aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/ijc/Gotty/parser.go
blob: a9d5d23c5425d2f122be870d924e6a65c9cfdea3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// Copyright 2012 Neal van Veen. All rights reserved.
// Usage of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

package gotty

import (
	"bytes"
	"errors"
	"fmt"
	"regexp"
	"strconv"
	"strings"
)

var exp = [...]string{
	"%%",
	"%c",
	"%s",
	"%p(\\d)",
	"%P([A-z])",
	"%g([A-z])",
	"%'(.)'",
	"%{([0-9]+)}",
	"%l",
	"%\\+|%-|%\\*|%/|%m",
	"%&|%\\||%\\^",
	"%=|%>|%<",
	"%A|%O",
	"%!|%~",
	"%i",
	"%(:[\\ #\\-\\+]{0,4})?(\\d+\\.\\d+|\\d+)?[doxXs]",
	"%\\?(.*?);",
}

var regex *regexp.Regexp
var staticVar map[byte]stacker

// Parses the attribute that is received with name attr and parameters params.
func (term *TermInfo) Parse(attr string, params ...interface{}) (string, error) {
	// Get the attribute name first.
	iface, err := term.GetAttribute(attr)
	str, ok := iface.(string)
	if err != nil {
		return "", err
	}
	if !ok {
		return str, errors.New("Only string capabilities can be parsed.")
	}
	// Construct the hidden parser struct so we can use a recursive stack based
	// parser.
	ps := &parser{}
	// Dynamic variables only exist in this context.
	ps.dynamicVar = make(map[byte]stacker, 26)
	ps.parameters = make([]stacker, len(params))
	// Convert the parameters to insert them into the parser struct.
	for i, x := range params {
		ps.parameters[i] = x
	}
	// Recursively walk and return.
	result, err := ps.walk(str)
	return result, err
}

// Parses the attribute that is received with name attr and parameters params.
// Only works on full name of a capability that is given, which it uses to
// search for the termcap name.
func (term *TermInfo) ParseName(attr string, params ...interface{}) (string, error) {
	tc := GetTermcapName(attr)
	return term.Parse(tc, params)
}

// Identify each token in a stack based manner and do the actual parsing.
func (ps *parser) walk(attr string) (string, error) {
	// We use a buffer to get the modified string.
	var buf bytes.Buffer
	// Next, find and identify all tokens by their indices and strings.
	tokens := regex.FindAllStringSubmatch(attr, -1)
	if len(tokens) == 0 {
		return attr, nil
	}
	indices := regex.FindAllStringIndex(attr, -1)
	q := 0 // q counts the matches of one token
	// Iterate through the string per character.
	for i := 0; i < len(attr); i++ {
		// If the current position is an identified token, execute the following
		// steps.
		if q < len(indices) && i >= indices[q][0] && i < indices[q][1] {
			// Switch on token.
			switch {
			case tokens[q][0][:2] == "%%":
				// Literal percentage character.
				buf.WriteByte('%')
			case tokens[q][0][:2] == "%c":
				// Pop a character.
				c, err := ps.st.pop()
				if err != nil {
					return buf.String(), err
				}
				buf.WriteByte(c.(byte))
			case tokens[q][0][:2] == "%s":
				// Pop a string.
				str, err := ps.st.pop()
				if err != nil {
					return buf.String(), err
				}
				if _, ok := str.(string); !ok {
					return buf.String(), errors.New("Stack head is not a string")
				}
				buf.WriteString(str.(string))
			case tokens[q][0][:2] == "%p":
				// Push a parameter on the stack.
				index, err := strconv.ParseInt(tokens[q][1], 10, 8)
				index--
				if err != nil {
					return buf.String(), err
				}
				if int(index) >= len(ps.parameters) {
					return buf.String(), errors.New("Parameters index out of bound")
				}
				ps.st.push(ps.parameters[index])
			case tokens[q][0][:2] == "%P":
				// Pop a variable from the stack as a dynamic or static variable.
				val, err := ps.st.pop()
				if err != nil {
					return buf.String(), err
				}
				index := tokens[q][2]
				if len(index) > 1 {
					errorStr := fmt.Sprintf("%s is not a valid dynamic variables index",
						index)
					return buf.String(), errors.New(errorStr)
				}
				// Specify either dynamic or static.
				if index[0] >= 'a' && index[0] <= 'z' {
					ps.dynamicVar[index[0]] = val
				} else if index[0] >= 'A' && index[0] <= 'Z' {
					staticVar[index[0]] = val
				}
			case tokens[q][0][:2] == "%g":
				// Push a variable from the stack as a dynamic or static variable.
				index := tokens[q][3]
				if len(index) > 1 {
					errorStr := fmt.Sprintf("%s is not a valid static variables index",
						index)
					return buf.String(), errors.New(errorStr)
				}
				var val stacker
				if index[0] >= 'a' && index[0] <= 'z' {
					val = ps.dynamicVar[index[0]]
				} else if index[0] >= 'A' && index[0] <= 'Z' {
					val = staticVar[index[0]]
				}
				ps.st.push(val)
			case tokens[q][0][:2] == "%'":
				// Push a character constant.
				con := tokens[q][4]
				if len(con) > 1 {
					errorStr := fmt.Sprintf("%s is not a valid character constant", con)
					return buf.String(), errors.New(errorStr)
				}
				ps.st.push(con[0])
			case tokens[q][0][:2] == "%{":
				// Push an integer constant.
				con, err := strconv.ParseInt(tokens[q][5], 10, 32)
				if err != nil {
					return buf.String(), err
				}
				ps.st.push(con)
			case tokens[q][0][:2] == "%l":
				// Push the length of the string that is popped from the stack.
				popStr, err := ps.st.pop()
				if err != nil {
					return buf.String(), err
				}
				if _, ok := popStr.(string); !ok {
					errStr := fmt.Sprintf("Stack head is not a string")
					return buf.String(), errors.New(errStr)
				}
				ps.st.push(len(popStr.(string)))
			case tokens[q][0][:2] == "%?":
				// If-then-else construct. First, the whole string is identified and
				// then inside this substring, we can specify which parts to switch on.
				ifReg, _ := regexp.Compile("%\\?(.*)%t(.*)%e(.*);|%\\?(.*)%t(.*);")
				ifTokens := ifReg.FindStringSubmatch(tokens[q][0])
				var (
					ifStr string
					err   error
				)
				// Parse the if-part to determine if-else.
				if len(ifTokens[1]) > 0 {
					ifStr, err = ps.walk(ifTokens[1])
				} else { // else
					ifStr, err = ps.walk(ifTokens[4])
				}
				// Return any errors
				if err != nil {
					return buf.String(), err
				} else if len(ifStr) > 0 {
					// Self-defined limitation, not sure if this is correct, but didn't
					// seem like it.
					return buf.String(), errors.New("If-clause cannot print statements")
				}
				var thenStr string
				// Pop the first value that is set by parsing the if-clause.
				choose, err := ps.st.pop()
				if err != nil {
					return buf.String(), err
				}
				// Switch to if or else.
				if choose.(int) == 0 && len(ifTokens[1]) > 0 {
					thenStr, err = ps.walk(ifTokens[3])
				} else if choose.(int) != 0 {
					if len(ifTokens[1]) > 0 {
						thenStr, err = ps.walk(ifTokens[2])
					} else {
						thenStr, err = ps.walk(ifTokens[5])
					}
				}
				if err != nil {
					return buf.String(), err
				}
				buf.WriteString(thenStr)
			case tokens[q][0][len(tokens[q][0])-1] == 'd': // Fallthrough for printing
				fallthrough
			case tokens[q][0][len(tokens[q][0])-1] == 'o': // digits.
				fallthrough
			case tokens[q][0][len(tokens[q][0])-1] == 'x':
				fallthrough
			case tokens[q][0][len(tokens[q][0])-1] == 'X':
				fallthrough
			case tokens[q][0][len(tokens[q][0])-1] == 's':
				token := tokens[q][0]
				// Remove the : that comes before a flag.
				if token[1] == ':' {
					token = token[:1] + token[2:]
				}
				digit, err := ps.st.pop()
				if err != nil {
					return buf.String(), err
				}
				// The rest is determined like the normal formatted prints.
				digitStr := fmt.Sprintf(token, digit.(int))
				buf.WriteString(digitStr)
			case tokens[q][0][:2] == "%i":
				// Increment the parameters by one.
				if len(ps.parameters) < 2 {
					return buf.String(), errors.New("Not enough parameters to increment.")
				}
				val1, val2 := ps.parameters[0].(int), ps.parameters[1].(int)
				val1++
				val2++
				ps.parameters[0], ps.parameters[1] = val1, val2
			default:
				// The rest of the tokens is a special case, where two values are
				// popped and then operated on by the token that comes after them.
				op1, err := ps.st.pop()
				if err != nil {
					return buf.String(), err
				}
				op2, err := ps.st.pop()
				if err != nil {
					return buf.String(), err
				}
				var result stacker
				switch tokens[q][0][:2] {
				case "%+":
					// Addition
					result = op2.(int) + op1.(int)
				case "%-":
					// Subtraction
					result = op2.(int) - op1.(int)
				case "%*":
					// Multiplication
					result = op2.(int) * op1.(int)
				case "%/":
					// Division
					result = op2.(int) / op1.(int)
				case "%m":
					// Modulo
					result = op2.(int) % op1.(int)
				case "%&":
					// Bitwise AND
					result = op2.(int) & op1.(int)
				case "%|":
					// Bitwise OR
					result = op2.(int) | op1.(int)
				case "%^":
					// Bitwise XOR
					result = op2.(int) ^ op1.(int)
				case "%=":
					// Equals
					result = op2 == op1
				case "%>":
					// Greater-than
					result = op2.(int) > op1.(int)
				case "%<":
					// Lesser-than
					result = op2.(int) < op1.(int)
				case "%A":
					// Logical AND
					result = op2.(bool) && op1.(bool)
				case "%O":
					// Logical OR
					result = op2.(bool) || op1.(bool)
				case "%!":
					// Logical complement
					result = !op1.(bool)
				case "%~":
					// Bitwise complement
					result = ^(op1.(int))
				}
				ps.st.push(result)
			}

			i = indices[q][1] - 1
			q++
		} else {
			// We are not "inside" a token, so just skip until the end or the next
			// token, and add all characters to the buffer.
			j := i
			if q != len(indices) {
				for !(j >= indices[q][0] && j < indices[q][1]) {
					j++
				}
			} else {
				j = len(attr)
			}
			buf.WriteString(string(attr[i:j]))
			i = j
		}
	}
	// Return the buffer as a string.
	return buf.String(), nil
}

// Push a stacker-value onto the stack.
func (st *stack) push(s stacker) {
	*st = append(*st, s)
}

// Pop a stacker-value from the stack.
func (st *stack) pop() (stacker, error) {
	if len(*st) == 0 {
		return nil, errors.New("Stack is empty.")
	}
	newStack := make(stack, len(*st)-1)
	val := (*st)[len(*st)-1]
	copy(newStack, (*st)[:len(*st)-1])
	*st = newStack
	return val, nil
}

// Initialize regexes and the static vars (that don't get changed between
// calls.
func init() {
	// Initialize the main regex.
	expStr := strings.Join(exp[:], "|")
	regex, _ = regexp.Compile(expStr)
	// Initialize the static variables.
	staticVar = make(map[byte]stacker, 26)
}