aboutsummaryrefslogtreecommitdiff
path: root/files/vi/web/css/transform-function/index.html
diff options
context:
space:
mode:
Diffstat (limited to 'files/vi/web/css/transform-function/index.html')
-rw-r--r--files/vi/web/css/transform-function/index.html160
1 files changed, 160 insertions, 0 deletions
diff --git a/files/vi/web/css/transform-function/index.html b/files/vi/web/css/transform-function/index.html
new file mode 100644
index 0000000000..2237c7c1fb
--- /dev/null
+++ b/files/vi/web/css/transform-function/index.html
@@ -0,0 +1,160 @@
+---
+title: <transform-function>
+slug: Web/CSS/transform-function
+tags:
+ - CSS
+ - CSS Data Type
+ - CSS Transforms
+ - Layout
+ - NeedsTranslation
+ - Reference
+ - TopicStub
+translation_of: Web/CSS/transform-function
+---
+<div>{{CSSRef}}</div>
+
+<p>The <strong><code>&lt;transform-function&gt;</code></strong> <a href="/en-US/docs/Web/CSS">CSS</a> <a href="/en-US/docs/Web/CSS/CSS_Types">data type</a> represents a transformation that affects an element's appearance. Transformation functions can rotate, resize, distort, or move an element in 2D or 3D space. It is used in the {{cssxref("transform")}} property.</p>
+
+<h2 id="Describing_transformations_mathematically">Describing transformations mathematically</h2>
+
+<p>Various coordinate models can be used to describe an HTML element's size and shape, as well as any transformations applied to it. The most common is the <a href="https://en.wikipedia.org/wiki/Cartesian_coordinate_system">Cartesian coordinate system</a>, although <a href="https://en.wikipedia.org/wiki/Homogeneous_coordinates">homogeneous coordinates</a> are also sometimes used.</p>
+
+<h3 id="Cartesian_coordinates"><a href="/@api/deki/files/5796/=coord_in_R2.png"><img src="/files/3438/coord_in_R2.png" style="float: right; width: 171px;"></a>Cartesian coordinates</h3>
+
+<p>In the Cartesian coordinate system, a two-dimensional point is described using two values: an x coordinate (abscissa) and a y coordinate (ordinate). This is represented by the vector notation <code>(x, y)</code>.</p>
+
+<p>In CSS (and most computer graphics), the origin <code>(0, 0)</code> represents the<em> top-left</em> corner of any element. Positive coordinates are down and to the right of the origin, while negative ones are up and to the left. Thus, a point that's 2 units to the right and 5 units down would be <code>(2, 5)</code>, while a point 3 units to the left and 12 units up would be <code>(-3, -12)</code>.</p>
+
+<h3 id="Transformation_functions">Transformation functions</h3>
+
+<p>Transformation functions alter the appearance of an element by manipulating the values of its coordinates. A linear transformation function is described using a 2×2 matrix, like this:</p>
+
+<p style="text-align: center;"><math> <mfenced> <mtable> <mtr><mtd><mi>a</mi></mtd><mtd><mi>c</mi></mtd></mtr> <mtr><mtd><mi>b</mi></mtd><mtd><mi>d</mi></mtd></mtr> </mtable> </mfenced> </math></p>
+
+<p>The function is applied to an element by using matrix multiplication. Thus, each coordinate changes based on the values in the matrix:</p>
+
+<p style="text-align: center;"><math> <mfenced> <mtable> <mtr><mtd><mi>a</mi></mtd><mtd><mi>c</mi></mtd></mtr> <mtr><mtd><mi>b</mi></mtd><mtd><mi>d</mi></mtd></mtr> </mtable> </mfenced> <mfenced> <mtable> <mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr> </mtable> </mfenced> <mo>=</mo> <mfenced> <mtable> <mtr> <mtd><mi>a</mi><mi>x</mi><mo>+</mo><mi>c</mi><mi>y</mi></mtd> </mtr> <mtr> <mtd><mi>b</mi><mi>x</mi><mo>+</mo><mi>d</mi><mi>y</mi></mtd> </mtr> </mtable> </mfenced> </math></p>
+
+<p>It is even possible to apply several transformations in a row:</p>
+
+<p style="text-align: center;"><math> <mfenced> <mtable> <mtr> <mtd><msub><mi>a</mi><mn>1</mn></msub></mtd> <mtd><msub><mi>c</mi><mn>1</mn></msub></mtd> </mtr> <mtr> <mtd><msub><mi>b</mi><mn>1</mn></msub></mtd> <mtd><msub><mi>d</mi><mn>1</mn></msub></mtd> </mtr> </mtable> </mfenced> <mfenced> <mtable> <mtr> <mtd><msub><mi>a</mi><mn>2</mn></msub></mtd> <mtd><msub><mi>c</mi><mn>2</mn></msub></mtd> </mtr> <mtr> <mtd><msub><mi>b</mi><mn>2</mn></msub></mtd> <mtd><msub><mi>d</mi><mn>2</mn></msub></mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced> <mtable> <mtr> <mtd> <msub><mi>a</mi><mn>1</mn></msub> <msub><mi>a</mi><mn>2</mn></msub> <mo>+</mo> <msub><mi>c</mi><mn>1</mn></msub> <msub><mi>b</mi><mn>2</mn></msub> </mtd> <mtd> <msub><mi>a</mi><mn>1</mn></msub> <msub><mi>c</mi><mn>2</mn></msub> <mo>+</mo> <msub><mi>c</mi><mn>1</mn></msub> <msub><mi>d</mi><mn>2</mn></msub> </mtd> </mtr> <mtr> <mtd> <msub><mi>b</mi><mn>1</mn></msub> <msub><mi>a</mi><mn>2</mn></msub> <mo>+</mo> <msub><mi>d</mi><mn>1</mn></msub> <msub><mi>b</mi><mn>2</mn></msub> </mtd> <mtd> <msub><mi>b</mi><mn>1</mn></msub> <msub><mi>c</mi><mn>2</mn></msub> <mo>+</mo> <msub><mi>d</mi><mn>1</mn></msub> <msub><mi>d</mi><mn>2</mn></msub> </mtd> </mtr> </mtable> </mfenced> </math></p>
+
+<p>With this notation, it is possible to describe, and therefore compose, most common transformations: rotations, scaling, or skewing. (In fact, all transformations that are linear functions can be described.) Composite transformations are effectively applied in order from right to left.</p>
+
+<p>However, one major transformation is not linear, and therefore must be special-cased when using this notation: translation. The translation vector <code>(tx, ty)</code> must be expressed separately, as two additional parameters.</p>
+
+<div class="note">
+<p><strong>Note:</strong> Though trickier than Cartesian coordinates, <a class="external" href="https://en.wikipedia.org/wiki/Homogeneous_coordinates">homogeneous coordinates</a> in <a class="external" href="https://en.wikipedia.org/wiki/Projective_geometry">projective geometry</a> lead to 3×3 transformation matrices, and can simply express translations as linear functions.</p>
+</div>
+
+<h2 id="Syntax">Syntax</h2>
+
+<p>The <code>&lt;transform-function&gt;</code> data type is specified using one of the transformation functions listed below. Each function applies a geometric operation in either 2D or 3D.</p>
+
+<h3 id="Matrix_transformation">Matrix transformation</h3>
+
+<dl>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/matrix">matrix()</a></code></dt>
+ <dd>Describes a homogeneous 2D transformation matrix.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/matrix3d">matrix3d()</a></code></dt>
+ <dd>Describes a 3D transformation as a 4×4 homogeneous matrix.</dd>
+</dl>
+
+<h3 id="Perspective">Perspective</h3>
+
+<dl>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/perspective">perspective()</a></code></dt>
+ <dd>Sets the distance between the user and the z=0 plane.</dd>
+</dl>
+
+<h3 id="Rotation">Rotation</h3>
+
+<dl>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/rotate">rotate()</a></code></dt>
+ <dd>Rotates an element around a fixed point on the 2D plane.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/rotate3d">rotate3d()</a></code></dt>
+ <dd>Rotates an element around a fixed axis in 3D space.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/rotateX">rotateX()</a></code></dt>
+ <dd>Rotates an element around the horizontal axis.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/rotateY">rotateY()</a></code></dt>
+ <dd>Rotates an element around the vertical axis.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/rotateZ">rotateZ()</a></code></dt>
+ <dd>Rotates an element around the z-axis.</dd>
+</dl>
+
+<h3 id="Scaling_resizing">Scaling (resizing)</h3>
+
+<dl>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/scale">scale()</a></code></dt>
+ <dd>Scales an element up or down on the 2D plane.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/scale3d">scale3d()</a></code></dt>
+ <dd>Scales an element up or down in 3D space.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/scaleX">scaleX()</a></code></dt>
+ <dd>Scales an element up or down horizontally.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/scaleY">scaleY()</a></code></dt>
+ <dd>Scales an element up or down vertically.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/scaleZ">scaleZ()</a></code></dt>
+ <dd>Scales an element up or down along the z-axis.</dd>
+</dl>
+
+<h3 id="Skewing_distortion">Skewing (distortion)</h3>
+
+<dl>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/skew">skew()</a></code></dt>
+ <dd>Skews an element on the 2D plane.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/skewX">skewX()</a></code></dt>
+ <dd>Skews an element in the horizontal direction.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/skewY">skewY()</a></code></dt>
+ <dd>Skews an element in the vertical direction.</dd>
+</dl>
+
+<h3 id="Translation_moving">Translation (moving)</h3>
+
+<dl>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/translate">translate()</a></code></dt>
+ <dd>Translates an element on the 2D plane.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/translate3d">translate3d()</a></code></dt>
+ <dd>Translates an element in 3D space.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/translateX">translateX()</a></code></dt>
+ <dd>Translates an element horizontally.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/translateY">translateY()</a></code></dt>
+ <dd>Translates an element vertically.</dd>
+ <dt><code><a href="/en-US/docs/Web/CSS/transform-function/translateZ">translateZ()</a></code></dt>
+ <dd>Translates an element along the z-axis.</dd>
+</dl>
+
+<h2 id="Specifications">Specifications</h2>
+
+<table class="standard-table">
+ <thead>
+ <tr>
+ <th scope="col">Specification</th>
+ <th scope="col">Status</th>
+ <th scope="col">Comment</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>{{SpecName('CSS Transforms 2', '#transform-functions', '&lt;transform-function&gt;')}}</td>
+ <td>{{Spec2('CSS Transforms 2')}}</td>
+ <td>Added 3D transform functions.</td>
+ </tr>
+ <tr>
+ <td>{{SpecName('CSS3 Transforms', '#transform-functions', '&lt;transform-function&gt;')}}</td>
+ <td>{{Spec2('CSS3 Transforms')}}</td>
+ <td>Initial definition</td>
+ </tr>
+ </tbody>
+</table>
+
+<h2 id="Browser_compatibility">Browser compatibility</h2>
+
+
+
+<p>{{Compat("css.types.transform-function")}}</p>
+
+<h2 id="See_also">See also</h2>
+
+<ul>
+ <li>CSS {{cssxref("transform")}} property</li>
+</ul>