1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
package shm
import (
"fmt"
"os"
"runtime"
"syscall"
"testing"
"time"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
// All tests here are in the same process, which somewhat limits their utility
// The big intent of this package it multiprocess locking, which is really hard
// to test without actually having multiple processes...
// We can at least verify that the locks work within the local process.
var (
// 4 * BITMAP_SIZE to ensure we have to traverse bitmaps
numLocks = 4 * BitmapSize
)
const lockPath = "/libpod_test"
// We need a test main to ensure that the SHM is created before the tests run
func TestMain(m *testing.M) {
shmLock, err := CreateSHMLock(lockPath, numLocks)
if err != nil {
fmt.Fprintf(os.Stderr, "Error creating SHM for tests: %v\n", err)
os.Exit(-1)
}
// Close the SHM - every subsequent test will reopen
if err := shmLock.Close(); err != nil {
fmt.Fprintf(os.Stderr, "Error closing SHM locks: %v\n", err)
os.Exit(-1)
}
exitCode := m.Run()
// We need to remove the SHM segment to clean up after ourselves
os.RemoveAll("/dev/shm/libpod_lock")
os.Exit(exitCode)
}
func runLockTest(t *testing.T, testFunc func(*testing.T, *SHMLocks)) {
locks, err := OpenSHMLock(lockPath, numLocks)
if err != nil {
t.Fatalf("Error opening locks: %v", err)
}
defer func() {
// Deallocate all locks
// Ignore ENOENT (lock is not allocated)
var i uint32
for i = 0; i < numLocks; i++ {
if err := locks.DeallocateSemaphore(i); err != nil && err != syscall.ENOENT {
t.Fatalf("Error deallocating semaphore %d: %v", i, err)
}
}
if err := locks.Close(); err != nil {
t.Fatalf("Error closing locks: %v", err)
}
}()
success := t.Run("locks", func(t *testing.T) {
testFunc(t, locks)
})
if !success {
t.Fail()
}
}
// Test that creating an SHM with a bad size rounds up to a good size
func TestCreateNewSHMBadSizeRoundsUp(t *testing.T) {
// Odd number, not a power of 2, should never be a word size on a system
lock, err := CreateSHMLock("/test1", 7)
assert.NoError(t, err)
assert.Equal(t, lock.GetMaxLocks(), BitmapSize)
if err := lock.Close(); err != nil {
t.Fatalf("Error closing locks: %v", err)
}
}
// Test that creating an SHM with 0 size fails
func TestCreateNewSHMZeroSize(t *testing.T) {
_, err := CreateSHMLock("/test2", 0)
assert.Error(t, err)
}
// Test that deallocating an unallocated lock errors
func TestDeallocateUnallocatedLockErrors(t *testing.T) {
runLockTest(t, func(t *testing.T, locks *SHMLocks) {
err := locks.DeallocateSemaphore(0)
assert.Error(t, err)
})
}
// Test that unlocking an unlocked lock fails
func TestUnlockingUnlockedLockFails(t *testing.T) {
runLockTest(t, func(t *testing.T, locks *SHMLocks) {
err := locks.UnlockSemaphore(0)
assert.Error(t, err)
})
}
// Test that locking and double-unlocking fails
func TestDoubleUnlockFails(t *testing.T) {
runLockTest(t, func(t *testing.T, locks *SHMLocks) {
err := locks.LockSemaphore(0)
assert.NoError(t, err)
err = locks.UnlockSemaphore(0)
assert.NoError(t, err)
err = locks.UnlockSemaphore(0)
assert.Error(t, err)
})
}
// Test allocating - lock - unlock - deallocate cycle, single lock
func TestLockLifecycleSingleLock(t *testing.T) {
runLockTest(t, func(t *testing.T, locks *SHMLocks) {
sem, err := locks.AllocateSemaphore()
require.NoError(t, err)
err = locks.LockSemaphore(sem)
assert.NoError(t, err)
err = locks.UnlockSemaphore(sem)
assert.NoError(t, err)
err = locks.DeallocateSemaphore(sem)
assert.NoError(t, err)
})
}
// Test allocate two locks returns different locks
func TestAllocateTwoLocksGetsDifferentLocks(t *testing.T) {
runLockTest(t, func(t *testing.T, locks *SHMLocks) {
sem1, err := locks.AllocateSemaphore()
assert.NoError(t, err)
sem2, err := locks.AllocateSemaphore()
assert.NoError(t, err)
assert.NotEqual(t, sem1, sem2)
})
}
// Test allocate all locks successful and all are unique
func TestAllocateAllLocksSucceeds(t *testing.T) {
runLockTest(t, func(t *testing.T, locks *SHMLocks) {
sems := make(map[uint32]bool)
var i uint32
for i = 0; i < numLocks; i++ {
sem, err := locks.AllocateSemaphore()
assert.NoError(t, err)
// Ensure the allocate semaphore is unique
_, ok := sems[sem]
assert.False(t, ok)
sems[sem] = true
}
})
}
// Test allocating more than the given max fails
func TestAllocateTooManyLocksFails(t *testing.T) {
runLockTest(t, func(t *testing.T, locks *SHMLocks) {
// Allocate all locks
var i uint32
for i = 0; i < numLocks; i++ {
_, err := locks.AllocateSemaphore()
assert.NoError(t, err)
}
// Try and allocate one more
_, err := locks.AllocateSemaphore()
assert.Error(t, err)
})
}
// Test allocating max locks, deallocating one, and then allocating again succeeds
func TestAllocateDeallocateCycle(t *testing.T) {
runLockTest(t, func(t *testing.T, locks *SHMLocks) {
// Allocate all locks
var i uint32
for i = 0; i < numLocks; i++ {
_, err := locks.AllocateSemaphore()
assert.NoError(t, err)
}
// Now loop through again, deallocating and reallocating.
// Each time we free 1 semaphore, allocate again, and make sure
// we get the same semaphore back.
var j uint32
for j = 0; j < numLocks; j++ {
err := locks.DeallocateSemaphore(j)
assert.NoError(t, err)
newSem, err := locks.AllocateSemaphore()
assert.NoError(t, err)
assert.Equal(t, j, newSem)
}
})
}
// Test that locks actually lock
func TestLockSemaphoreActuallyLocks(t *testing.T) {
runLockTest(t, func(t *testing.T, locks *SHMLocks) {
// This entire test is very ugly - lots of sleeps to try and get
// things to occur in the right order.
// It also doesn't even exercise the multiprocess nature of the
// locks.
// Get the current time
startTime := time.Now()
// Start a goroutine to take the lock and then release it after
// a second.
go func() {
err := locks.LockSemaphore(0)
assert.NoError(t, err)
time.Sleep(1 * time.Second)
err = locks.UnlockSemaphore(0)
assert.NoError(t, err)
}()
// Sleep for a quarter of a second to give the goroutine time
// to kick off and grab the lock
time.Sleep(250 * time.Millisecond)
// Take the lock
err := locks.LockSemaphore(0)
assert.NoError(t, err)
// Get the current time
endTime := time.Now()
// Verify that at least 1 second has passed since start
duration := endTime.Sub(startTime)
assert.True(t, duration.Seconds() > 1.0)
})
}
// Test that locking and unlocking two semaphores succeeds
// Ensures that runtime.LockOSThread() is doing its job
func TestLockAndUnlockTwoSemaphore(t *testing.T) {
runLockTest(t, func(t *testing.T, locks *SHMLocks) {
err := locks.LockSemaphore(0)
assert.NoError(t, err)
err = locks.LockSemaphore(1)
assert.NoError(t, err)
err = locks.UnlockSemaphore(1)
assert.NoError(t, err)
// Now yield scheduling
// To try and get us on another OS thread
runtime.Gosched()
// And unlock the last semaphore
// If we are in a different OS thread, this should fail.
// However, runtime.UnlockOSThread() should guarantee we are not
err = locks.UnlockSemaphore(0)
assert.NoError(t, err)
})
}
|