1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
|
// Package inf (type inf.Dec) implements "infinite-precision" decimal
// arithmetic.
// "Infinite precision" describes two characteristics: practically unlimited
// precision for decimal number representation and no support for calculating
// with any specific fixed precision.
// (Although there is no practical limit on precision, inf.Dec can only
// represent finite decimals.)
//
// This package is currently in experimental stage and the API may change.
//
// This package does NOT support:
// - rounding to specific precisions (as opposed to specific decimal positions)
// - the notion of context (each rounding must be explicit)
// - NaN and Inf values, and distinguishing between positive and negative zero
// - conversions to and from float32/64 types
//
// Features considered for possible addition:
// + formatting options
// + Exp method
// + combined operations such as AddRound/MulAdd etc
// + exchanging data in decimal32/64/128 formats
//
package inf // import "gopkg.in/inf.v0"
// TODO:
// - avoid excessive deep copying (quo and rounders)
import (
"fmt"
"io"
"math/big"
"strings"
)
// A Dec represents a signed arbitrary-precision decimal.
// It is a combination of a sign, an arbitrary-precision integer coefficient
// value, and a signed fixed-precision exponent value.
// The sign and the coefficient value are handled together as a signed value
// and referred to as the unscaled value.
// (Positive and negative zero values are not distinguished.)
// Since the exponent is most commonly non-positive, it is handled in negated
// form and referred to as scale.
//
// The mathematical value of a Dec equals:
//
// unscaled * 10**(-scale)
//
// Note that different Dec representations may have equal mathematical values.
//
// unscaled scale String()
// -------------------------
// 0 0 "0"
// 0 2 "0.00"
// 0 -2 "0"
// 1 0 "1"
// 100 2 "1.00"
// 10 0 "10"
// 1 -1 "10"
//
// The zero value for a Dec represents the value 0 with scale 0.
//
// Operations are typically performed through the *Dec type.
// The semantics of the assignment operation "=" for "bare" Dec values is
// undefined and should not be relied on.
//
// Methods are typically of the form:
//
// func (z *Dec) Op(x, y *Dec) *Dec
//
// and implement operations z = x Op y with the result as receiver; if it
// is one of the operands it may be overwritten (and its memory reused).
// To enable chaining of operations, the result is also returned. Methods
// returning a result other than *Dec take one of the operands as the receiver.
//
// A "bare" Quo method (quotient / division operation) is not provided, as the
// result is not always a finite decimal and thus in general cannot be
// represented as a Dec.
// Instead, in the common case when rounding is (potentially) necessary,
// QuoRound should be used with a Scale and a Rounder.
// QuoExact or QuoRound with RoundExact can be used in the special cases when it
// is known that the result is always a finite decimal.
//
type Dec struct {
unscaled big.Int
scale Scale
}
// Scale represents the type used for the scale of a Dec.
type Scale int32
const scaleSize = 4 // bytes in a Scale value
// Scaler represents a method for obtaining the scale to use for the result of
// an operation on x and y.
type scaler interface {
Scale(x *Dec, y *Dec) Scale
}
var bigInt = [...]*big.Int{
big.NewInt(0), big.NewInt(1), big.NewInt(2), big.NewInt(3), big.NewInt(4),
big.NewInt(5), big.NewInt(6), big.NewInt(7), big.NewInt(8), big.NewInt(9),
big.NewInt(10),
}
var exp10cache [64]big.Int = func() [64]big.Int {
e10, e10i := [64]big.Int{}, bigInt[1]
for i := range e10 {
e10[i].Set(e10i)
e10i = new(big.Int).Mul(e10i, bigInt[10])
}
return e10
}()
// NewDec allocates and returns a new Dec set to the given int64 unscaled value
// and scale.
func NewDec(unscaled int64, scale Scale) *Dec {
return new(Dec).SetUnscaled(unscaled).SetScale(scale)
}
// NewDecBig allocates and returns a new Dec set to the given *big.Int unscaled
// value and scale.
func NewDecBig(unscaled *big.Int, scale Scale) *Dec {
return new(Dec).SetUnscaledBig(unscaled).SetScale(scale)
}
// Scale returns the scale of x.
func (x *Dec) Scale() Scale {
return x.scale
}
// Unscaled returns the unscaled value of x for u and true for ok when the
// unscaled value can be represented as int64; otherwise it returns an undefined
// int64 value for u and false for ok. Use x.UnscaledBig().Int64() to avoid
// checking the validity of the value when the check is known to be redundant.
func (x *Dec) Unscaled() (u int64, ok bool) {
u = x.unscaled.Int64()
var i big.Int
ok = i.SetInt64(u).Cmp(&x.unscaled) == 0
return
}
// UnscaledBig returns the unscaled value of x as *big.Int.
func (x *Dec) UnscaledBig() *big.Int {
return &x.unscaled
}
// SetScale sets the scale of z, with the unscaled value unchanged, and returns
// z.
// The mathematical value of the Dec changes as if it was multiplied by
// 10**(oldscale-scale).
func (z *Dec) SetScale(scale Scale) *Dec {
z.scale = scale
return z
}
// SetUnscaled sets the unscaled value of z, with the scale unchanged, and
// returns z.
func (z *Dec) SetUnscaled(unscaled int64) *Dec {
z.unscaled.SetInt64(unscaled)
return z
}
// SetUnscaledBig sets the unscaled value of z, with the scale unchanged, and
// returns z.
func (z *Dec) SetUnscaledBig(unscaled *big.Int) *Dec {
z.unscaled.Set(unscaled)
return z
}
// Set sets z to the value of x and returns z.
// It does nothing if z == x.
func (z *Dec) Set(x *Dec) *Dec {
if z != x {
z.SetUnscaledBig(x.UnscaledBig())
z.SetScale(x.Scale())
}
return z
}
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
//
func (x *Dec) Sign() int {
return x.UnscaledBig().Sign()
}
// Neg sets z to -x and returns z.
func (z *Dec) Neg(x *Dec) *Dec {
z.SetScale(x.Scale())
z.UnscaledBig().Neg(x.UnscaledBig())
return z
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
func (x *Dec) Cmp(y *Dec) int {
xx, yy := upscale(x, y)
return xx.UnscaledBig().Cmp(yy.UnscaledBig())
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Dec) Abs(x *Dec) *Dec {
z.SetScale(x.Scale())
z.UnscaledBig().Abs(x.UnscaledBig())
return z
}
// Add sets z to the sum x+y and returns z.
// The scale of z is the greater of the scales of x and y.
func (z *Dec) Add(x, y *Dec) *Dec {
xx, yy := upscale(x, y)
z.SetScale(xx.Scale())
z.UnscaledBig().Add(xx.UnscaledBig(), yy.UnscaledBig())
return z
}
// Sub sets z to the difference x-y and returns z.
// The scale of z is the greater of the scales of x and y.
func (z *Dec) Sub(x, y *Dec) *Dec {
xx, yy := upscale(x, y)
z.SetScale(xx.Scale())
z.UnscaledBig().Sub(xx.UnscaledBig(), yy.UnscaledBig())
return z
}
// Mul sets z to the product x*y and returns z.
// The scale of z is the sum of the scales of x and y.
func (z *Dec) Mul(x, y *Dec) *Dec {
z.SetScale(x.Scale() + y.Scale())
z.UnscaledBig().Mul(x.UnscaledBig(), y.UnscaledBig())
return z
}
// Round sets z to the value of x rounded to Scale s using Rounder r, and
// returns z.
func (z *Dec) Round(x *Dec, s Scale, r Rounder) *Dec {
return z.QuoRound(x, NewDec(1, 0), s, r)
}
// QuoRound sets z to the quotient x/y, rounded using the given Rounder to the
// specified scale.
//
// If the rounder is RoundExact but the result can not be expressed exactly at
// the specified scale, QuoRound returns nil, and the value of z is undefined.
//
// There is no corresponding Div method; the equivalent can be achieved through
// the choice of Rounder used.
//
func (z *Dec) QuoRound(x, y *Dec, s Scale, r Rounder) *Dec {
return z.quo(x, y, sclr{s}, r)
}
func (z *Dec) quo(x, y *Dec, s scaler, r Rounder) *Dec {
scl := s.Scale(x, y)
var zzz *Dec
if r.UseRemainder() {
zz, rA, rB := new(Dec).quoRem(x, y, scl, true, new(big.Int), new(big.Int))
zzz = r.Round(new(Dec), zz, rA, rB)
} else {
zz, _, _ := new(Dec).quoRem(x, y, scl, false, nil, nil)
zzz = r.Round(new(Dec), zz, nil, nil)
}
if zzz == nil {
return nil
}
return z.Set(zzz)
}
// QuoExact sets z to the quotient x/y and returns z when x/y is a finite
// decimal. Otherwise it returns nil and the value of z is undefined.
//
// The scale of a non-nil result is "x.Scale() - y.Scale()" or greater; it is
// calculated so that the remainder will be zero whenever x/y is a finite
// decimal.
func (z *Dec) QuoExact(x, y *Dec) *Dec {
return z.quo(x, y, scaleQuoExact{}, RoundExact)
}
// quoRem sets z to the quotient x/y with the scale s, and if useRem is true,
// it sets remNum and remDen to the numerator and denominator of the remainder.
// It returns z, remNum and remDen.
//
// The remainder is normalized to the range -1 < r < 1 to simplify rounding;
// that is, the results satisfy the following equation:
//
// x / y = z + (remNum/remDen) * 10**(-z.Scale())
//
// See Rounder for more details about rounding.
//
func (z *Dec) quoRem(x, y *Dec, s Scale, useRem bool,
remNum, remDen *big.Int) (*Dec, *big.Int, *big.Int) {
// difference (required adjustment) compared to "canonical" result scale
shift := s - (x.Scale() - y.Scale())
// pointers to adjusted unscaled dividend and divisor
var ix, iy *big.Int
switch {
case shift > 0:
// increased scale: decimal-shift dividend left
ix = new(big.Int).Mul(x.UnscaledBig(), exp10(shift))
iy = y.UnscaledBig()
case shift < 0:
// decreased scale: decimal-shift divisor left
ix = x.UnscaledBig()
iy = new(big.Int).Mul(y.UnscaledBig(), exp10(-shift))
default:
ix = x.UnscaledBig()
iy = y.UnscaledBig()
}
// save a copy of iy in case it to be overwritten with the result
iy2 := iy
if iy == z.UnscaledBig() {
iy2 = new(big.Int).Set(iy)
}
// set scale
z.SetScale(s)
// set unscaled
if useRem {
// Int division
_, intr := z.UnscaledBig().QuoRem(ix, iy, new(big.Int))
// set remainder
remNum.Set(intr)
remDen.Set(iy2)
} else {
z.UnscaledBig().Quo(ix, iy)
}
return z, remNum, remDen
}
type sclr struct{ s Scale }
func (s sclr) Scale(x, y *Dec) Scale {
return s.s
}
type scaleQuoExact struct{}
func (sqe scaleQuoExact) Scale(x, y *Dec) Scale {
rem := new(big.Rat).SetFrac(x.UnscaledBig(), y.UnscaledBig())
f2, f5 := factor2(rem.Denom()), factor(rem.Denom(), bigInt[5])
var f10 Scale
if f2 > f5 {
f10 = Scale(f2)
} else {
f10 = Scale(f5)
}
return x.Scale() - y.Scale() + f10
}
func factor(n *big.Int, p *big.Int) int {
// could be improved for large factors
d, f := n, 0
for {
dd, dm := new(big.Int).DivMod(d, p, new(big.Int))
if dm.Sign() == 0 {
f++
d = dd
} else {
break
}
}
return f
}
func factor2(n *big.Int) int {
// could be improved for large factors
f := 0
for ; n.Bit(f) == 0; f++ {
}
return f
}
func upscale(a, b *Dec) (*Dec, *Dec) {
if a.Scale() == b.Scale() {
return a, b
}
if a.Scale() > b.Scale() {
bb := b.rescale(a.Scale())
return a, bb
}
aa := a.rescale(b.Scale())
return aa, b
}
func exp10(x Scale) *big.Int {
if int(x) < len(exp10cache) {
return &exp10cache[int(x)]
}
return new(big.Int).Exp(bigInt[10], big.NewInt(int64(x)), nil)
}
func (x *Dec) rescale(newScale Scale) *Dec {
shift := newScale - x.Scale()
switch {
case shift < 0:
e := exp10(-shift)
return NewDecBig(new(big.Int).Quo(x.UnscaledBig(), e), newScale)
case shift > 0:
e := exp10(shift)
return NewDecBig(new(big.Int).Mul(x.UnscaledBig(), e), newScale)
}
return x
}
var zeros = []byte("00000000000000000000000000000000" +
"00000000000000000000000000000000")
var lzeros = Scale(len(zeros))
func appendZeros(s []byte, n Scale) []byte {
for i := Scale(0); i < n; i += lzeros {
if n > i+lzeros {
s = append(s, zeros...)
} else {
s = append(s, zeros[0:n-i]...)
}
}
return s
}
func (x *Dec) String() string {
if x == nil {
return "<nil>"
}
scale := x.Scale()
s := []byte(x.UnscaledBig().String())
if scale <= 0 {
if scale != 0 && x.unscaled.Sign() != 0 {
s = appendZeros(s, -scale)
}
return string(s)
}
negbit := Scale(-((x.Sign() - 1) / 2))
// scale > 0
lens := Scale(len(s))
if lens-negbit <= scale {
ss := make([]byte, 0, scale+2)
if negbit == 1 {
ss = append(ss, '-')
}
ss = append(ss, '0', '.')
ss = appendZeros(ss, scale-lens+negbit)
ss = append(ss, s[negbit:]...)
return string(ss)
}
// lens > scale
ss := make([]byte, 0, lens+1)
ss = append(ss, s[:lens-scale]...)
ss = append(ss, '.')
ss = append(ss, s[lens-scale:]...)
return string(ss)
}
// Format is a support routine for fmt.Formatter. It accepts the decimal
// formats 'd' and 'f', and handles both equivalently.
// Width, precision, flags and bases 2, 8, 16 are not supported.
func (x *Dec) Format(s fmt.State, ch rune) {
if ch != 'd' && ch != 'f' && ch != 'v' && ch != 's' {
fmt.Fprintf(s, "%%!%c(dec.Dec=%s)", ch, x.String())
return
}
fmt.Fprintf(s, x.String())
}
func (z *Dec) scan(r io.RuneScanner) (*Dec, error) {
unscaled := make([]byte, 0, 256) // collects chars of unscaled as bytes
dp, dg := -1, -1 // indexes of decimal point, first digit
loop:
for {
ch, _, err := r.ReadRune()
if err == io.EOF {
break loop
}
if err != nil {
return nil, err
}
switch {
case ch == '+' || ch == '-':
if len(unscaled) > 0 || dp >= 0 { // must be first character
r.UnreadRune()
break loop
}
case ch == '.':
if dp >= 0 {
r.UnreadRune()
break loop
}
dp = len(unscaled)
continue // don't add to unscaled
case ch >= '0' && ch <= '9':
if dg == -1 {
dg = len(unscaled)
}
default:
r.UnreadRune()
break loop
}
unscaled = append(unscaled, byte(ch))
}
if dg == -1 {
return nil, fmt.Errorf("no digits read")
}
if dp >= 0 {
z.SetScale(Scale(len(unscaled) - dp))
} else {
z.SetScale(0)
}
_, ok := z.UnscaledBig().SetString(string(unscaled), 10)
if !ok {
return nil, fmt.Errorf("invalid decimal: %s", string(unscaled))
}
return z, nil
}
// SetString sets z to the value of s, interpreted as a decimal (base 10),
// and returns z and a boolean indicating success. The scale of z is the
// number of digits after the decimal point (including any trailing 0s),
// or 0 if there is no decimal point. If SetString fails, the value of z
// is undefined but the returned value is nil.
func (z *Dec) SetString(s string) (*Dec, bool) {
r := strings.NewReader(s)
_, err := z.scan(r)
if err != nil {
return nil, false
}
_, _, err = r.ReadRune()
if err != io.EOF {
return nil, false
}
// err == io.EOF => scan consumed all of s
return z, true
}
// Scan is a support routine for fmt.Scanner; it sets z to the value of
// the scanned number. It accepts the decimal formats 'd' and 'f', and
// handles both equivalently. Bases 2, 8, 16 are not supported.
// The scale of z is the number of digits after the decimal point
// (including any trailing 0s), or 0 if there is no decimal point.
func (z *Dec) Scan(s fmt.ScanState, ch rune) error {
if ch != 'd' && ch != 'f' && ch != 's' && ch != 'v' {
return fmt.Errorf("Dec.Scan: invalid verb '%c'", ch)
}
s.SkipSpace()
_, err := z.scan(s)
return err
}
// Gob encoding version
const decGobVersion byte = 1
func scaleBytes(s Scale) []byte {
buf := make([]byte, scaleSize)
i := scaleSize
for j := 0; j < scaleSize; j++ {
i--
buf[i] = byte(s)
s >>= 8
}
return buf
}
func scale(b []byte) (s Scale) {
for j := 0; j < scaleSize; j++ {
s <<= 8
s |= Scale(b[j])
}
return
}
// GobEncode implements the gob.GobEncoder interface.
func (x *Dec) GobEncode() ([]byte, error) {
buf, err := x.UnscaledBig().GobEncode()
if err != nil {
return nil, err
}
buf = append(append(buf, scaleBytes(x.Scale())...), decGobVersion)
return buf, nil
}
// GobDecode implements the gob.GobDecoder interface.
func (z *Dec) GobDecode(buf []byte) error {
if len(buf) == 0 {
return fmt.Errorf("Dec.GobDecode: no data")
}
b := buf[len(buf)-1]
if b != decGobVersion {
return fmt.Errorf("Dec.GobDecode: encoding version %d not supported", b)
}
l := len(buf) - scaleSize - 1
err := z.UnscaledBig().GobDecode(buf[:l])
if err != nil {
return err
}
z.SetScale(scale(buf[l : l+scaleSize]))
return nil
}
// MarshalText implements the encoding.TextMarshaler interface.
func (x *Dec) MarshalText() ([]byte, error) {
return []byte(x.String()), nil
}
// UnmarshalText implements the encoding.TextUnmarshaler interface.
func (z *Dec) UnmarshalText(data []byte) error {
_, ok := z.SetString(string(data))
if !ok {
return fmt.Errorf("invalid inf.Dec")
}
return nil
}
|