--- title: Rysowanie kształtów w canvas slug: Web/API/Canvas_API/Tutorial/Drawing_shapes translation_of: Web/API/Canvas_API/Tutorial/Drawing_shapes original_slug: Web/API/Canvas_API/Tutorial/rysowanie_ksztaltow ---
Ok, stworzyliśmy nasze środowisko canvas i teraz możemy poznać tajniki tworzenia grafiki za pomocą canvas. W tym rozdziale nauczysz się rysować prostokąty, trójkąty, linie, łuki oraz krzywe - czyli podstawowe kształty.
Nim zaczniemy rysować, poznajmy najpierw siatkę czyli układ współrzędnych canvas. Szablon dokumentu z poprzedniego rozdziału zawiera element canvas o rozmiarach 150 na 150 (pikseli). Ilustracja po prawej ukazuje standardową siatkę naszego płótna. Domyślnie jedna jednostka odległości na siatce odpowiada wielkości jednego piksela na płótnie. Wartości siatki liczone są od lewego górnego rogu układu współrzędnych (x,y). W dalszej części dowiesz się, jak zamienić pozycję, tak by początek układu współrzędnych znajdował się gdzie indziej, jak go obrócić a nawet przeskalować. Na razie jednak użyjemy ustawień domyślnych.
W przeciwieństwie do {{Glossary("SVG")}}, {{HTMLElement("canvas")}} na razie wspiera jedynie tworzenie prostokątów. Pozostałe figury geometryczne musimy stworzyć za pomocą ścieżek. Na szczęście mamy do dyspozycji zestaw funkcji za pomocą których jesteśmy w stanie stworzyć figury o dowolnej złożoności.
Najpierw przyjrzyjmy się prostokątowi. Istnieją trzy funkcje rysujące prostokąt:
Każda z tych funkcji posiada jednakowe parametry. x
i y
to współrzędne na siatce - wyznaczają one pozycje lewego górnego rogu prostokąta. A width
oraz height
określają jego rozmiar.
Poniżej znajduje się funkcjadraw()
z poprzedniej strony, tutaj wzbogacona o trzy metody tworzenia prostokątów.
<html> <body onload="draw();"> <canvas id="canvas" width="150" height="150"></canvas> </body> </html>
function draw() { var canvas = document.getElementById('canvas'); if (canvas.getContext) { var ctx = canvas.getContext('2d'); ctx.fillRect(25,25,100,100); ctx.clearRect(45,45,60,60); ctx.strokeRect(50,50,50,50); } }
Oto wynik działania tego skryptu:
{{EmbedLiveSample("Rectangular_shape_example", 160, 160, "https://mdn.mozillademos.org/files/245/Canvas_rect.png")}}
Funkcja fillRect()
rysuje czarny kwadrat o boku 100 pikseli. Funkcja clearRect()
wymazuje kwadratowy obszar o boku 60 pikseli pośrodku czarnego prostokąta, a następnie wywołanie funkcji strokeRect()
tworzy obrys kratdatu o boku 50 pikseli również w centrum poprzedniej figury.
W kolejnych rozdziałąch poznasz dwie inne *metody dla clearReact()
, oraz zobaczysz jak zmienić kolor oraz styl obrysu renderowanych kształtów.
W przeciwieńśtwie do funkcji tworzących ścieżki o czym przekonasz się później, wszystkie trzy funkcje tworzące prostokąt rysują kształ natychmiast po ich wywołaniu.
Drugim zarazem ostatnim podstawowym kształetem jest cieżka. Ścieżka złożona jest z punktów połączonych liniami prostymi lub krzywymi, o różnej grubości i o różnym kolorze. Ścieżka, a nawet jej fragment może być zamknięta. Aby utworzyć kształt za pomocą ścieżki wykonaj następujące kroki:
Oto funkcje potrzebne do wykonania tego zadania:
The first step to create a path is to call the beginPath()
. Internally, paths are stored as a list of sub-paths (lines, arcs, etc) which together form a shape. Every time this method is called, the list is reset and we can start drawing new shapes.
beginPath()
, or on a newly created canvas, the first path construction command is always treated as a moveTo()
, regardless of what it actually is. For that reason, you will almost always want to specifically set your starting position after resetting a path.The second step is calling the methods that actually specify the paths to be drawn. We'll see these shortly.
The third, and an optional step, is to call closePath()
. This method tries to close the shape by drawing a straight line from the current point to the start. If the shape has already been closed or there's only one point in the list, this function does nothing.
fill()
, any open shapes are closed automatically, so you don't have to call closePath()
. This is not the case when you call stroke()
.For example, the code for drawing a triangle would look something like this:
<html> <body onload="draw();"> <canvas id="canvas" width="100" height="100"></canvas> </body> </html>
function draw() { var canvas = document.getElementById('canvas'); if (canvas.getContext){ var ctx = canvas.getContext('2d'); ctx.beginPath(); ctx.moveTo(75,50); ctx.lineTo(100,75); ctx.lineTo(100,25); ctx.fill(); } }
The result looks like this:
{{EmbedLiveSample("Drawing_a_triangle", 110, 110, "https://mdn.mozillademos.org/files/9847/triangle.png")}}
One very useful function, which doesn't actually draw anything but becomes part of the path list described above, is the moveTo()
function. You can probably best think of this as lifting a pen or pencil from one spot on a piece of paper and placing it on the next.
x
and y
.When the canvas is initialized or beginPath()
is called, you typically will want to use the moveTo()
function to place the starting point somewhere else. We could also use moveTo()
to draw unconnected paths. Take a look at the smiley face below.
To try this for yourself, you can use the code snippet below. Just paste it into the draw()
function we saw earlier.
<html> <body onload="draw();"> <canvas id="canvas" width="150" height="150"></canvas> </body> </html>
function draw() { var canvas = document.getElementById('canvas'); if (canvas.getContext){ var ctx = canvas.getContext('2d'); ctx.beginPath(); ctx.arc(75,75,50,0,Math.PI*2,true); // Outer circle ctx.moveTo(110,75); ctx.arc(75,75,35,0,Math.PI,false); // Mouth (clockwise) ctx.moveTo(65,65); ctx.arc(60,65,5,0,Math.PI*2,true); // Left eye ctx.moveTo(95,65); ctx.arc(90,65,5,0,Math.PI*2,true); // Right eye ctx.stroke(); } }
The result looks like this:
{{EmbedLiveSample("Moving_the_pen", 160, 160, "https://mdn.mozillademos.org/files/252/Canvas_smiley.png")}}
If you'd like to see the connecting lines, you can remove the lines that call moveTo()
.
Note: To learn more about the arc()
function, see the {{anch("Arcs")}} below.
For drawing straight lines, use the lineTo()
method.
x
and y
.This method takes two arguments, x
and y
, which are the coordinates of the line's end point. The starting point is dependent on previously drawn paths, where the end point of the previous path is the starting point for the following, etc. The starting point can also be changed by using the moveTo()
method.
The example below draws two triangles, one filled and one outlined.
<html> <body onload="draw();"> <canvas id="canvas" width="150" height="150"></canvas> </body> </html>
function draw() { var canvas = document.getElementById('canvas'); if (canvas.getContext){ var ctx = canvas.getContext('2d'); // Filled triangle ctx.beginPath(); ctx.moveTo(25,25); ctx.lineTo(105,25); ctx.lineTo(25,105); ctx.fill(); // Stroked triangle ctx.beginPath(); ctx.moveTo(125,125); ctx.lineTo(125,45); ctx.lineTo(45,125); ctx.closePath(); ctx.stroke(); } }
This starts by calling beginPath()
to start a new shape path. We then use the moveTo()
method to move the starting point to the desired position. Below this, two lines are drawn which make up two sides of the triangle.
{{EmbedLiveSample("Lines", 160, 160, "https://mdn.mozillademos.org/files/238/Canvas_lineTo.png")}}
You'll notice the difference between the filled and stroked triangle. This is, as mentioned above, because shapes are automatically closed when a path is filled, but not when they are stroked. If we left out the closePath()
for the stroked triangle, only two lines would have been drawn, not a complete triangle.
To draw arcs or circles, we use the arc()
or arcTo()
methods.
Let's have a more detailed look at the arc
method, which takes six parameters: x
and y
are the coordinates of the center of the circle on which the arc should be drawn. radius
is self-explanatory. The startAngle
and endAngle
parameters define the start and end points of the arc in radians, along the curve of the circle. These are measured from the x axis. The anticlockwise
parameter is a Boolean value which, when true
, draws the arc anticlockwise; otherwise, the arc is drawn clockwise.
Note: Angles in the arc
function are measured in radians, not degrees. To convert degrees to radians you can use the following JavaScript expression: radians = (Math.PI/180)*degrees
.
The following example is a little more complex than the ones we've seen above. It draws 12 different arcs all with different angles and fills.
The two for
loops are for looping through the rows and columns of arcs. For each arc, we start a new path by calling beginPath()
. In the code, each of the parameters for the arc is in a variable for clarity, but you wouldn't necessarily do that in real life.
The x
and y
coordinates should be clear enough. radius
and startAngle
are fixed. The endAngle
starts at 180 degrees (half a circle) in the first column and is increased by steps of 90 degrees, culminating in a complete circle in the last column.
The statement for the clockwise
parameter results in the first and third row being drawn as clockwise arcs and the second and fourth row as counterclockwise arcs. Finally, the if
statement makes the top half stroked arcs and the bottom half filled arcs.
Note: This example requires a slightly larger canvas than the others on this page: 150 x 200 pixels.
<html> <body onload="draw();"> <canvas id="canvas" width="150" height="200"></canvas> </body> </html>
function draw() { var canvas = document.getElementById('canvas'); if (canvas.getContext){ var ctx = canvas.getContext('2d'); for(var i=0;i<4;i++){ for(var j=0;j<3;j++){ ctx.beginPath(); var x = 25+j*50; // x coordinate var y = 25+i*50; // y coordinate var radius = 20; // Arc radius var startAngle = 0; // Starting point on circle var endAngle = Math.PI+(Math.PI*j)/2; // End point on circle var anticlockwise = i%2==0 ? false : true; // clockwise or anticlockwise ctx.arc(x, y, radius, startAngle, endAngle, anticlockwise); if (i>1){ ctx.fill(); } else { ctx.stroke(); } } } } }
{{EmbedLiveSample("Arcs", 160, 210, "https://mdn.mozillademos.org/files/204/Canvas_arc.png")}}
The next type of paths available are Bézier curves, available in both cubic and quadratic varieties. These are generally used to draw complex organic shapes.
x
and y
, using the control point specified by cp1x
and cp1y
.x
and y
, using the control points specified by (cp1x
, cp1y
) and (cp2x, cp2y).The difference between these can best be described using the image on the right. A quadratic Bézier curve has a start and an end point (blue dots) and just one control point (indicated by the red dot) while a cubic Bézier curve uses two control points.
The x
and y
parameters in both of these methods are the coordinates of the end point. cp1x
and cp1y
are the coordinates of the first control point, and cp2x
and cp2y
are the coordinates of the second control point.
Using quadratic and cubic Bézier curves can be quite challenging, because unlike vector drawing software like Adobe Illustrator, we don't have direct visual feedback as to what we're doing. This makes it pretty hard to draw complex shapes. In the following example, we'll be drawing some simple organic shapes, but if you have the time and, most of all, the patience, much more complex shapes can be created.
There's nothing very difficult in these examples. In both cases we see a succession of curves being drawn which finally result in a complete shape.
This example uses multiple quadratic Bézier curves to render a speech balloon.
<html> <body onload="draw();"> <canvas id="canvas" width="150" height="150"></canvas> </body> </html>
function draw() { var canvas = document.getElementById('canvas'); if (canvas.getContext) { var ctx = canvas.getContext('2d'); // Quadratric curves example ctx.beginPath(); ctx.moveTo(75,25); ctx.quadraticCurveTo(25,25,25,62.5); ctx.quadraticCurveTo(25,100,50,100); ctx.quadraticCurveTo(50,120,30,125); ctx.quadraticCurveTo(60,120,65,100); ctx.quadraticCurveTo(125,100,125,62.5); ctx.quadraticCurveTo(125,25,75,25); ctx.stroke(); } }
{{EmbedLiveSample("Quadratic_Bezier_curves", 160, 160, "https://mdn.mozillademos.org/files/243/Canvas_quadratic.png")}}
This example draws a heart using cubic Bézier curves.
<html> <body onload="draw();"> <canvas id="canvas" width="150" height="150"></canvas> </body> </html>
function draw() { var canvas = document.getElementById('canvas'); if (canvas.getContext){ var ctx = canvas.getContext('2d'); // Quadratric curves example ctx.beginPath(); ctx.moveTo(75,40); ctx.bezierCurveTo(75,37,70,25,50,25); ctx.bezierCurveTo(20,25,20,62.5,20,62.5); ctx.bezierCurveTo(20,80,40,102,75,120); ctx.bezierCurveTo(110,102,130,80,130,62.5); ctx.bezierCurveTo(130,62.5,130,25,100,25); ctx.bezierCurveTo(85,25,75,37,75,40); ctx.fill(); } }
{{EmbedLiveSample("Cubic_Bezier_curves", 160, 160, "https://mdn.mozillademos.org/files/207/Canvas_bezier.png")}}
In addition to the three methods we saw in {{anch("Drawing rectangles")}}, which draw rectangular shapes directly to the canvas, there's also the rect()
method, which adds a rectangular path to a currently open path.
x
, y
) with the specified width
and height
.When this method is executed, the moveTo()
method is automatically called with the parameters (0,0). In other words, the current pen position is automatically reset to the default coordinates.
So far, each example on this page has used only one type of path function per shape. However, there's no limitation to the number or types of paths you can use to create a shape. So in this final example, let's combine all of the path functions to make a set of very famous game characters.
<html> <body onload="draw();"> <canvas id="canvas" width="150" height="150"></canvas> </body> </html>
function draw() { var canvas = document.getElementById('canvas'); if (canvas.getContext){ var ctx = canvas.getContext('2d'); roundedRect(ctx,12,12,150,150,15); roundedRect(ctx,19,19,150,150,9); roundedRect(ctx,53,53,49,33,10); roundedRect(ctx,53,119,49,16,6); roundedRect(ctx,135,53,49,33,10); roundedRect(ctx,135,119,25,49,10); ctx.beginPath(); ctx.arc(37,37,13,Math.PI/7,-Math.PI/7,false); ctx.lineTo(31,37); ctx.fill(); for(var i=0;i<8;i++){ ctx.fillRect(51+i*16,35,4,4); } for(i=0;i<6;i++){ ctx.fillRect(115,51+i*16,4,4); } for(i=0;i<8;i++){ ctx.fillRect(51+i*16,99,4,4); } ctx.beginPath(); ctx.moveTo(83,116); ctx.lineTo(83,102); ctx.bezierCurveTo(83,94,89,88,97,88); ctx.bezierCurveTo(105,88,111,94,111,102); ctx.lineTo(111,116); ctx.lineTo(106.333,111.333); ctx.lineTo(101.666,116); ctx.lineTo(97,111.333); ctx.lineTo(92.333,116); ctx.lineTo(87.666,111.333); ctx.lineTo(83,116); ctx.fill(); ctx.fillStyle = "white"; ctx.beginPath(); ctx.moveTo(91,96); ctx.bezierCurveTo(88,96,87,99,87,101); ctx.bezierCurveTo(87,103,88,106,91,106); ctx.bezierCurveTo(94,106,95,103,95,101); ctx.bezierCurveTo(95,99,94,96,91,96); ctx.moveTo(103,96); ctx.bezierCurveTo(100,96,99,99,99,101); ctx.bezierCurveTo(99,103,100,106,103,106); ctx.bezierCurveTo(106,106,107,103,107,101); ctx.bezierCurveTo(107,99,106,96,103,96); ctx.fill(); ctx.fillStyle = "black"; ctx.beginPath(); ctx.arc(101,102,2,0,Math.PI*2,true); ctx.fill(); ctx.beginPath(); ctx.arc(89,102,2,0,Math.PI*2,true); ctx.fill(); } } // A utility function to draw a rectangle with rounded corners. function roundedRect(ctx,x,y,width,height,radius){ ctx.beginPath(); ctx.moveTo(x,y+radius); ctx.lineTo(x,y+height-radius); ctx.arcTo(x,y+height,x+radius,y+height,radius); ctx.lineTo(x+width-radius,y+height); ctx.arcTo(x+width,y+height,x+width,y+height-radius,radius); ctx.lineTo(x+width,y+radius); ctx.arcTo(x+width,y,x+width-radius,y,radius); ctx.lineTo(x+radius,y); ctx.arcTo(x,y,x,y+radius,radius); ctx.stroke(); }
The resulting image looks like this:
{{EmbedLiveSample("Making_combinations", 160, 160, "https://mdn.mozillademos.org/files/9849/combinations.png")}}
We won't go over this in detail, since it's actually surprisingly simple. The most important things to note are the use of the fillStyle
property on the drawing context, and the use of a utility function (in this case roundedRect()
). Using utility functions for bits of drawing you do often can be very helpful and reduce the amount of code you need, as well as its complexity.
We'll take another look at fillStyle
, in more detail, later in this tutorial. Here, all we're doing is using it to change the fill color for paths from the default color of black to white, and then back again.
As we have seen in the last example, there can be a series of paths and drawing commands to draw objects onto your canvas. To simplify the code and to improve performance, the {{domxref("Path2D")}} object, available in recent versions of browsers, lets you cache or record these drawing commands. You are able to play back your paths quickly.
Lets see how we can construct a Path2D
object:
Path2D()
constructor returns a newly instantiated Path2D
object, optionally with another path as an argument (creates a copy), or optionally with a string consisting of SVG path data.new Path2D(); // empty path object new Path2D(path); // copy from another Path2D object new Path2D(d); // path from SVG path data
All path methods like moveTo
, rect
, arc
or quadraticCurveTo
, etc., which we got to know above, are available on Path2D
objects.
The Path2D
API also adds a way to combine paths using the addPath
method. This can be useful when you want to build objects from several components, for example.
In this example, we are creating a rectangle and a circle. Both are stored as a Path2D
object, so that they are available for later usage. With the new Path2D
API, several methods got updated to optionally accept a Path2D
object to use instead of the current path. Here, stroke
and fill
are used with a path argument to draw both objects onto the canvas, for example.
<html> <body onload="draw();"> <canvas id="canvas" width="130" height="100"></canvas> </body> </html>
function draw() { var canvas = document.getElementById('canvas'); if (canvas.getContext){ var ctx = canvas.getContext('2d'); var rectangle = new Path2D(); rectangle.rect(10, 10, 50, 50); var circle = new Path2D(); circle.moveTo(125, 35); circle.arc(100, 35, 25, 0, 2 * Math.PI); ctx.stroke(rectangle); ctx.fill(circle); } }
{{EmbedLiveSample("Path2D_example", 130, 110, "https://mdn.mozillademos.org/files/9851/path2d.png")}}
Another powerful feature of the new canvas Path2D
API is using SVG path data to initialize paths on your canvas. This might allow you to pass around path data and re-use them in both, SVG and canvas.
The path will move to point (M10 10
) and then move horizontally 80 points to the right (h 80
), then 80 points down (v 80
), then 80 points to the left (h -80
), and then back to the start (z
). You can see this example on the Path2D
constructor page.
var p = new Path2D("M10 10 h 80 v 80 h -80 Z");