summaryrefslogtreecommitdiff
path: root/vendor/github.com/prometheus/common/expfmt/decode.go
blob: a7a42d5ef4130ae516dadea69e633942b148a3e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package expfmt

import (
	"fmt"
	"io"
	"math"
	"mime"
	"net/http"

	dto "github.com/prometheus/client_model/go"

	"github.com/matttproud/golang_protobuf_extensions/pbutil"
	"github.com/prometheus/common/model"
)

// Decoder types decode an input stream into metric families.
type Decoder interface {
	Decode(*dto.MetricFamily) error
}

// DecodeOptions contains options used by the Decoder and in sample extraction.
type DecodeOptions struct {
	// Timestamp is added to each value from the stream that has no explicit timestamp set.
	Timestamp model.Time
}

// ResponseFormat extracts the correct format from a HTTP response header.
// If no matching format can be found FormatUnknown is returned.
func ResponseFormat(h http.Header) Format {
	ct := h.Get(hdrContentType)

	mediatype, params, err := mime.ParseMediaType(ct)
	if err != nil {
		return FmtUnknown
	}

	const textType = "text/plain"

	switch mediatype {
	case ProtoType:
		if p, ok := params["proto"]; ok && p != ProtoProtocol {
			return FmtUnknown
		}
		if e, ok := params["encoding"]; ok && e != "delimited" {
			return FmtUnknown
		}
		return FmtProtoDelim

	case textType:
		if v, ok := params["version"]; ok && v != TextVersion {
			return FmtUnknown
		}
		return FmtText
	}

	return FmtUnknown
}

// NewDecoder returns a new decoder based on the given input format.
// If the input format does not imply otherwise, a text format decoder is returned.
func NewDecoder(r io.Reader, format Format) Decoder {
	switch format {
	case FmtProtoDelim:
		return &protoDecoder{r: r}
	}
	return &textDecoder{r: r}
}

// protoDecoder implements the Decoder interface for protocol buffers.
type protoDecoder struct {
	r io.Reader
}

// Decode implements the Decoder interface.
func (d *protoDecoder) Decode(v *dto.MetricFamily) error {
	_, err := pbutil.ReadDelimited(d.r, v)
	if err != nil {
		return err
	}
	if !model.IsValidMetricName(model.LabelValue(v.GetName())) {
		return fmt.Errorf("invalid metric name %q", v.GetName())
	}
	for _, m := range v.GetMetric() {
		if m == nil {
			continue
		}
		for _, l := range m.GetLabel() {
			if l == nil {
				continue
			}
			if !model.LabelValue(l.GetValue()).IsValid() {
				return fmt.Errorf("invalid label value %q", l.GetValue())
			}
			if !model.LabelName(l.GetName()).IsValid() {
				return fmt.Errorf("invalid label name %q", l.GetName())
			}
		}
	}
	return nil
}

// textDecoder implements the Decoder interface for the text protocol.
type textDecoder struct {
	r    io.Reader
	p    TextParser
	fams []*dto.MetricFamily
}

// Decode implements the Decoder interface.
func (d *textDecoder) Decode(v *dto.MetricFamily) error {
	// TODO(fabxc): Wrap this as a line reader to make streaming safer.
	if len(d.fams) == 0 {
		// No cached metric families, read everything and parse metrics.
		fams, err := d.p.TextToMetricFamilies(d.r)
		if err != nil {
			return err
		}
		if len(fams) == 0 {
			return io.EOF
		}
		d.fams = make([]*dto.MetricFamily, 0, len(fams))
		for _, f := range fams {
			d.fams = append(d.fams, f)
		}
	}

	*v = *d.fams[0]
	d.fams = d.fams[1:]

	return nil
}

// SampleDecoder wraps a Decoder to extract samples from the metric families
// decoded by the wrapped Decoder.
type SampleDecoder struct {
	Dec  Decoder
	Opts *DecodeOptions

	f dto.MetricFamily
}

// Decode calls the Decode method of the wrapped Decoder and then extracts the
// samples from the decoded MetricFamily into the provided model.Vector.
func (sd *SampleDecoder) Decode(s *model.Vector) error {
	err := sd.Dec.Decode(&sd.f)
	if err != nil {
		return err
	}
	*s, err = extractSamples(&sd.f, sd.Opts)
	return err
}

// ExtractSamples builds a slice of samples from the provided metric
// families. If an error occurs during sample extraction, it continues to
// extract from the remaining metric families. The returned error is the last
// error that has occured.
func ExtractSamples(o *DecodeOptions, fams ...*dto.MetricFamily) (model.Vector, error) {
	var (
		all     model.Vector
		lastErr error
	)
	for _, f := range fams {
		some, err := extractSamples(f, o)
		if err != nil {
			lastErr = err
			continue
		}
		all = append(all, some...)
	}
	return all, lastErr
}

func extractSamples(f *dto.MetricFamily, o *DecodeOptions) (model.Vector, error) {
	switch f.GetType() {
	case dto.MetricType_COUNTER:
		return extractCounter(o, f), nil
	case dto.MetricType_GAUGE:
		return extractGauge(o, f), nil
	case dto.MetricType_SUMMARY:
		return extractSummary(o, f), nil
	case dto.MetricType_UNTYPED:
		return extractUntyped(o, f), nil
	case dto.MetricType_HISTOGRAM:
		return extractHistogram(o, f), nil
	}
	return nil, fmt.Errorf("expfmt.extractSamples: unknown metric family type %v", f.GetType())
}

func extractCounter(o *DecodeOptions, f *dto.MetricFamily) model.Vector {
	samples := make(model.Vector, 0, len(f.Metric))

	for _, m := range f.Metric {
		if m.Counter == nil {
			continue
		}

		lset := make(model.LabelSet, len(m.Label)+1)
		for _, p := range m.Label {
			lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
		}
		lset[model.MetricNameLabel] = model.LabelValue(f.GetName())

		smpl := &model.Sample{
			Metric: model.Metric(lset),
			Value:  model.SampleValue(m.Counter.GetValue()),
		}

		if m.TimestampMs != nil {
			smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000)
		} else {
			smpl.Timestamp = o.Timestamp
		}

		samples = append(samples, smpl)
	}

	return samples
}

func extractGauge(o *DecodeOptions, f *dto.MetricFamily) model.Vector {
	samples := make(model.Vector, 0, len(f.Metric))

	for _, m := range f.Metric {
		if m.Gauge == nil {
			continue
		}

		lset := make(model.LabelSet, len(m.Label)+1)
		for _, p := range m.Label {
			lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
		}
		lset[model.MetricNameLabel] = model.LabelValue(f.GetName())

		smpl := &model.Sample{
			Metric: model.Metric(lset),
			Value:  model.SampleValue(m.Gauge.GetValue()),
		}

		if m.TimestampMs != nil {
			smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000)
		} else {
			smpl.Timestamp = o.Timestamp
		}

		samples = append(samples, smpl)
	}

	return samples
}

func extractUntyped(o *DecodeOptions, f *dto.MetricFamily) model.Vector {
	samples := make(model.Vector, 0, len(f.Metric))

	for _, m := range f.Metric {
		if m.Untyped == nil {
			continue
		}

		lset := make(model.LabelSet, len(m.Label)+1)
		for _, p := range m.Label {
			lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
		}
		lset[model.MetricNameLabel] = model.LabelValue(f.GetName())

		smpl := &model.Sample{
			Metric: model.Metric(lset),
			Value:  model.SampleValue(m.Untyped.GetValue()),
		}

		if m.TimestampMs != nil {
			smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000)
		} else {
			smpl.Timestamp = o.Timestamp
		}

		samples = append(samples, smpl)
	}

	return samples
}

func extractSummary(o *DecodeOptions, f *dto.MetricFamily) model.Vector {
	samples := make(model.Vector, 0, len(f.Metric))

	for _, m := range f.Metric {
		if m.Summary == nil {
			continue
		}

		timestamp := o.Timestamp
		if m.TimestampMs != nil {
			timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000)
		}

		for _, q := range m.Summary.Quantile {
			lset := make(model.LabelSet, len(m.Label)+2)
			for _, p := range m.Label {
				lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
			}
			// BUG(matt): Update other names to "quantile".
			lset[model.LabelName(model.QuantileLabel)] = model.LabelValue(fmt.Sprint(q.GetQuantile()))
			lset[model.MetricNameLabel] = model.LabelValue(f.GetName())

			samples = append(samples, &model.Sample{
				Metric:    model.Metric(lset),
				Value:     model.SampleValue(q.GetValue()),
				Timestamp: timestamp,
			})
		}

		lset := make(model.LabelSet, len(m.Label)+1)
		for _, p := range m.Label {
			lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
		}
		lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_sum")

		samples = append(samples, &model.Sample{
			Metric:    model.Metric(lset),
			Value:     model.SampleValue(m.Summary.GetSampleSum()),
			Timestamp: timestamp,
		})

		lset = make(model.LabelSet, len(m.Label)+1)
		for _, p := range m.Label {
			lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
		}
		lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_count")

		samples = append(samples, &model.Sample{
			Metric:    model.Metric(lset),
			Value:     model.SampleValue(m.Summary.GetSampleCount()),
			Timestamp: timestamp,
		})
	}

	return samples
}

func extractHistogram(o *DecodeOptions, f *dto.MetricFamily) model.Vector {
	samples := make(model.Vector, 0, len(f.Metric))

	for _, m := range f.Metric {
		if m.Histogram == nil {
			continue
		}

		timestamp := o.Timestamp
		if m.TimestampMs != nil {
			timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000)
		}

		infSeen := false

		for _, q := range m.Histogram.Bucket {
			lset := make(model.LabelSet, len(m.Label)+2)
			for _, p := range m.Label {
				lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
			}
			lset[model.LabelName(model.BucketLabel)] = model.LabelValue(fmt.Sprint(q.GetUpperBound()))
			lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_bucket")

			if math.IsInf(q.GetUpperBound(), +1) {
				infSeen = true
			}

			samples = append(samples, &model.Sample{
				Metric:    model.Metric(lset),
				Value:     model.SampleValue(q.GetCumulativeCount()),
				Timestamp: timestamp,
			})
		}

		lset := make(model.LabelSet, len(m.Label)+1)
		for _, p := range m.Label {
			lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
		}
		lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_sum")

		samples = append(samples, &model.Sample{
			Metric:    model.Metric(lset),
			Value:     model.SampleValue(m.Histogram.GetSampleSum()),
			Timestamp: timestamp,
		})

		lset = make(model.LabelSet, len(m.Label)+1)
		for _, p := range m.Label {
			lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
		}
		lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_count")

		count := &model.Sample{
			Metric:    model.Metric(lset),
			Value:     model.SampleValue(m.Histogram.GetSampleCount()),
			Timestamp: timestamp,
		}
		samples = append(samples, count)

		if !infSeen {
			// Append an infinity bucket sample.
			lset := make(model.LabelSet, len(m.Label)+2)
			for _, p := range m.Label {
				lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
			}
			lset[model.LabelName(model.BucketLabel)] = model.LabelValue("+Inf")
			lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_bucket")

			samples = append(samples, &model.Sample{
				Metric:    model.Metric(lset),
				Value:     count.Value,
				Timestamp: timestamp,
			})
		}
	}

	return samples
}