1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
package shm
// #cgo LDFLAGS: -lrt -lpthread
// #include <stdlib.h>
// #include "shm_lock.h"
// const uint32_t bitmap_size_c = BITMAP_SIZE;
import "C"
import (
"runtime"
"syscall"
"unsafe"
"github.com/pkg/errors"
)
const (
BitmapSize uint32 = uint32(C.bitmap_size_c)
)
// SHMLocks is a struct enabling POSIX semaphore locking in a shared memory
// segment.
type SHMLocks struct { // nolint
lockStruct *C.shm_struct_t
maxLocks uint32
valid bool
}
// CreateSHMLock sets up a shared-memory segment holding a given number of POSIX
// semaphores, and returns a struct that can be used to operate on those locks.
// numLocks must not be 0, and may be rounded up to a multiple of the bitmap
// size used by the underlying implementation.
func CreateSHMLock(path string, numLocks uint32) (*SHMLocks, error) {
if numLocks == 0 {
return nil, errors.Wrapf(syscall.EINVAL, "number of locks must greater than 0 0")
}
locks := new(SHMLocks)
cPath := C.CString(path)
defer C.free(unsafe.Pointer(cPath))
var errCode C.int
lockStruct := C.setup_lock_shm(cPath, C.uint32_t(numLocks), &errCode)
if lockStruct == nil {
// We got a null pointer, so something errored
return nil, syscall.Errno(-1 * errCode)
}
locks.lockStruct = lockStruct
locks.maxLocks = uint32(lockStruct.num_locks)
locks.valid = true
return locks, nil
}
// OpenSHMLock opens an existing shared-memory segment holding a given number of
// POSIX semaphores. numLocks must match the number of locks the shared memory
// segment was created with.
func OpenSHMLock(path string, numLocks uint32) (*SHMLocks, error) {
if numLocks == 0 {
return nil, errors.Wrapf(syscall.EINVAL, "number of locks must greater than 0")
}
locks := new(SHMLocks)
cPath := C.CString(path)
defer C.free(unsafe.Pointer(cPath))
var errCode C.int
lockStruct := C.open_lock_shm(cPath, C.uint32_t(numLocks), &errCode)
if lockStruct == nil {
// We got a null pointer, so something errored
return nil, syscall.Errno(-1 * errCode)
}
locks.lockStruct = lockStruct
locks.maxLocks = numLocks
locks.valid = true
return locks, nil
}
// GetMaxLocks returns the maximum number of locks in the SHM
func (locks *SHMLocks) GetMaxLocks() uint32 {
return locks.maxLocks
}
// Close closes an existing shared-memory segment.
// The segment will be rendered unusable after closing.
// WARNING: If you Close() while there are still locks locked, these locks may
// fail to release, causing a program freeze.
// Close() is only intended to be used while testing the locks.
func (locks *SHMLocks) Close() error {
if !locks.valid {
return errors.Wrapf(syscall.EINVAL, "locks have already been closed")
}
locks.valid = false
retCode := C.close_lock_shm(locks.lockStruct)
if retCode < 0 {
// Negative errno returned
return syscall.Errno(-1 * retCode)
}
return nil
}
// AllocateSemaphore allocates a semaphore from a shared-memory segment for use
// by a container or pod.
// Returns the index of the semaphore that was allocated.
// Allocations past the maximum number of locks given when the SHM segment was
// created will result in an error, and no semaphore will be allocated.
func (locks *SHMLocks) AllocateSemaphore() (uint32, error) {
if !locks.valid {
return 0, errors.Wrapf(syscall.EINVAL, "locks have already been closed")
}
// This returns a U64, so we have the full u32 range available for
// semaphore indexes, and can still return error codes.
retCode := C.allocate_semaphore(locks.lockStruct)
if retCode < 0 {
// Negative errno returned
return 0, syscall.Errno(-1 * retCode)
}
return uint32(retCode), nil
}
// DeallocateSemaphore frees a semaphore in a shared-memory segment so it can be
// reallocated to another container or pod.
// The given semaphore must be already allocated, or an error will be returned.
func (locks *SHMLocks) DeallocateSemaphore(sem uint32) error {
if !locks.valid {
return errors.Wrapf(syscall.EINVAL, "locks have already been closed")
}
if sem > locks.maxLocks {
return errors.Wrapf(syscall.EINVAL, "given semaphore %d is higher than maximum locks count %d", sem, locks.maxLocks)
}
retCode := C.deallocate_semaphore(locks.lockStruct, C.uint32_t(sem))
if retCode < 0 {
// Negative errno returned
return syscall.Errno(-1 * retCode)
}
return nil
}
// LockSemaphore locks the given semaphore.
// If the semaphore is already locked, LockSemaphore will block until the lock
// can be acquired.
// There is no requirement that the given semaphore be allocated.
// This ensures that attempts to lock a container after it has been deleted,
// but before the caller has queried the database to determine this, will
// succeed.
func (locks *SHMLocks) LockSemaphore(sem uint32) error {
if !locks.valid {
return errors.Wrapf(syscall.EINVAL, "locks have already been closed")
}
if sem > locks.maxLocks {
return errors.Wrapf(syscall.EINVAL, "given semaphore %d is higher than maximum locks count %d", sem, locks.maxLocks)
}
// For pthread mutexes, we have to guarantee lock and unlock happen in
// the same thread.
runtime.LockOSThread()
retCode := C.lock_semaphore(locks.lockStruct, C.uint32_t(sem))
if retCode < 0 {
// Negative errno returned
return syscall.Errno(-1 * retCode)
}
return nil
}
// UnlockSemaphore unlocks the given semaphore.
// Unlocking a semaphore that is already unlocked with return EBUSY.
// There is no requirement that the given semaphore be allocated.
// This ensures that attempts to lock a container after it has been deleted,
// but before the caller has queried the database to determine this, will
// succeed.
func (locks *SHMLocks) UnlockSemaphore(sem uint32) error {
if !locks.valid {
return errors.Wrapf(syscall.EINVAL, "locks have already been closed")
}
if sem > locks.maxLocks {
return errors.Wrapf(syscall.EINVAL, "given semaphore %d is higher than maximum locks count %d", sem, locks.maxLocks)
}
retCode := C.unlock_semaphore(locks.lockStruct, C.uint32_t(sem))
if retCode < 0 {
// Negative errno returned
return syscall.Errno(-1 * retCode)
}
// For pthread mutexes, we have to guarantee lock and unlock happen in
// the same thread.
// OK if we take multiple locks - UnlockOSThread() won't actually unlock
// until the number of calls equals the number of calls to
// LockOSThread()
runtime.UnlockOSThread()
return nil
}
|