diff options
author | Peter Bengtsson <mail@peterbe.com> | 2020-12-08 14:41:45 -0500 |
---|---|---|
committer | Peter Bengtsson <mail@peterbe.com> | 2020-12-08 14:41:45 -0500 |
commit | 1109132f09d75da9a28b649c7677bb6ce07c40c0 (patch) | |
tree | 0dd8b084480983cf9f9680e8aedb92782a921b13 /files/es/web/mathml/examples | |
parent | 4b1a9203c547c019fc5398082ae19a3f3d4c3efe (diff) | |
download | translated-content-1109132f09d75da9a28b649c7677bb6ce07c40c0.tar.gz translated-content-1109132f09d75da9a28b649c7677bb6ce07c40c0.tar.bz2 translated-content-1109132f09d75da9a28b649c7677bb6ce07c40c0.zip |
initial commit
Diffstat (limited to 'files/es/web/mathml/examples')
-rw-r--r-- | files/es/web/mathml/examples/index.html | 24 | ||||
-rw-r--r-- | files/es/web/mathml/examples/mathml_pythagorean_theorem/index.html | 9 |
2 files changed, 33 insertions, 0 deletions
diff --git a/files/es/web/mathml/examples/index.html b/files/es/web/mathml/examples/index.html new file mode 100644 index 0000000000..0bbd27bf96 --- /dev/null +++ b/files/es/web/mathml/examples/index.html @@ -0,0 +1,24 @@ +--- +title: Examples +slug: Web/MathML/Examples +tags: + - MathML + - NeedsTranslation + - TopicStub +translation_of: Web/MathML/Examples +--- +<p>Below you'll find some examples you can look at to help you to understand how to use MathML to display increasingly complex mathematical concepts in Web content.</p> +<dl> + <dt> + <a href="/en-US/docs/Web/MathML/Examples/MathML_Pythagorean_Theorem">Pythagorean Theorem</a></dt> + <dd> + Small example showing a proof of the Pythagorean Theorem.</dd> + <dt> + <a href="/en-US/docs/Web/MathML/Examples/Deriving_the_Quadratic_Formula">Deriving the Quadratic Formula</a></dt> + <dd> + Outlines the derivation of the Quadratic Formula.</dd> + <dt> + <a href="/en-US/docs/Mozilla/MathML_Project/MathML_Torture_Test">MathML Torture Test</a></dt> + <dd> + Large set of test markup.</dd> +</dl> diff --git a/files/es/web/mathml/examples/mathml_pythagorean_theorem/index.html b/files/es/web/mathml/examples/mathml_pythagorean_theorem/index.html new file mode 100644 index 0000000000..46ec3444f8 --- /dev/null +++ b/files/es/web/mathml/examples/mathml_pythagorean_theorem/index.html @@ -0,0 +1,9 @@ +--- +title: MathML Pythagorean Theorem +slug: Web/MathML/Examples/MathML_Pythagorean_Theorem +translation_of: Web/MathML/Examples/MathML_Pythagorean_Theorem +--- +<p><math 1ex"="" height="0.5ex" side="left" style="font-size: 16pt; font-family: arial; mspace depth=" width="2.5ex"> <mtable columnalign="left"> <mtr> <mtd> <mrow> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <msup> <mi>a</mi><mn>2</mn> </msup> </mrow> <mo> + </mo> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo> = </mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> </mrow></mrow></mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <mrow><mtext mathcolor="black" mathsize="12pt"> Podemos demostrar el teorema algebraicamente mostrando que el area del cuadrado grande<br> + es igual al area del cuadrado interno (hipotenusa al cuadrado) mas el area de los cuatro triangulos: </mtext></mrow></mrow></mrow></mrow></mtd></mtr><br> + <br> + <mtr> <mtd> <mrow> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <mo>(</mo><mi>a</mi><mo> + </mo> <mi>b</mi><msup><mo>)</mo><mn>2</mn></msup><mo> = </mo> <msup><mi>c</mi><mn>2</mn></msup><mo> + </mo> <mn>4</mn><mo>(</mo><mfrac><mrow><mn>1</mn></mrow> <mn>2</mn></mfrac><mo>)</mo><mi>a</mi> <mi>b</mi> </mrow> </mrow> </mrow></mrow></mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <msup><mi>a</mi><mn>2 </mn></msup><mo> + </mo> <mn>2</mn><mi>a</mi><mi>b</mi><mo> + </mo><msup><mi>b</mi><mn>2 </mn></msup> <mo> =</mo> <msup><mi>c</mi><mn>2</mn></msup><mo> + </mo> <mn>2</mn><mi>a<mi>b</mi> </mi></mrow> </mrow> </mrow></mrow></mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <msup><mi>a</mi><mn>2 </mn></msup><mo> + </mo> <msup><mi>b</mi><mn>2</mn></msup> <mo> =</mo> <msup><mi>c</mi><mn>2</mn></msup> </mrow> </mrow> </mrow></mrow></mtd> </mtr> </mtable></p> |