the interval being inserted with the remaining portion of the // interval to be inserted. if right.IsZero() { inserted = true } else { insertion = right } } if !inserted { push(insertion) } s.intervals = newIntervals } // Sub destructively modifies the set by subtracting b. func (s *Set) Sub(b SetInput) { extent := s.Extent() // Deal with nil extent. See https://github.com/google/go-intervals/issues/6. if extent == nil { // Set is already empty, no changes necessary. return } var newIntervals []Interval push := func(x Interval) { newIntervals = adjoinOrAppend(newIntervals, x) } nextX := s.iterator(extent, true) nextY, cancel := setIntervalIterator(b, extent) defer cancel() x := nextX() y := nextY() for x != nil { // If y == nil, all of the remaining intervals in A are to the right of B, // so just yield them. if y == nil { push(x) x = nextX() continue } // Split x into parts left and right of y. // The diagrams below show the bisection results for various situations. // if left.IsZero() && !right.IsZero() // xxx // y1y1 y2y2 y3 y4y4 // xxx // or // xxxxxxxxxxxx // y1y1 y2y2 y3 y4y4 // // if !left.IsZero() && !right.IsZero() // x1x1x1x1x1 // y1 y2 // // if left.IsZero() && right.IsZero() // x1x1x1x1 x2x2x2 // y1y1y1y1y1y1y1 // // if !left.IsZero() && right.IsZero() // x1x1 x2 // y1y1y1y1 left, right := x.Bisect(y) // If the left side of x is non-zero, it can definitely be pushed to the // resulting interval set since no subsequent y value will intersect it. // The sequences look something like // x1x1x1x1x1 OR x1x1x1 x2 // y1 y2 y1y1y1 // left = x1x1 x1x1x1 // right = x1x1 {zero} if !left.IsZero() { push(left) } if !right.IsZero() { // If the right side of x is non-zero: // 1) Right is the remaining portion of x that needs to be pushed. x = right // 2) It's not possible for current y to intersect it, so advance y. It's // possible nextY() will intersect it, so don't push yet. y = nextY() } else { // There's nothing left of x to push, so advance x. x = nextX() } } // Setting s.intervals is the only side effect in this function. s.intervals = newIntervals } // intersectionIterator returns a function that yields intervals that are // members of the intersection of s and b, in increasing order. func (s *Set) intersectionIterator(b SetInput) (iter func() Interval, cancel func()) { return intervalMapperToIterator(func(f IntervalReceiver) { sExtent, bExtent := s.Extent(), b.Extent() // Deal with nil extent. See https://github.com/google/go-intervals/issues/6. if sExtent == nil || bExtent == nil { // IF either set is already empty, the intersection is empty. This // voids a panic below where a valid Interval is needed for each // extent. return } nextX := s.iterator(bExtent, true) nextY, cancel := setIntervalIterator(b, sExtent) defer cancel() x := nextX() y := nextY() // Loop through corresponding intervals of S and B. // If y == nil, all of the remaining intervals in S are to the right of B. // If x == nil, all of the remaining intervals in B are to the right of S. for x != nil && y != nil { if x.Before(y) { x = nextX() continue } if y.Before(x) { y = nextY() continue } xyIntersect := x.Intersect(y) if !xyIntersect.IsZero() { if !f(xyIntersect) { return } _, right := x.Bisect(y) if !right.IsZero() { x = right } else { x = nextX() } } } }) } // Intersect destructively modifies the set by intersectin it with b. func (s *Set) Intersect(b SetInput) { iter, cancel := s.intersectionIterator(b) defer cancel() var newIntervals []Interval for x := iter(); x != nil; x = iter() { newIntervals = append(newIntervals, x) } s.intervals = newIntervals } // searchLow returns the first index in s.intervals that is not before x. func (s *Set) searchLow(x Interval) int { return sort.Search(len(s.intervals), func(i int) bool { return !s.intervals[i].Before(x) }) } // searchLow returns the index of the first interval in s.intervals that is // entirely after x. func (s *Set) searchHigh(x Interval) int { return sort.Search(len(s.intervals), func(i int) bool { return x.Before(s.intervals[i]) }) } // iterator returns a function that yields elements of the set in order. // // The function returned will return nil when finished iterating. func (s *Set) iterator(extents Interval, forward bool) func() Interval { low, high := s.searchLow(extents), s.searchHigh(extents) i, stride := low, 1 if !forward { i, stride = high-1, -1 } return func() Interval { if i < 0 || i >= len(s.intervals) { return nil } x := s.intervals[i] i += stride return x } } // IntervalReceiver is a function used for iterating over a set of intervals. It // takes the start and end times and returns true if the iteration should // continue. type IntervalReceiver func(Interval) bool // IntervalsBetween iterates over the intervals within extents set and calls f // with each. If f returns false, iteration ceases. // // Any interval within the set that overlaps partially with extents is truncated // before being passed to f. func (s *Set) IntervalsBetween(extents Interval, f IntervalReceiver) { // Begin = first index in s.intervals that is not before extents. begin := sort.Search(len(s.intervals), func(i int) bool { return !s.intervals[i].Before(extents) }) // TODO(reddaly): Optimize this by performing a binary search for the ending // point. for _, interval := range s.intervals[begin:] { // If the interval is after the extents, there will be no more overlap, so // break out of the loop. if extents.Before(interval) { break } portionOfInterval := extents.Intersect(interval) if portionOfInterval.IsZero() { continue } if !f(portionOfInterval) { return } } } // Intervals iterates over all the intervals within the set and calls f with // each one. If f returns false, iteration ceases. func (s *Set) Intervals(f IntervalReceiver) { for _, interval := range s.intervals { if !f(interval) { return } } } // AllIntervals returns an ordered slice of all the intervals in the set. func (s *Set) AllIntervals() []Interval { return append(make([]Interval, 0, len(s.intervals)), s.intervals...) } // ImmutableSet returns an immutable copy of this set. func (s *Set) ImmutableSet() *ImmutableSet { return NewImmutableSet(s.AllIntervals()) } // mapFn reports true if an iteration should continue. It is called on values of // a collection. type mapFn func(interface{}) bool // mapFn calls mapFn for each member of a collection. type mapperFn func(mapFn) // iteratorFn returns the next item in an iteration or the zero value. The // second return value indicates whether the first return value is a member of // the collection. type iteratorFn func() (interface{}, bool) // generatorFn returns an iterator. type generatorFn func() iteratorFn // cancelFn should be called to clean up the goroutine that would otherwise leak. type cancelFn func() // mapperToIterator returns an iteratorFn version of a mappingFn. The second // return value must be called at the end of iteration, or the underlying // goroutine will leak. func mapperToIterator(m mapperFn) (iteratorFn, cancelFn) { generatedValues := make(chan interface{}, 1) stopCh := make(chan interface{}, 1) go func() { m(func(obj interface{}) bool { select { case <-stopCh: return false case generatedValues <- obj: return true } }) close(generatedValues) }() iter := func() (interface{}, bool) { value, ok := <-generatedValues return value, ok } return iter, func() { stopCh <- nil } } func intervalMapperToIterator(mapper func(IntervalReceiver)) (iter func() Interval, cancel func()) { genericMapper := func(m mapFn) { mapper(func(ival Interval) bool { return m(ival) }) } genericIter, cancel := mapperToIterator(genericMapper) return func() Interval { genericVal, iterationEnded := genericIter() if !iterationEnded { return nil } ival, ok := genericVal.(Interval) if !ok { panic("unexpected value type, internal error") } return ival }, cancel } func setIntervalIterator(s SetInput, extent Interval) (iter func() Interval, cancel func()) { return intervalMapperToIterator(func(f IntervalReceiver) { s.IntervalsBetween(extent, f) }) } // oldBehaviorFactory returns a nil interval. This was used before // construction of a Set/ImmutableSet required passing in a factory method for // creating a zero interval object. var oldBehaviorFactory = makeIntervalFactor(func() Interval { return nil }) // intervalFactory is used to construct a zero-value interval. The zero value // interval may be different for different types of intervals, so a factory is // sometimes needed to write generic algorithms about intervals. type intervalFactory struct { makeZero func() Interval } func makeIntervalFactor(makeZero func() Interval) intervalFactory { return intervalFactory{makeZero} }