1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
---
title: CanvasRenderingContext2D.quadraticCurveTo()
slug: Web/API/CanvasRenderingContext2D/quadraticCurveTo
tags:
- Canvas
- CanvasRenderingContext2D
translation_of: Web/API/CanvasRenderingContext2D/quadraticCurveTo
---
<div>{{APIRef}}</div>
<p><code><strong>CanvasRenderingContext2D</strong></code><strong><code>.quadraticCurveTo()</code></strong> 是 Canvas 2D API 新增二次贝塞尔曲线路径的方法。它需要2个点。 第一个点是控制点,第二个点是终点。 起始点是当前路径最新的点,当创建二次贝赛尔曲线之前,可以使用 <code>moveTo()</code> 方法进行改变。</p>
<h2 id="语法">语法</h2>
<pre class="syntaxbox">void <var><em>ctx</em>.quadraticCurveTo(cpx, cpy, x, y);</var>
</pre>
<h3 id="参数">参数</h3>
<dl>
<dt><code>cpx</code></dt>
<dd>控制点的 x 轴坐标。</dd>
<dt><code>cpy</code></dt>
<dd>控制点的 y 轴坐标。</dd>
<dt><code>x</code></dt>
<dd>终点的 x 轴坐标。</dd>
<dt><code>y</code></dt>
<dd>终点的 y 轴坐标。</dd>
</dl>
<h2 id="示例">示例</h2>
<h3 id="quadraticCurveTo_如何工作"><code>quadraticCurveTo</code> 如何工作</h3>
<p>这是一段绘制二次贝赛尔曲线的简单的代码片段。 <span style="color: red;">控制点是红色</span>,<span style="color: blue;">起点和终点是蓝色。</span></p>
<h4 id="HTML">HTML</h4>
<pre class="brush: html"><canvas id="canvas"></canvas>
</pre>
<h4 id="JavaScript">JavaScript</h4>
<pre class="brush: js">const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
// Quadratic Bézier curve
ctx.beginPath();
ctx.moveTo(50, 20);
ctx.quadraticCurveTo(230, 30, 50, 100);
ctx.stroke();
// Start and end points
ctx.fillStyle = 'blue';
ctx.beginPath();
ctx.arc(50, 20, 5, 0, 2 * Math.PI); // Start point
ctx.arc(50, 100, 5, 0, 2 * Math.PI); // End point
ctx.fill();
// Control point
ctx.fillStyle = 'red';
ctx.beginPath();
ctx.arc(230, 30, 5, 0, 2 * Math.PI);
ctx.fill();</pre>
<div class="hidden">
<h2 id="Using_the_quadraticCurveTo_method">Using_the_quadraticCurveTo_method</h2>
<h3 id="HTML_2">HTML</h3>
<pre class="brush: html"><canvas id="canvas"></canvas>
</pre>
<h3 id="JavaScript_2">JavaScript</h3>
<pre class="brush: js">const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
// Quadratic Bézier curve
ctx.beginPath();
ctx.moveTo(50, 20);
ctx.quadraticCurveTo(230, 30, 50, 100);
ctx.stroke();
// Start and end points
ctx.fillStyle = 'blue';
ctx.beginPath();
ctx.arc(50, 20, 5, 0, 2 * Math.PI); // Start point
ctx.arc(50, 100, 5, 0, 2 * Math.PI); // End point
ctx.fill();
// Control point
ctx.fillStyle = 'red';
ctx.beginPath();
ctx.arc(230, 30, 5, 0, 2 * Math.PI);
ctx.fill();</pre>
</div>
<p>{{ EmbedLiveSample('Using_the_quadraticCurveTo_method', 315, 165) }}</p>
<h3 id="简单的二次曲线">简单的二次曲线</h3>
<p>此示例使用<code>quadraticCurveTo()</code>绘制了简单的二次Bézier曲线。</p>
<h4 id="HTML_3">HTML</h4>
<pre class="brush: html"><canvas id="canvas"></canvas>
</pre>
<h4 id="JavaScript_3">JavaScript</h4>
<p>曲线从<code>moveTo()</code>指定的点开始: (20, 110)。 控制点位于(230, 150)。 曲线在(250, 20)处结束。</p>
<pre class="brush: js">const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
ctx.beginPath();
ctx.moveTo(20, 110);
ctx.quadraticCurveTo(230, 150, 250, 20);
ctx.stroke();
</pre>
<h4 id="结果">结果</h4>
<div class="hidden">
<h2 id="Trying_the_quadraticCurveTo_parameters">Trying_the_quadraticCurveTo_parameters</h2>
<h3 id="HTML_4">HTML</h3>
<pre class="brush: html"><canvas id="canvas"></canvas>
</pre>
<h3 id="JavaScript_4">JavaScript</h3>
<pre class="brush: js">const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
ctx.beginPath();
ctx.moveTo(20, 110);
ctx.quadraticCurveTo(230, 150, 250, 20);
ctx.stroke();
</pre>
</div>
<div class="hidden">
<pre class="brush: html"><canvas id="canvas" width="400" height="200" class="playable-canvas"></canvas>
<div class="playable-buttons">
<input id="edit" type="button" value="Edit" />
<input id="reset" type="button" value="Reset" />
</div>
<textarea id="code" class="playable-code">
ctx.beginPath();
ctx.moveTo(50,20);
ctx.quadraticCurveTo(230, 30, 50, 100);
ctx.stroke();</textarea>
</pre>
<pre class="brush: js">var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var textarea = document.getElementById("code");
var reset = document.getElementById("reset");
var edit = document.getElementById("edit");
var code = textarea.value;
function drawCanvas() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
eval(textarea.value);
}
reset.addEventListener("click", function() {
textarea.value = code;
drawCanvas();
});
edit.addEventListener("click", function() {
textarea.focus();
})
textarea.addEventListener("input", drawCanvas);
window.addEventListener("load", drawCanvas);
</pre>
</div>
<p>{{ EmbedLiveSample('Trying_the_quadraticCurveTo_parameters', 700, 360) }}</p>
<h2 id="规范描述">规范描述</h2>
<table class="standard-table">
<tbody>
<tr>
<th scope="col">Specification</th>
<th scope="col">Status</th>
<th scope="col">Comment</th>
</tr>
<tr>
<td>{{SpecName('HTML WHATWG', "scripting.html#dom-context-2d-quadraticcurveto", "CanvasRenderingContext2D.quadraticCurveTo")}}</td>
<td>{{Spec2('HTML WHATWG')}}</td>
<td></td>
</tr>
</tbody>
</table>
<h2 id="浏览器兼容性">浏览器兼容性</h2>
<div class="hidden">
<p>此页面上的兼容性表是根据结构化数据生成的。 如果您想提供数据,请查看<a href="https://github.com/mdn/browser-compat-data">https://github.com/mdn/browser-compat-data</a>并向我们发送请求请求。</p>
</div>
<p>{{Compat("api.CanvasRenderingContext2D.quadraticCurveTo")}}</p>
<ul>
<li>接口定义,{{domxref("CanvasRenderingContext2D")}}</li>
<li><a href="http://en.wikipedia.org/wiki/B%C3%A9zier_curve">WikiPedia article on Bézier curves</a>.</li>
</ul>
|