1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!arm64 appengine !gc noasm
package snappy
func load32(b []byte, i int) uint32 {
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load64(b []byte, i int) uint64 {
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
// emitLiteral writes a literal chunk and returns the number of bytes written.
//
// It assumes that:
// dst is long enough to hold the encoded bytes
// 1 <= len(lit) && len(lit) <= 65536
func emitLiteral(dst, lit []byte) int {
i, n := 0, uint(len(lit)-1)
switch {
case n < 60:
dst[0] = uint8(n)<<2 | tagLiteral
i = 1
case n < 1<<8:
dst[0] = 60<<2 | tagLiteral
dst[1] = uint8(n)
i = 2
default:
dst[0] = 61<<2 | tagLiteral
dst[1] = uint8(n)
dst[2] = uint8(n >> 8)
i = 3
}
return i + copy(dst[i:], lit)
}
// emitCopy writes a copy chunk and returns the number of bytes written.
//
// It assumes that:
// dst is long enough to hold the encoded bytes
// 1 <= offset && offset <= 65535
// 4 <= length && length <= 65535
func emitCopy(dst []byte, offset, length int) int {
i := 0
// The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
// threshold for this loop is a little higher (at 68 = 64 + 4), and the
// length emitted down below is is a little lower (at 60 = 64 - 4), because
// it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
// by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
// a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
// 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
// tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
// encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
for length >= 68 {
// Emit a length 64 copy, encoded as 3 bytes.
dst[i+0] = 63<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
i += 3
length -= 64
}
if length > 64 {
// Emit a length 60 copy, encoded as 3 bytes.
dst[i+0] = 59<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
i += 3
length -= 60
}
if length >= 12 || offset >= 2048 {
// Emit the remaining copy, encoded as 3 bytes.
dst[i+0] = uint8(length-1)<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
return i + 3
}
// Emit the remaining copy, encoded as 2 bytes.
dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
dst[i+1] = uint8(offset)
return i + 2
}
// extendMatch returns the largest k such that k <= len(src) and that
// src[i:i+k-j] and src[j:k] have the same contents.
//
// It assumes that:
// 0 <= i && i < j && j <= len(src)
func extendMatch(src []byte, i, j int) int {
for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 {
}
return j
}
func hash(u, shift uint32) uint32 {
return (u * 0x1e35a7bd) >> shift
}
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
// len(dst) >= MaxEncodedLen(len(src)) &&
// minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
func encodeBlock(dst, src []byte) (d int) {
// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
// The table element type is uint16, as s < sLimit and sLimit < len(src)
// and len(src) <= maxBlockSize and maxBlockSize == 65536.
const (
maxTableSize = 1 << 14
// tableMask is redundant, but helps the compiler eliminate bounds
// checks.
tableMask = maxTableSize - 1
)
shift := uint32(32 - 8)
for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
shift--
}
// In Go, all array elements are zero-initialized, so there is no advantage
// to a smaller tableSize per se. However, it matches the C++ algorithm,
// and in the asm versions of this code, we can get away with zeroing only
// the first tableSize elements.
var table [maxTableSize]uint16
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
nextHash := hash(load32(src, s), shift)
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := 32
nextS := s
candidate := 0
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidate = int(table[nextHash&tableMask])
table[nextHash&tableMask] = uint16(s)
nextHash = hash(load32(src, nextS), shift)
if load32(src, s) == load32(src, candidate) {
break
}
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
d += emitLiteral(dst[d:], src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
base := s
// Extend the 4-byte match as long as possible.
//
// This is an inlined version of:
// s = extendMatch(src, candidate+4, s+4)
s += 4
for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
}
d += emitCopy(dst[d:], base-candidate, s-base)
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load64(src, s-1)
prevHash := hash(uint32(x>>0), shift)
table[prevHash&tableMask] = uint16(s - 1)
currHash := hash(uint32(x>>8), shift)
candidate = int(table[currHash&tableMask])
table[currHash&tableMask] = uint16(s)
if uint32(x>>8) != load32(src, candidate) {
nextHash = hash(uint32(x>>16), shift)
s++
break
}
}
}
emitRemainder:
if nextEmit < len(src) {
d += emitLiteral(dst[d:], src[nextEmit:])
}
return d
}
|