summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/tools/internal/typeparams/normalize.go
blob: 090f142a5f34b4ad4c9ccadeb626ec99b1ba21b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package typeparams

import (
	"errors"
	"fmt"
	"go/types"
	"os"
	"strings"
)

//go:generate go run copytermlist.go

const debug = false

var ErrEmptyTypeSet = errors.New("empty type set")

// StructuralTerms returns a slice of terms representing the normalized
// structural type restrictions of a type parameter, if any.
//
// Structural type restrictions of a type parameter are created via
// non-interface types embedded in its constraint interface (directly, or via a
// chain of interface embeddings). For example, in the declaration
//  type T[P interface{~int; m()}] int
// the structural restriction of the type parameter P is ~int.
//
// With interface embedding and unions, the specification of structural type
// restrictions may be arbitrarily complex. For example, consider the
// following:
//
//  type A interface{ ~string|~[]byte }
//
//  type B interface{ int|string }
//
//  type C interface { ~string|~int }
//
//  type T[P interface{ A|B; C }] int
//
// In this example, the structural type restriction of P is ~string|int: A|B
// expands to ~string|~[]byte|int|string, which reduces to ~string|~[]byte|int,
// which when intersected with C (~string|~int) yields ~string|int.
//
// StructuralTerms computes these expansions and reductions, producing a
// "normalized" form of the embeddings. A structural restriction is normalized
// if it is a single union containing no interface terms, and is minimal in the
// sense that removing any term changes the set of types satisfying the
// constraint. It is left as a proof for the reader that, modulo sorting, there
// is exactly one such normalized form.
//
// Because the minimal representation always takes this form, StructuralTerms
// returns a slice of tilde terms corresponding to the terms of the union in
// the normalized structural restriction. An error is returned if the
// constraint interface is invalid, exceeds complexity bounds, or has an empty
// type set. In the latter case, StructuralTerms returns ErrEmptyTypeSet.
//
// StructuralTerms makes no guarantees about the order of terms, except that it
// is deterministic.
func StructuralTerms(tparam *TypeParam) ([]*Term, error) {
	constraint := tparam.Constraint()
	if constraint == nil {
		return nil, fmt.Errorf("%s has nil constraint", tparam)
	}
	iface, _ := constraint.Underlying().(*types.Interface)
	if iface == nil {
		return nil, fmt.Errorf("constraint is %T, not *types.Interface", constraint.Underlying())
	}
	return InterfaceTermSet(iface)
}

// InterfaceTermSet computes the normalized terms for a constraint interface,
// returning an error if the term set cannot be computed or is empty. In the
// latter case, the error will be ErrEmptyTypeSet.
//
// See the documentation of StructuralTerms for more information on
// normalization.
func InterfaceTermSet(iface *types.Interface) ([]*Term, error) {
	return computeTermSet(iface)
}

// UnionTermSet computes the normalized terms for a union, returning an error
// if the term set cannot be computed or is empty. In the latter case, the
// error will be ErrEmptyTypeSet.
//
// See the documentation of StructuralTerms for more information on
// normalization.
func UnionTermSet(union *Union) ([]*Term, error) {
	return computeTermSet(union)
}

func computeTermSet(typ types.Type) ([]*Term, error) {
	tset, err := computeTermSetInternal(typ, make(map[types.Type]*termSet), 0)
	if err != nil {
		return nil, err
	}
	if tset.terms.isEmpty() {
		return nil, ErrEmptyTypeSet
	}
	if tset.terms.isAll() {
		return nil, nil
	}
	var terms []*Term
	for _, term := range tset.terms {
		terms = append(terms, NewTerm(term.tilde, term.typ))
	}
	return terms, nil
}

// A termSet holds the normalized set of terms for a given type.
//
// The name termSet is intentionally distinct from 'type set': a type set is
// all types that implement a type (and includes method restrictions), whereas
// a term set just represents the structural restrictions on a type.
type termSet struct {
	complete bool
	terms    termlist
}

func indentf(depth int, format string, args ...interface{}) {
	fmt.Fprintf(os.Stderr, strings.Repeat(".", depth)+format+"\n", args...)
}

func computeTermSetInternal(t types.Type, seen map[types.Type]*termSet, depth int) (res *termSet, err error) {
	if t == nil {
		panic("nil type")
	}

	if debug {
		indentf(depth, "%s", t.String())
		defer func() {
			if err != nil {
				indentf(depth, "=> %s", err)
			} else {
				indentf(depth, "=> %s", res.terms.String())
			}
		}()
	}

	const maxTermCount = 100
	if tset, ok := seen[t]; ok {
		if !tset.complete {
			return nil, fmt.Errorf("cycle detected in the declaration of %s", t)
		}
		return tset, nil
	}

	// Mark the current type as seen to avoid infinite recursion.
	tset := new(termSet)
	defer func() {
		tset.complete = true
	}()
	seen[t] = tset

	switch u := t.Underlying().(type) {
	case *types.Interface:
		// The term set of an interface is the intersection of the term sets of its
		// embedded types.
		tset.terms = allTermlist
		for i := 0; i < u.NumEmbeddeds(); i++ {
			embedded := u.EmbeddedType(i)
			if _, ok := embedded.Underlying().(*TypeParam); ok {
				return nil, fmt.Errorf("invalid embedded type %T", embedded)
			}
			tset2, err := computeTermSetInternal(embedded, seen, depth+1)
			if err != nil {
				return nil, err
			}
			tset.terms = tset.terms.intersect(tset2.terms)
		}
	case *Union:
		// The term set of a union is the union of term sets of its terms.
		tset.terms = nil
		for i := 0; i < u.Len(); i++ {
			t := u.Term(i)
			var terms termlist
			switch t.Type().Underlying().(type) {
			case *types.Interface:
				tset2, err := computeTermSetInternal(t.Type(), seen, depth+1)
				if err != nil {
					return nil, err
				}
				terms = tset2.terms
			case *TypeParam, *Union:
				// A stand-alone type parameter or union is not permitted as union
				// term.
				return nil, fmt.Errorf("invalid union term %T", t)
			default:
				if t.Type() == types.Typ[types.Invalid] {
					continue
				}
				terms = termlist{{t.Tilde(), t.Type()}}
			}
			tset.terms = tset.terms.union(terms)
			if len(tset.terms) > maxTermCount {
				return nil, fmt.Errorf("exceeded max term count %d", maxTermCount)
			}
		}
	case *TypeParam:
		panic("unreachable")
	default:
		// For all other types, the term set is just a single non-tilde term
		// holding the type itself.
		if u != types.Typ[types.Invalid] {
			tset.terms = termlist{{false, t}}
		}
	}
	return tset, nil
}

// under is a facade for the go/types internal function of the same name. It is
// used by typeterm.go.
func under(t types.Type) types.Type {
	return t.Underlying()
}