--- title: Web Audio API slug: Web/API/Web_Audio_API translation_of: Web/API/Web_Audio_API ---
Web Audio API to potężny i uniwersalny system webowej kontroli audio umożliwiający deweloperom wybór źródeł audio, dodawanie efektów do audio, tworzenie wizualizacji audio, stosowanie efektów przestrzennych (jak panorama) i wiele więcej.
Web Audio API dotyczy przebiegu operacji audio wewnątrz kontekstu audio (audio context) i został zaprojektowany po to, by umożliwić obróbkę modularną (modular routing). Podstawowe operacje audio zostają wykonywane z węzłami audio (audio nodes), które złączone tworzą wykres trasowania audio (audio routing graph). Niektóre źródła - o różnych typach układów kanałów - są wspierane nawet w obrębie pojedynczego kontekstu. Modularny design cechuje się elastycznością umożliwiającą tworzenie złożonych funkcji audio z efektami dynamicznymi.
Audio nodes are linked into chains and simple webs by their inputs and outputs. They typically start with one or more sources. Sources provide arrays of sound intensities (samples) at very small timeslices, often tens of thousands of them per second. These could be either computed mathematically (such as {{domxref("OscillatorNode")}}), or they can be recordings from sound/video files (like {{domxref("AudioBufferSourceNode")}} and {{domxref("MediaElementAudioSourceNode")}}) and audio streams ({{domxref("MediaStreamAudioSourceNode")}}). In fact, sound files are just recordings of sound intensities themselves, which come in from microphones or electric instruments, and get mixed down into a single, complicated wave.
Outputs of these nodes could be linked to inputs of others, which mix or modify these streams of sound samples into different streams. A common modification is multiplying the samples by a value to make them louder or quieter (as is the case with {{domxref("GainNode")}}). Once the sound has been sufficiently processed for the intended effect, it can be linked to the input of a destination ({{domxref("AudioContext.destination")}}), which sends the sound to the speakers or headphones. This last connection is only necessary if the user is supposed to hear the audio.
A simple, typical workflow for web audio would look something like this:
<audio>
, oscillator, streamTiming is controlled with high precision and low latency, allowing developers to write code that responds accurately to events and is able to target specific samples, even at a high sample rate. So applications such as drum machines and sequencers are well within reach.
The Web Audio API also allows us to control how audio is spatialized. Using a system based on a source-listener model, it allows control of the panning model and deals with distance-induced attenuation or doppler shift induced by a moving source (or moving listener).
You can read about the theory of the Web Audio API in a lot more detail in our article Basic concepts behind Web Audio API.
The Web Audio API has a number of interfaces and associated events, which we have split up into nine categories of functionality.
General containers and definitions that shape audio graphs in Web Audio API usage.
AudioContext
interface represents an audio-processing graph built from audio modules linked together, each represented by an {{domxref("AudioNode")}}. An audio context controls the creation of the nodes it contains and the execution of the audio processing, or decoding. You need to create an AudioContext
before you do anything else, as everything happens inside a context.AudioNode
interface represents an audio-processing module like an audio source (e.g. an HTML {{HTMLElement("audio")}} or {{HTMLElement("video")}} element), audio destination, intermediate processing module (e.g. a filter like {{domxref("BiquadFilterNode")}}, or volume control like {{domxref("GainNode")}}).AudioParam
interface represents an audio-related parameter, like one of an {{domxref("AudioNode")}}. It can be set to a specific value or a change in value, and can be scheduled to happen at a specific time and following a specific pattern.ended
event is fired when playback has stopped because the end of the media was reached.Interfaces that define audio sources for use in the Web Audio API.
OscillatorNode
interface represents a periodic waveform, such as a sine or triangle wave. It is an {{domxref("AudioNode")}} audio-processing module that causes a given frequency of wave to be created.AudioBuffer
interface represents a short audio asset residing in memory, created from an audio file using the {{ domxref("AudioContext.decodeAudioData()") }} method, or created with raw data using {{ domxref("AudioContext.createBuffer()") }}. Once decoded into this form, the audio can then be put into an {{ domxref("AudioBufferSourceNode") }}.AudioBufferSourceNode
interface represents an audio source consisting of in-memory audio data, stored in an {{domxref("AudioBuffer")}}. It is an {{domxref("AudioNode")}} that acts as an audio source.MediaElementAudio
SourceNode
interface represents an audio source consisting of an HTML5 {{ htmlelement("audio") }} or {{ htmlelement("video") }} element. It is an {{domxref("AudioNode")}} that acts as an audio source.MediaStreamAudio
SourceNode
interface represents an audio source consisting of a WebRTC {{domxref("MediaStream")}} (such as a webcam, microphone, or a stream being sent from a remote computer). It is an {{domxref("AudioNode")}} that acts as an audio source.Interfaces for defining effects that you want to apply to your audio sources.
BiquadFilterNode
interface represents a simple low-order filter. It is an {{domxref("AudioNode")}} that can represent different kinds of filters, tone control devices, or graphic equalizers. A BiquadFilterNode
always has exactly one input and one output.Convolver
Node
interface is an {{domxref("AudioNode")}} that performs a Linear Convolution on a given {{domxref("AudioBuffer")}}, and is often used to achieve a reverb effect.DelayNode
interface represents a delay-line; an {{domxref("AudioNode")}} audio-processing module that causes a delay between the arrival of an input data and its propagation to the output.DynamicsCompressorNode
interface provides a compression effect, which lowers the volume of the loudest parts of the signal in order to help prevent clipping and distortion that can occur when multiple sounds are played and multiplexed together at once.GainNode
interface represents a change in volume. It is an {{domxref("AudioNode")}} audio-processing module that causes a given gain to be applied to the input data before its propagation to the output.StereoPannerNode
interface represents a simple stereo panner node that can be used to pan an audio stream left or right.WaveShaperNode
interface represents a non-linear distorter. It is an {{domxref("AudioNode")}} that use a curve to apply a waveshaping distortion to the signal. Beside obvious distortion effects, it is often used to add a warm feeling to the signal.Once you are done processing your audio, these interfaces define where to output it.
AudioDestinationNode
interface represents the end destination of an audio source in a given context — usually the speakers of your device.MediaStreamAudio
DestinationNode
interface represents an audio destination consisting of a WebRTC {{domxref("MediaStream")}} with a single AudioMediaStreamTrack
, which can be used in a similar way to a {{domxref("MediaStream")}} obtained from {{ domxref("MediaDevices.getUserMedia", "getUserMedia()") }}. It is an {{domxref("AudioNode")}} that acts as an audio destination.If you want to extract time, frequency, and other data from your audio, the AnalyserNode
is what you need.
AnalyserNode
interface represents a node able to provide real-time frequency and time-domain analysis information, for the purposes of data analysis and visualization.To split and merge audio channels, you'll use these interfaces.
ChannelSplitterNode
interface separates the different channels of an audio source out into a set of mono outputs.ChannelMergerNode
interface reunites different mono inputs into a single output. Each input will be used to fill a channel of the output.These interfaces allow you to add audio spatialization panning effects to your audio sources.
AudioListener
interface represents the position and orientation of the unique person listening to the audio scene used in audio spatialization.PannerNode
interface represents the behavior of a signal in space. It is an {{domxref("AudioNode")}} audio-processing module describing its position with right-hand Cartesian coordinates, its movement using a velocity vector and its directionality using a directionality cone.You can write JavaScript code to process audio data. To do so, you use the interfaces and events listed below.
As of the August 29, 2014 version of the Web Audio API spec. these features have been marked as deprecated, and are soon to be replaced by {{ anch("Audio_Workers") }}.
ScriptProcessorNode
interface allows the generation, processing, or analyzing of audio using JavaScript. It is an {{domxref("AudioNode")}} audio-processing module that is linked to two buffers, one containing the current input, one containing the output. An event, implementing the {{domxref("AudioProcessingEvent")}} interface, is sent to the object each time the input buffer contains new data, and the event handler terminates when it has filled the output buffer with data.audioprocess
event is fired when an input buffer of a Web Audio API {{domxref("ScriptProcessorNode")}} is ready to be processed.AudioProcessingEvent
represents events that occur when a {{domxref("ScriptProcessorNode")}} input buffer is ready to be processed.It is possible to process/render an audio graph very quickly in the background — rendering it to an {{domxref("AudioBuffer")}} rather than to the device's speakers — with the following.
OfflineAudioContext
interface is an {{domxref("AudioContext")}} interface representing an audio-processing graph built from linked together {{domxref("AudioNode")}}s. In contrast with a standard AudioContext
, an OfflineAudioContext
doesn't really render the audio but rather generates it, as fast as it can, in a buffer.complete
event is fired when the rendering of an {{domxref("OfflineAudioContext")}} is terminated.OfflineAudioCompletionEvent
represents events that occur when the processing of an {{domxref("OfflineAudioContext")}} is terminated. The {{event("complete")}} event implements this interface.Audio workers provide the ability for direct scripted audio processing to be done inside a web worker context, and are defined by a couple of interfaces (new as of 29th August 2014). These are not implemented in any browsers yet. When implemented, they will replace {{domxref("ScriptProcessorNode")}}, and the other features discussed in the Audio processing in JavaScript section above.
AudioWorkerGlobalScope
interface is a DedicatedWorkerGlobalScope
-derived object representing a worker context in which an audio processing script is run; it is designed to enable the generation, processing, and analysis of audio data directly using JavaScript in a worker thread.Event
object that is dispatched to {{domxref("AudioWorkerGlobalScope")}} objects to perform processing.The following interfaces were defined in old versions of the Web Audio API spec, but are now obsolete and have been replaced by other interfaces.
This example shows a wide variety of Web Audio API functions being used. You can see this code in action on the Voice-change-o-matic demo (also check out the full source code at Github) — this is an experimental voice changer toy demo; keep your speakers turned down low when you use it, at least to start!
The Web Audio API lines are highlighted; if you want to find out more about what the different methods, etc. do, have a search around the reference pages.
var audioCtx = new (window.AudioContext || window.webkitAudioContext)(); // define audio context // Webkit/blink browsers need prefix, Safari won't work without window. var voiceSelect = document.getElementById("voice"); // select box for selecting voice effect options var visualSelect = document.getElementById("visual"); // select box for selecting audio visualization options var mute = document.querySelector('.mute'); // mute button var drawVisual; // requestAnimationFrame var analyser = audioCtx.createAnalyser(); var distortion = audioCtx.createWaveShaper(); var gainNode = audioCtx.createGain(); var biquadFilter = audioCtx.createBiquadFilter(); function makeDistortionCurve(amount) { // function to make curve shape for distortion/wave shaper node to use var k = typeof amount === 'number' ? amount : 50, n_samples = 44100, curve = new Float32Array(n_samples), deg = Math.PI / 180, i = 0, x; for ( ; i < n_samples; ++i ) { x = i * 2 / n_samples - 1; curve[i] = ( 3 + k ) * x * 20 * deg / ( Math.PI + k * Math.abs(x) ); } return curve; }; navigator.getUserMedia ( // constraints - only audio needed for this app { audio: true }, // Success callback function(stream) { source = audioCtx.createMediaStreamSource(stream); source.connect(analyser); analyser.connect(distortion); distortion.connect(biquadFilter); biquadFilter.connect(gainNode); gainNode.connect(audioCtx.destination); // connecting the different audio graph nodes together visualize(stream); voiceChange(); }, // Error callback function(err) { console.log('The following gUM error occured: ' + err); } ); function visualize(stream) { WIDTH = canvas.width; HEIGHT = canvas.height; var visualSetting = visualSelect.value; console.log(visualSetting); if(visualSetting == "sinewave") { analyser.fftSize = 2048; var bufferLength = analyser.frequencyBinCount; // half the FFT value var dataArray = new Uint8Array(bufferLength); // create an array to store the data canvasCtx.clearRect(0, 0, WIDTH, HEIGHT); function draw() { drawVisual = requestAnimationFrame(draw); analyser.getByteTimeDomainData(dataArray); // get waveform data and put it into the array created above canvasCtx.fillStyle = 'rgb(200, 200, 200)'; // draw wave with canvas canvasCtx.fillRect(0, 0, WIDTH, HEIGHT); canvasCtx.lineWidth = 2; canvasCtx.strokeStyle = 'rgb(0, 0, 0)'; canvasCtx.beginPath(); var sliceWidth = WIDTH * 1.0 / bufferLength; var x = 0; for(var i = 0; i < bufferLength; i++) { var v = dataArray[i] / 128.0; var y = v * HEIGHT/2; if(i === 0) { canvasCtx.moveTo(x, y); } else { canvasCtx.lineTo(x, y); } x += sliceWidth; } canvasCtx.lineTo(canvas.width, canvas.height/2); canvasCtx.stroke(); }; draw(); } else if(visualSetting == "off") { canvasCtx.clearRect(0, 0, WIDTH, HEIGHT); canvasCtx.fillStyle = "red"; canvasCtx.fillRect(0, 0, WIDTH, HEIGHT); } } function voiceChange() { distortion.curve = new Float32Array; biquadFilter.gain.value = 0; // reset the effects each time the voiceChange function is run var voiceSetting = voiceSelect.value; console.log(voiceSetting); if(voiceSetting == "distortion") { distortion.curve = makeDistortionCurve(400); // apply distortion to sound using waveshaper node } else if(voiceSetting == "biquad") { biquadFilter.type = "lowshelf"; biquadFilter.frequency.value = 1000; biquadFilter.gain.value = 25; // apply lowshelf filter to sounds using biquad } else if(voiceSetting == "off") { console.log("Voice settings turned off"); // do nothing, as off option was chosen } } // event listeners to change visualize and voice settings visualSelect.onchange = function() { window.cancelAnimationFrame(drawVisual); visualize(stream); } voiceSelect.onchange = function() { voiceChange(); } mute.onclick = voiceMute; function voiceMute() { // toggle to mute and unmute sound if(mute.id == "") { gainNode.gain.value = 0; // gain set to 0 to mute sound mute.id = "activated"; mute.innerHTML = "Unmute"; } else { gainNode.gain.value = 1; // gain set to 1 to unmute sound mute.id = ""; mute.innerHTML = "Mute"; } }
Specification | Status | Comment |
---|---|---|
{{SpecName('Web Audio API')}} | {{Spec2('Web Audio API')}} |
Feature | Chrome | Edge | Firefox (Gecko) | Internet Explorer | Opera | Safari (WebKit) |
---|---|---|---|---|---|---|
Basic support | 14 {{property_prefix("webkit")}} | {{CompatVersionUnknown}} | 23 | {{CompatNo}} | 15 {{property_prefix("webkit")}} 22 (unprefixed) |
6 {{property_prefix("webkit")}} |
Feature | Android | Chrome | Edge | Firefox Mobile (Gecko) | Firefox OS | IE Phone | Opera Mobile | Safari Mobile |
---|---|---|---|---|---|---|---|---|
Basic support | {{CompatNo}} | 28 {{property_prefix("webkit")}} | {{CompatVersionUnknown}} | 25 | 1.2 | {{CompatNo}} | {{CompatNo}} | 6 {{property_prefix("webkit")}} |