aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/snappy
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/snappy')
-rw-r--r--vendor/github.com/golang/snappy/.gitignore16
-rw-r--r--vendor/github.com/golang/snappy/AUTHORS17
-rw-r--r--vendor/github.com/golang/snappy/CONTRIBUTORS39
-rw-r--r--vendor/github.com/golang/snappy/LICENSE27
-rw-r--r--vendor/github.com/golang/snappy/README107
-rw-r--r--vendor/github.com/golang/snappy/decode.go241
-rw-r--r--vendor/github.com/golang/snappy/decode_amd64.s490
-rw-r--r--vendor/github.com/golang/snappy/decode_arm64.s494
-rw-r--r--vendor/github.com/golang/snappy/decode_asm.go15
-rw-r--r--vendor/github.com/golang/snappy/decode_other.go115
-rw-r--r--vendor/github.com/golang/snappy/encode.go289
-rw-r--r--vendor/github.com/golang/snappy/encode_amd64.s730
-rw-r--r--vendor/github.com/golang/snappy/encode_arm64.s722
-rw-r--r--vendor/github.com/golang/snappy/encode_asm.go30
-rw-r--r--vendor/github.com/golang/snappy/encode_other.go238
-rw-r--r--vendor/github.com/golang/snappy/go.mod1
-rw-r--r--vendor/github.com/golang/snappy/snappy.go98
17 files changed, 0 insertions, 3669 deletions
diff --git a/vendor/github.com/golang/snappy/.gitignore b/vendor/github.com/golang/snappy/.gitignore
deleted file mode 100644
index 042091d9b..000000000
--- a/vendor/github.com/golang/snappy/.gitignore
+++ /dev/null
@@ -1,16 +0,0 @@
-cmd/snappytool/snappytool
-testdata/bench
-
-# These explicitly listed benchmark data files are for an obsolete version of
-# snappy_test.go.
-testdata/alice29.txt
-testdata/asyoulik.txt
-testdata/fireworks.jpeg
-testdata/geo.protodata
-testdata/html
-testdata/html_x_4
-testdata/kppkn.gtb
-testdata/lcet10.txt
-testdata/paper-100k.pdf
-testdata/plrabn12.txt
-testdata/urls.10K
diff --git a/vendor/github.com/golang/snappy/AUTHORS b/vendor/github.com/golang/snappy/AUTHORS
deleted file mode 100644
index 203e84eba..000000000
--- a/vendor/github.com/golang/snappy/AUTHORS
+++ /dev/null
@@ -1,17 +0,0 @@
-# This is the official list of Snappy-Go authors for copyright purposes.
-# This file is distinct from the CONTRIBUTORS files.
-# See the latter for an explanation.
-
-# Names should be added to this file as
-# Name or Organization <email address>
-# The email address is not required for organizations.
-
-# Please keep the list sorted.
-
-Amazon.com, Inc
-Damian Gryski <dgryski@gmail.com>
-Google Inc.
-Jan Mercl <0xjnml@gmail.com>
-Klaus Post <klauspost@gmail.com>
-Rodolfo Carvalho <rhcarvalho@gmail.com>
-Sebastien Binet <seb.binet@gmail.com>
diff --git a/vendor/github.com/golang/snappy/CONTRIBUTORS b/vendor/github.com/golang/snappy/CONTRIBUTORS
deleted file mode 100644
index d9914732b..000000000
--- a/vendor/github.com/golang/snappy/CONTRIBUTORS
+++ /dev/null
@@ -1,39 +0,0 @@
-# This is the official list of people who can contribute
-# (and typically have contributed) code to the Snappy-Go repository.
-# The AUTHORS file lists the copyright holders; this file
-# lists people. For example, Google employees are listed here
-# but not in AUTHORS, because Google holds the copyright.
-#
-# The submission process automatically checks to make sure
-# that people submitting code are listed in this file (by email address).
-#
-# Names should be added to this file only after verifying that
-# the individual or the individual's organization has agreed to
-# the appropriate Contributor License Agreement, found here:
-#
-# http://code.google.com/legal/individual-cla-v1.0.html
-# http://code.google.com/legal/corporate-cla-v1.0.html
-#
-# The agreement for individuals can be filled out on the web.
-#
-# When adding J Random Contributor's name to this file,
-# either J's name or J's organization's name should be
-# added to the AUTHORS file, depending on whether the
-# individual or corporate CLA was used.
-
-# Names should be added to this file like so:
-# Name <email address>
-
-# Please keep the list sorted.
-
-Damian Gryski <dgryski@gmail.com>
-Jan Mercl <0xjnml@gmail.com>
-Jonathan Swinney <jswinney@amazon.com>
-Kai Backman <kaib@golang.org>
-Klaus Post <klauspost@gmail.com>
-Marc-Antoine Ruel <maruel@chromium.org>
-Nigel Tao <nigeltao@golang.org>
-Rob Pike <r@golang.org>
-Rodolfo Carvalho <rhcarvalho@gmail.com>
-Russ Cox <rsc@golang.org>
-Sebastien Binet <seb.binet@gmail.com>
diff --git a/vendor/github.com/golang/snappy/LICENSE b/vendor/github.com/golang/snappy/LICENSE
deleted file mode 100644
index 6050c10f4..000000000
--- a/vendor/github.com/golang/snappy/LICENSE
+++ /dev/null
@@ -1,27 +0,0 @@
-Copyright (c) 2011 The Snappy-Go Authors. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are
-met:
-
- * Redistributions of source code must retain the above copyright
-notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above
-copyright notice, this list of conditions and the following disclaimer
-in the documentation and/or other materials provided with the
-distribution.
- * Neither the name of Google Inc. nor the names of its
-contributors may be used to endorse or promote products derived from
-this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/vendor/github.com/golang/snappy/README b/vendor/github.com/golang/snappy/README
deleted file mode 100644
index cea12879a..000000000
--- a/vendor/github.com/golang/snappy/README
+++ /dev/null
@@ -1,107 +0,0 @@
-The Snappy compression format in the Go programming language.
-
-To download and install from source:
-$ go get github.com/golang/snappy
-
-Unless otherwise noted, the Snappy-Go source files are distributed
-under the BSD-style license found in the LICENSE file.
-
-
-
-Benchmarks.
-
-The golang/snappy benchmarks include compressing (Z) and decompressing (U) ten
-or so files, the same set used by the C++ Snappy code (github.com/google/snappy
-and note the "google", not "golang"). On an "Intel(R) Core(TM) i7-3770 CPU @
-3.40GHz", Go's GOARCH=amd64 numbers as of 2016-05-29:
-
-"go test -test.bench=."
-
-_UFlat0-8 2.19GB/s ± 0% html
-_UFlat1-8 1.41GB/s ± 0% urls
-_UFlat2-8 23.5GB/s ± 2% jpg
-_UFlat3-8 1.91GB/s ± 0% jpg_200
-_UFlat4-8 14.0GB/s ± 1% pdf
-_UFlat5-8 1.97GB/s ± 0% html4
-_UFlat6-8 814MB/s ± 0% txt1
-_UFlat7-8 785MB/s ± 0% txt2
-_UFlat8-8 857MB/s ± 0% txt3
-_UFlat9-8 719MB/s ± 1% txt4
-_UFlat10-8 2.84GB/s ± 0% pb
-_UFlat11-8 1.05GB/s ± 0% gaviota
-
-_ZFlat0-8 1.04GB/s ± 0% html
-_ZFlat1-8 534MB/s ± 0% urls
-_ZFlat2-8 15.7GB/s ± 1% jpg
-_ZFlat3-8 740MB/s ± 3% jpg_200
-_ZFlat4-8 9.20GB/s ± 1% pdf
-_ZFlat5-8 991MB/s ± 0% html4
-_ZFlat6-8 379MB/s ± 0% txt1
-_ZFlat7-8 352MB/s ± 0% txt2
-_ZFlat8-8 396MB/s ± 1% txt3
-_ZFlat9-8 327MB/s ± 1% txt4
-_ZFlat10-8 1.33GB/s ± 1% pb
-_ZFlat11-8 605MB/s ± 1% gaviota
-
-
-
-"go test -test.bench=. -tags=noasm"
-
-_UFlat0-8 621MB/s ± 2% html
-_UFlat1-8 494MB/s ± 1% urls
-_UFlat2-8 23.2GB/s ± 1% jpg
-_UFlat3-8 1.12GB/s ± 1% jpg_200
-_UFlat4-8 4.35GB/s ± 1% pdf
-_UFlat5-8 609MB/s ± 0% html4
-_UFlat6-8 296MB/s ± 0% txt1
-_UFlat7-8 288MB/s ± 0% txt2
-_UFlat8-8 309MB/s ± 1% txt3
-_UFlat9-8 280MB/s ± 1% txt4
-_UFlat10-8 753MB/s ± 0% pb
-_UFlat11-8 400MB/s ± 0% gaviota
-
-_ZFlat0-8 409MB/s ± 1% html
-_ZFlat1-8 250MB/s ± 1% urls
-_ZFlat2-8 12.3GB/s ± 1% jpg
-_ZFlat3-8 132MB/s ± 0% jpg_200
-_ZFlat4-8 2.92GB/s ± 0% pdf
-_ZFlat5-8 405MB/s ± 1% html4
-_ZFlat6-8 179MB/s ± 1% txt1
-_ZFlat7-8 170MB/s ± 1% txt2
-_ZFlat8-8 189MB/s ± 1% txt3
-_ZFlat9-8 164MB/s ± 1% txt4
-_ZFlat10-8 479MB/s ± 1% pb
-_ZFlat11-8 270MB/s ± 1% gaviota
-
-
-
-For comparison (Go's encoded output is byte-for-byte identical to C++'s), here
-are the numbers from C++ Snappy's
-
-make CXXFLAGS="-O2 -DNDEBUG -g" clean snappy_unittest.log && cat snappy_unittest.log
-
-BM_UFlat/0 2.4GB/s html
-BM_UFlat/1 1.4GB/s urls
-BM_UFlat/2 21.8GB/s jpg
-BM_UFlat/3 1.5GB/s jpg_200
-BM_UFlat/4 13.3GB/s pdf
-BM_UFlat/5 2.1GB/s html4
-BM_UFlat/6 1.0GB/s txt1
-BM_UFlat/7 959.4MB/s txt2
-BM_UFlat/8 1.0GB/s txt3
-BM_UFlat/9 864.5MB/s txt4
-BM_UFlat/10 2.9GB/s pb
-BM_UFlat/11 1.2GB/s gaviota
-
-BM_ZFlat/0 944.3MB/s html (22.31 %)
-BM_ZFlat/1 501.6MB/s urls (47.78 %)
-BM_ZFlat/2 14.3GB/s jpg (99.95 %)
-BM_ZFlat/3 538.3MB/s jpg_200 (73.00 %)
-BM_ZFlat/4 8.3GB/s pdf (83.30 %)
-BM_ZFlat/5 903.5MB/s html4 (22.52 %)
-BM_ZFlat/6 336.0MB/s txt1 (57.88 %)
-BM_ZFlat/7 312.3MB/s txt2 (61.91 %)
-BM_ZFlat/8 353.1MB/s txt3 (54.99 %)
-BM_ZFlat/9 289.9MB/s txt4 (66.26 %)
-BM_ZFlat/10 1.2GB/s pb (19.68 %)
-BM_ZFlat/11 527.4MB/s gaviota (37.72 %)
diff --git a/vendor/github.com/golang/snappy/decode.go b/vendor/github.com/golang/snappy/decode.go
deleted file mode 100644
index f1e04b172..000000000
--- a/vendor/github.com/golang/snappy/decode.go
+++ /dev/null
@@ -1,241 +0,0 @@
-// Copyright 2011 The Snappy-Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package snappy
-
-import (
- "encoding/binary"
- "errors"
- "io"
-)
-
-var (
- // ErrCorrupt reports that the input is invalid.
- ErrCorrupt = errors.New("snappy: corrupt input")
- // ErrTooLarge reports that the uncompressed length is too large.
- ErrTooLarge = errors.New("snappy: decoded block is too large")
- // ErrUnsupported reports that the input isn't supported.
- ErrUnsupported = errors.New("snappy: unsupported input")
-
- errUnsupportedLiteralLength = errors.New("snappy: unsupported literal length")
-)
-
-// DecodedLen returns the length of the decoded block.
-func DecodedLen(src []byte) (int, error) {
- v, _, err := decodedLen(src)
- return v, err
-}
-
-// decodedLen returns the length of the decoded block and the number of bytes
-// that the length header occupied.
-func decodedLen(src []byte) (blockLen, headerLen int, err error) {
- v, n := binary.Uvarint(src)
- if n <= 0 || v > 0xffffffff {
- return 0, 0, ErrCorrupt
- }
-
- const wordSize = 32 << (^uint(0) >> 32 & 1)
- if wordSize == 32 && v > 0x7fffffff {
- return 0, 0, ErrTooLarge
- }
- return int(v), n, nil
-}
-
-const (
- decodeErrCodeCorrupt = 1
- decodeErrCodeUnsupportedLiteralLength = 2
-)
-
-// Decode returns the decoded form of src. The returned slice may be a sub-
-// slice of dst if dst was large enough to hold the entire decoded block.
-// Otherwise, a newly allocated slice will be returned.
-//
-// The dst and src must not overlap. It is valid to pass a nil dst.
-//
-// Decode handles the Snappy block format, not the Snappy stream format.
-func Decode(dst, src []byte) ([]byte, error) {
- dLen, s, err := decodedLen(src)
- if err != nil {
- return nil, err
- }
- if dLen <= len(dst) {
- dst = dst[:dLen]
- } else {
- dst = make([]byte, dLen)
- }
- switch decode(dst, src[s:]) {
- case 0:
- return dst, nil
- case decodeErrCodeUnsupportedLiteralLength:
- return nil, errUnsupportedLiteralLength
- }
- return nil, ErrCorrupt
-}
-
-// NewReader returns a new Reader that decompresses from r, using the framing
-// format described at
-// https://github.com/google/snappy/blob/master/framing_format.txt
-func NewReader(r io.Reader) *Reader {
- return &Reader{
- r: r,
- decoded: make([]byte, maxBlockSize),
- buf: make([]byte, maxEncodedLenOfMaxBlockSize+checksumSize),
- }
-}
-
-// Reader is an io.Reader that can read Snappy-compressed bytes.
-//
-// Reader handles the Snappy stream format, not the Snappy block format.
-type Reader struct {
- r io.Reader
- err error
- decoded []byte
- buf []byte
- // decoded[i:j] contains decoded bytes that have not yet been passed on.
- i, j int
- readHeader bool
-}
-
-// Reset discards any buffered data, resets all state, and switches the Snappy
-// reader to read from r. This permits reusing a Reader rather than allocating
-// a new one.
-func (r *Reader) Reset(reader io.Reader) {
- r.r = reader
- r.err = nil
- r.i = 0
- r.j = 0
- r.readHeader = false
-}
-
-func (r *Reader) readFull(p []byte, allowEOF bool) (ok bool) {
- if _, r.err = io.ReadFull(r.r, p); r.err != nil {
- if r.err == io.ErrUnexpectedEOF || (r.err == io.EOF && !allowEOF) {
- r.err = ErrCorrupt
- }
- return false
- }
- return true
-}
-
-// Read satisfies the io.Reader interface.
-func (r *Reader) Read(p []byte) (int, error) {
- if r.err != nil {
- return 0, r.err
- }
- for {
- if r.i < r.j {
- n := copy(p, r.decoded[r.i:r.j])
- r.i += n
- return n, nil
- }
- if !r.readFull(r.buf[:4], true) {
- return 0, r.err
- }
- chunkType := r.buf[0]
- if !r.readHeader {
- if chunkType != chunkTypeStreamIdentifier {
- r.err = ErrCorrupt
- return 0, r.err
- }
- r.readHeader = true
- }
- chunkLen := int(r.buf[1]) | int(r.buf[2])<<8 | int(r.buf[3])<<16
- if chunkLen > len(r.buf) {
- r.err = ErrUnsupported
- return 0, r.err
- }
-
- // The chunk types are specified at
- // https://github.com/google/snappy/blob/master/framing_format.txt
- switch chunkType {
- case chunkTypeCompressedData:
- // Section 4.2. Compressed data (chunk type 0x00).
- if chunkLen < checksumSize {
- r.err = ErrCorrupt
- return 0, r.err
- }
- buf := r.buf[:chunkLen]
- if !r.readFull(buf, false) {
- return 0, r.err
- }
- checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
- buf = buf[checksumSize:]
-
- n, err := DecodedLen(buf)
- if err != nil {
- r.err = err
- return 0, r.err
- }
- if n > len(r.decoded) {
- r.err = ErrCorrupt
- return 0, r.err
- }
- if _, err := Decode(r.decoded, buf); err != nil {
- r.err = err
- return 0, r.err
- }
- if crc(r.decoded[:n]) != checksum {
- r.err = ErrCorrupt
- return 0, r.err
- }
- r.i, r.j = 0, n
- continue
-
- case chunkTypeUncompressedData:
- // Section 4.3. Uncompressed data (chunk type 0x01).
- if chunkLen < checksumSize {
- r.err = ErrCorrupt
- return 0, r.err
- }
- buf := r.buf[:checksumSize]
- if !r.readFull(buf, false) {
- return 0, r.err
- }
- checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
- // Read directly into r.decoded instead of via r.buf.
- n := chunkLen - checksumSize
- if n > len(r.decoded) {
- r.err = ErrCorrupt
- return 0, r.err
- }
- if !r.readFull(r.decoded[:n], false) {
- return 0, r.err
- }
- if crc(r.decoded[:n]) != checksum {
- r.err = ErrCorrupt
- return 0, r.err
- }
- r.i, r.j = 0, n
- continue
-
- case chunkTypeStreamIdentifier:
- // Section 4.1. Stream identifier (chunk type 0xff).
- if chunkLen != len(magicBody) {
- r.err = ErrCorrupt
- return 0, r.err
- }
- if !r.readFull(r.buf[:len(magicBody)], false) {
- return 0, r.err
- }
- for i := 0; i < len(magicBody); i++ {
- if r.buf[i] != magicBody[i] {
- r.err = ErrCorrupt
- return 0, r.err
- }
- }
- continue
- }
-
- if chunkType <= 0x7f {
- // Section 4.5. Reserved unskippable chunks (chunk types 0x02-0x7f).
- r.err = ErrUnsupported
- return 0, r.err
- }
- // Section 4.4 Padding (chunk type 0xfe).
- // Section 4.6. Reserved skippable chunks (chunk types 0x80-0xfd).
- if !r.readFull(r.buf[:chunkLen], false) {
- return 0, r.err
- }
- }
-}
diff --git a/vendor/github.com/golang/snappy/decode_amd64.s b/vendor/github.com/golang/snappy/decode_amd64.s
deleted file mode 100644
index e6179f65e..000000000
--- a/vendor/github.com/golang/snappy/decode_amd64.s
+++ /dev/null
@@ -1,490 +0,0 @@
-// Copyright 2016 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !appengine
-// +build gc
-// +build !noasm
-
-#include "textflag.h"
-
-// The asm code generally follows the pure Go code in decode_other.go, except
-// where marked with a "!!!".
-
-// func decode(dst, src []byte) int
-//
-// All local variables fit into registers. The non-zero stack size is only to
-// spill registers and push args when issuing a CALL. The register allocation:
-// - AX scratch
-// - BX scratch
-// - CX length or x
-// - DX offset
-// - SI &src[s]
-// - DI &dst[d]
-// + R8 dst_base
-// + R9 dst_len
-// + R10 dst_base + dst_len
-// + R11 src_base
-// + R12 src_len
-// + R13 src_base + src_len
-// - R14 used by doCopy
-// - R15 used by doCopy
-//
-// The registers R8-R13 (marked with a "+") are set at the start of the
-// function, and after a CALL returns, and are not otherwise modified.
-//
-// The d variable is implicitly DI - R8, and len(dst)-d is R10 - DI.
-// The s variable is implicitly SI - R11, and len(src)-s is R13 - SI.
-TEXT ·decode(SB), NOSPLIT, $48-56
- // Initialize SI, DI and R8-R13.
- MOVQ dst_base+0(FP), R8
- MOVQ dst_len+8(FP), R9
- MOVQ R8, DI
- MOVQ R8, R10
- ADDQ R9, R10
- MOVQ src_base+24(FP), R11
- MOVQ src_len+32(FP), R12
- MOVQ R11, SI
- MOVQ R11, R13
- ADDQ R12, R13
-
-loop:
- // for s < len(src)
- CMPQ SI, R13
- JEQ end
-
- // CX = uint32(src[s])
- //
- // switch src[s] & 0x03
- MOVBLZX (SI), CX
- MOVL CX, BX
- ANDL $3, BX
- CMPL BX, $1
- JAE tagCopy
-
- // ----------------------------------------
- // The code below handles literal tags.
-
- // case tagLiteral:
- // x := uint32(src[s] >> 2)
- // switch
- SHRL $2, CX
- CMPL CX, $60
- JAE tagLit60Plus
-
- // case x < 60:
- // s++
- INCQ SI
-
-doLit:
- // This is the end of the inner "switch", when we have a literal tag.
- //
- // We assume that CX == x and x fits in a uint32, where x is the variable
- // used in the pure Go decode_other.go code.
-
- // length = int(x) + 1
- //
- // Unlike the pure Go code, we don't need to check if length <= 0 because
- // CX can hold 64 bits, so the increment cannot overflow.
- INCQ CX
-
- // Prepare to check if copying length bytes will run past the end of dst or
- // src.
- //
- // AX = len(dst) - d
- // BX = len(src) - s
- MOVQ R10, AX
- SUBQ DI, AX
- MOVQ R13, BX
- SUBQ SI, BX
-
- // !!! Try a faster technique for short (16 or fewer bytes) copies.
- //
- // if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
- // goto callMemmove // Fall back on calling runtime·memmove.
- // }
- //
- // The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
- // against 21 instead of 16, because it cannot assume that all of its input
- // is contiguous in memory and so it needs to leave enough source bytes to
- // read the next tag without refilling buffers, but Go's Decode assumes
- // contiguousness (the src argument is a []byte).
- CMPQ CX, $16
- JGT callMemmove
- CMPQ AX, $16
- JLT callMemmove
- CMPQ BX, $16
- JLT callMemmove
-
- // !!! Implement the copy from src to dst as a 16-byte load and store.
- // (Decode's documentation says that dst and src must not overlap.)
- //
- // This always copies 16 bytes, instead of only length bytes, but that's
- // OK. If the input is a valid Snappy encoding then subsequent iterations
- // will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
- // non-nil error), so the overrun will be ignored.
- //
- // Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
- // 16-byte loads and stores. This technique probably wouldn't be as
- // effective on architectures that are fussier about alignment.
- MOVOU 0(SI), X0
- MOVOU X0, 0(DI)
-
- // d += length
- // s += length
- ADDQ CX, DI
- ADDQ CX, SI
- JMP loop
-
-callMemmove:
- // if length > len(dst)-d || length > len(src)-s { etc }
- CMPQ CX, AX
- JGT errCorrupt
- CMPQ CX, BX
- JGT errCorrupt
-
- // copy(dst[d:], src[s:s+length])
- //
- // This means calling runtime·memmove(&dst[d], &src[s], length), so we push
- // DI, SI and CX as arguments. Coincidentally, we also need to spill those
- // three registers to the stack, to save local variables across the CALL.
- MOVQ DI, 0(SP)
- MOVQ SI, 8(SP)
- MOVQ CX, 16(SP)
- MOVQ DI, 24(SP)
- MOVQ SI, 32(SP)
- MOVQ CX, 40(SP)
- CALL runtime·memmove(SB)
-
- // Restore local variables: unspill registers from the stack and
- // re-calculate R8-R13.
- MOVQ 24(SP), DI
- MOVQ 32(SP), SI
- MOVQ 40(SP), CX
- MOVQ dst_base+0(FP), R8
- MOVQ dst_len+8(FP), R9
- MOVQ R8, R10
- ADDQ R9, R10
- MOVQ src_base+24(FP), R11
- MOVQ src_len+32(FP), R12
- MOVQ R11, R13
- ADDQ R12, R13
-
- // d += length
- // s += length
- ADDQ CX, DI
- ADDQ CX, SI
- JMP loop
-
-tagLit60Plus:
- // !!! This fragment does the
- //
- // s += x - 58; if uint(s) > uint(len(src)) { etc }
- //
- // checks. In the asm version, we code it once instead of once per switch case.
- ADDQ CX, SI
- SUBQ $58, SI
- MOVQ SI, BX
- SUBQ R11, BX
- CMPQ BX, R12
- JA errCorrupt
-
- // case x == 60:
- CMPL CX, $61
- JEQ tagLit61
- JA tagLit62Plus
-
- // x = uint32(src[s-1])
- MOVBLZX -1(SI), CX
- JMP doLit
-
-tagLit61:
- // case x == 61:
- // x = uint32(src[s-2]) | uint32(src[s-1])<<8
- MOVWLZX -2(SI), CX
- JMP doLit
-
-tagLit62Plus:
- CMPL CX, $62
- JA tagLit63
-
- // case x == 62:
- // x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
- MOVWLZX -3(SI), CX
- MOVBLZX -1(SI), BX
- SHLL $16, BX
- ORL BX, CX
- JMP doLit
-
-tagLit63:
- // case x == 63:
- // x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
- MOVL -4(SI), CX
- JMP doLit
-
-// The code above handles literal tags.
-// ----------------------------------------
-// The code below handles copy tags.
-
-tagCopy4:
- // case tagCopy4:
- // s += 5
- ADDQ $5, SI
-
- // if uint(s) > uint(len(src)) { etc }
- MOVQ SI, BX
- SUBQ R11, BX
- CMPQ BX, R12
- JA errCorrupt
-
- // length = 1 + int(src[s-5])>>2
- SHRQ $2, CX
- INCQ CX
-
- // offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
- MOVLQZX -4(SI), DX
- JMP doCopy
-
-tagCopy2:
- // case tagCopy2:
- // s += 3
- ADDQ $3, SI
-
- // if uint(s) > uint(len(src)) { etc }
- MOVQ SI, BX
- SUBQ R11, BX
- CMPQ BX, R12
- JA errCorrupt
-
- // length = 1 + int(src[s-3])>>2
- SHRQ $2, CX
- INCQ CX
-
- // offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
- MOVWQZX -2(SI), DX
- JMP doCopy
-
-tagCopy:
- // We have a copy tag. We assume that:
- // - BX == src[s] & 0x03
- // - CX == src[s]
- CMPQ BX, $2
- JEQ tagCopy2
- JA tagCopy4
-
- // case tagCopy1:
- // s += 2
- ADDQ $2, SI
-
- // if uint(s) > uint(len(src)) { etc }
- MOVQ SI, BX
- SUBQ R11, BX
- CMPQ BX, R12
- JA errCorrupt
-
- // offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
- MOVQ CX, DX
- ANDQ $0xe0, DX
- SHLQ $3, DX
- MOVBQZX -1(SI), BX
- ORQ BX, DX
-
- // length = 4 + int(src[s-2])>>2&0x7
- SHRQ $2, CX
- ANDQ $7, CX
- ADDQ $4, CX
-
-doCopy:
- // This is the end of the outer "switch", when we have a copy tag.
- //
- // We assume that:
- // - CX == length && CX > 0
- // - DX == offset
-
- // if offset <= 0 { etc }
- CMPQ DX, $0
- JLE errCorrupt
-
- // if d < offset { etc }
- MOVQ DI, BX
- SUBQ R8, BX
- CMPQ BX, DX
- JLT errCorrupt
-
- // if length > len(dst)-d { etc }
- MOVQ R10, BX
- SUBQ DI, BX
- CMPQ CX, BX
- JGT errCorrupt
-
- // forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
- //
- // Set:
- // - R14 = len(dst)-d
- // - R15 = &dst[d-offset]
- MOVQ R10, R14
- SUBQ DI, R14
- MOVQ DI, R15
- SUBQ DX, R15
-
- // !!! Try a faster technique for short (16 or fewer bytes) forward copies.
- //
- // First, try using two 8-byte load/stores, similar to the doLit technique
- // above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
- // still OK if offset >= 8. Note that this has to be two 8-byte load/stores
- // and not one 16-byte load/store, and the first store has to be before the
- // second load, due to the overlap if offset is in the range [8, 16).
- //
- // if length > 16 || offset < 8 || len(dst)-d < 16 {
- // goto slowForwardCopy
- // }
- // copy 16 bytes
- // d += length
- CMPQ CX, $16
- JGT slowForwardCopy
- CMPQ DX, $8
- JLT slowForwardCopy
- CMPQ R14, $16
- JLT slowForwardCopy
- MOVQ 0(R15), AX
- MOVQ AX, 0(DI)
- MOVQ 8(R15), BX
- MOVQ BX, 8(DI)
- ADDQ CX, DI
- JMP loop
-
-slowForwardCopy:
- // !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
- // can still try 8-byte load stores, provided we can overrun up to 10 extra
- // bytes. As above, the overrun will be fixed up by subsequent iterations
- // of the outermost loop.
- //
- // The C++ snappy code calls this technique IncrementalCopyFastPath. Its
- // commentary says:
- //
- // ----
- //
- // The main part of this loop is a simple copy of eight bytes at a time
- // until we've copied (at least) the requested amount of bytes. However,
- // if d and d-offset are less than eight bytes apart (indicating a
- // repeating pattern of length < 8), we first need to expand the pattern in
- // order to get the correct results. For instance, if the buffer looks like
- // this, with the eight-byte <d-offset> and <d> patterns marked as
- // intervals:
- //
- // abxxxxxxxxxxxx
- // [------] d-offset
- // [------] d
- //
- // a single eight-byte copy from <d-offset> to <d> will repeat the pattern
- // once, after which we can move <d> two bytes without moving <d-offset>:
- //
- // ababxxxxxxxxxx
- // [------] d-offset
- // [------] d
- //
- // and repeat the exercise until the two no longer overlap.
- //
- // This allows us to do very well in the special case of one single byte
- // repeated many times, without taking a big hit for more general cases.
- //
- // The worst case of extra writing past the end of the match occurs when
- // offset == 1 and length == 1; the last copy will read from byte positions
- // [0..7] and write to [4..11], whereas it was only supposed to write to
- // position 1. Thus, ten excess bytes.
- //
- // ----
- //
- // That "10 byte overrun" worst case is confirmed by Go's
- // TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
- // and finishSlowForwardCopy algorithm.
- //
- // if length > len(dst)-d-10 {
- // goto verySlowForwardCopy
- // }
- SUBQ $10, R14
- CMPQ CX, R14
- JGT verySlowForwardCopy
-
-makeOffsetAtLeast8:
- // !!! As above, expand the pattern so that offset >= 8 and we can use
- // 8-byte load/stores.
- //
- // for offset < 8 {
- // copy 8 bytes from dst[d-offset:] to dst[d:]
- // length -= offset
- // d += offset
- // offset += offset
- // // The two previous lines together means that d-offset, and therefore
- // // R15, is unchanged.
- // }
- CMPQ DX, $8
- JGE fixUpSlowForwardCopy
- MOVQ (R15), BX
- MOVQ BX, (DI)
- SUBQ DX, CX
- ADDQ DX, DI
- ADDQ DX, DX
- JMP makeOffsetAtLeast8
-
-fixUpSlowForwardCopy:
- // !!! Add length (which might be negative now) to d (implied by DI being
- // &dst[d]) so that d ends up at the right place when we jump back to the
- // top of the loop. Before we do that, though, we save DI to AX so that, if
- // length is positive, copying the remaining length bytes will write to the
- // right place.
- MOVQ DI, AX
- ADDQ CX, DI
-
-finishSlowForwardCopy:
- // !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
- // length means that we overrun, but as above, that will be fixed up by
- // subsequent iterations of the outermost loop.
- CMPQ CX, $0
- JLE loop
- MOVQ (R15), BX
- MOVQ BX, (AX)
- ADDQ $8, R15
- ADDQ $8, AX
- SUBQ $8, CX
- JMP finishSlowForwardCopy
-
-verySlowForwardCopy:
- // verySlowForwardCopy is a simple implementation of forward copy. In C
- // parlance, this is a do/while loop instead of a while loop, since we know
- // that length > 0. In Go syntax:
- //
- // for {
- // dst[d] = dst[d - offset]
- // d++
- // length--
- // if length == 0 {
- // break
- // }
- // }
- MOVB (R15), BX
- MOVB BX, (DI)
- INCQ R15
- INCQ DI
- DECQ CX
- JNZ verySlowForwardCopy
- JMP loop
-
-// The code above handles copy tags.
-// ----------------------------------------
-
-end:
- // This is the end of the "for s < len(src)".
- //
- // if d != len(dst) { etc }
- CMPQ DI, R10
- JNE errCorrupt
-
- // return 0
- MOVQ $0, ret+48(FP)
- RET
-
-errCorrupt:
- // return decodeErrCodeCorrupt
- MOVQ $1, ret+48(FP)
- RET
diff --git a/vendor/github.com/golang/snappy/decode_arm64.s b/vendor/github.com/golang/snappy/decode_arm64.s
deleted file mode 100644
index 7a3ead17e..000000000
--- a/vendor/github.com/golang/snappy/decode_arm64.s
+++ /dev/null
@@ -1,494 +0,0 @@
-// Copyright 2020 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !appengine
-// +build gc
-// +build !noasm
-
-#include "textflag.h"
-
-// The asm code generally follows the pure Go code in decode_other.go, except
-// where marked with a "!!!".
-
-// func decode(dst, src []byte) int
-//
-// All local variables fit into registers. The non-zero stack size is only to
-// spill registers and push args when issuing a CALL. The register allocation:
-// - R2 scratch
-// - R3 scratch
-// - R4 length or x
-// - R5 offset
-// - R6 &src[s]
-// - R7 &dst[d]
-// + R8 dst_base
-// + R9 dst_len
-// + R10 dst_base + dst_len
-// + R11 src_base
-// + R12 src_len
-// + R13 src_base + src_len
-// - R14 used by doCopy
-// - R15 used by doCopy
-//
-// The registers R8-R13 (marked with a "+") are set at the start of the
-// function, and after a CALL returns, and are not otherwise modified.
-//
-// The d variable is implicitly R7 - R8, and len(dst)-d is R10 - R7.
-// The s variable is implicitly R6 - R11, and len(src)-s is R13 - R6.
-TEXT ·decode(SB), NOSPLIT, $56-56
- // Initialize R6, R7 and R8-R13.
- MOVD dst_base+0(FP), R8
- MOVD dst_len+8(FP), R9
- MOVD R8, R7
- MOVD R8, R10
- ADD R9, R10, R10
- MOVD src_base+24(FP), R11
- MOVD src_len+32(FP), R12
- MOVD R11, R6
- MOVD R11, R13
- ADD R12, R13, R13
-
-loop:
- // for s < len(src)
- CMP R13, R6
- BEQ end
-
- // R4 = uint32(src[s])
- //
- // switch src[s] & 0x03
- MOVBU (R6), R4
- MOVW R4, R3
- ANDW $3, R3
- MOVW $1, R1
- CMPW R1, R3
- BGE tagCopy
-
- // ----------------------------------------
- // The code below handles literal tags.
-
- // case tagLiteral:
- // x := uint32(src[s] >> 2)
- // switch
- MOVW $60, R1
- LSRW $2, R4, R4
- CMPW R4, R1
- BLS tagLit60Plus
-
- // case x < 60:
- // s++
- ADD $1, R6, R6
-
-doLit:
- // This is the end of the inner "switch", when we have a literal tag.
- //
- // We assume that R4 == x and x fits in a uint32, where x is the variable
- // used in the pure Go decode_other.go code.
-
- // length = int(x) + 1
- //
- // Unlike the pure Go code, we don't need to check if length <= 0 because
- // R4 can hold 64 bits, so the increment cannot overflow.
- ADD $1, R4, R4
-
- // Prepare to check if copying length bytes will run past the end of dst or
- // src.
- //
- // R2 = len(dst) - d
- // R3 = len(src) - s
- MOVD R10, R2
- SUB R7, R2, R2
- MOVD R13, R3
- SUB R6, R3, R3
-
- // !!! Try a faster technique for short (16 or fewer bytes) copies.
- //
- // if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
- // goto callMemmove // Fall back on calling runtime·memmove.
- // }
- //
- // The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
- // against 21 instead of 16, because it cannot assume that all of its input
- // is contiguous in memory and so it needs to leave enough source bytes to
- // read the next tag without refilling buffers, but Go's Decode assumes
- // contiguousness (the src argument is a []byte).
- CMP $16, R4
- BGT callMemmove
- CMP $16, R2
- BLT callMemmove
- CMP $16, R3
- BLT callMemmove
-
- // !!! Implement the copy from src to dst as a 16-byte load and store.
- // (Decode's documentation says that dst and src must not overlap.)
- //
- // This always copies 16 bytes, instead of only length bytes, but that's
- // OK. If the input is a valid Snappy encoding then subsequent iterations
- // will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
- // non-nil error), so the overrun will be ignored.
- //
- // Note that on arm64, it is legal and cheap to issue unaligned 8-byte or
- // 16-byte loads and stores. This technique probably wouldn't be as
- // effective on architectures that are fussier about alignment.
- LDP 0(R6), (R14, R15)
- STP (R14, R15), 0(R7)
-
- // d += length
- // s += length
- ADD R4, R7, R7
- ADD R4, R6, R6
- B loop
-
-callMemmove:
- // if length > len(dst)-d || length > len(src)-s { etc }
- CMP R2, R4
- BGT errCorrupt
- CMP R3, R4
- BGT errCorrupt
-
- // copy(dst[d:], src[s:s+length])
- //
- // This means calling runtime·memmove(&dst[d], &src[s], length), so we push
- // R7, R6 and R4 as arguments. Coincidentally, we also need to spill those
- // three registers to the stack, to save local variables across the CALL.
- MOVD R7, 8(RSP)
- MOVD R6, 16(RSP)
- MOVD R4, 24(RSP)
- MOVD R7, 32(RSP)
- MOVD R6, 40(RSP)
- MOVD R4, 48(RSP)
- CALL runtime·memmove(SB)
-
- // Restore local variables: unspill registers from the stack and
- // re-calculate R8-R13.
- MOVD 32(RSP), R7
- MOVD 40(RSP), R6
- MOVD 48(RSP), R4
- MOVD dst_base+0(FP), R8
- MOVD dst_len+8(FP), R9
- MOVD R8, R10
- ADD R9, R10, R10
- MOVD src_base+24(FP), R11
- MOVD src_len+32(FP), R12
- MOVD R11, R13
- ADD R12, R13, R13
-
- // d += length
- // s += length
- ADD R4, R7, R7
- ADD R4, R6, R6
- B loop
-
-tagLit60Plus:
- // !!! This fragment does the
- //
- // s += x - 58; if uint(s) > uint(len(src)) { etc }
- //
- // checks. In the asm version, we code it once instead of once per switch case.
- ADD R4, R6, R6
- SUB $58, R6, R6
- MOVD R6, R3
- SUB R11, R3, R3
- CMP R12, R3
- BGT errCorrupt
-
- // case x == 60:
- MOVW $61, R1
- CMPW R1, R4
- BEQ tagLit61
- BGT tagLit62Plus
-
- // x = uint32(src[s-1])
- MOVBU -1(R6), R4
- B doLit
-
-tagLit61:
- // case x == 61:
- // x = uint32(src[s-2]) | uint32(src[s-1])<<8
- MOVHU -2(R6), R4
- B doLit
-
-tagLit62Plus:
- CMPW $62, R4
- BHI tagLit63
-
- // case x == 62:
- // x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
- MOVHU -3(R6), R4
- MOVBU -1(R6), R3
- ORR R3<<16, R4
- B doLit
-
-tagLit63:
- // case x == 63:
- // x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
- MOVWU -4(R6), R4
- B doLit
-
- // The code above handles literal tags.
- // ----------------------------------------
- // The code below handles copy tags.
-
-tagCopy4:
- // case tagCopy4:
- // s += 5
- ADD $5, R6, R6
-
- // if uint(s) > uint(len(src)) { etc }
- MOVD R6, R3
- SUB R11, R3, R3
- CMP R12, R3
- BGT errCorrupt
-
- // length = 1 + int(src[s-5])>>2
- MOVD $1, R1
- ADD R4>>2, R1, R4
-
- // offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
- MOVWU -4(R6), R5
- B doCopy
-
-tagCopy2:
- // case tagCopy2:
- // s += 3
- ADD $3, R6, R6
-
- // if uint(s) > uint(len(src)) { etc }
- MOVD R6, R3
- SUB R11, R3, R3
- CMP R12, R3
- BGT errCorrupt
-
- // length = 1 + int(src[s-3])>>2
- MOVD $1, R1
- ADD R4>>2, R1, R4
-
- // offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
- MOVHU -2(R6), R5
- B doCopy
-
-tagCopy:
- // We have a copy tag. We assume that:
- // - R3 == src[s] & 0x03
- // - R4 == src[s]
- CMP $2, R3
- BEQ tagCopy2
- BGT tagCopy4
-
- // case tagCopy1:
- // s += 2
- ADD $2, R6, R6
-
- // if uint(s) > uint(len(src)) { etc }
- MOVD R6, R3
- SUB R11, R3, R3
- CMP R12, R3
- BGT errCorrupt
-
- // offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
- MOVD R4, R5
- AND $0xe0, R5
- MOVBU -1(R6), R3
- ORR R5<<3, R3, R5
-
- // length = 4 + int(src[s-2])>>2&0x7
- MOVD $7, R1
- AND R4>>2, R1, R4
- ADD $4, R4, R4
-
-doCopy:
- // This is the end of the outer "switch", when we have a copy tag.
- //
- // We assume that:
- // - R4 == length && R4 > 0
- // - R5 == offset
-
- // if offset <= 0 { etc }
- MOVD $0, R1
- CMP R1, R5
- BLE errCorrupt
-
- // if d < offset { etc }
- MOVD R7, R3
- SUB R8, R3, R3
- CMP R5, R3
- BLT errCorrupt
-
- // if length > len(dst)-d { etc }
- MOVD R10, R3
- SUB R7, R3, R3
- CMP R3, R4
- BGT errCorrupt
-
- // forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
- //
- // Set:
- // - R14 = len(dst)-d
- // - R15 = &dst[d-offset]
- MOVD R10, R14
- SUB R7, R14, R14
- MOVD R7, R15
- SUB R5, R15, R15
-
- // !!! Try a faster technique for short (16 or fewer bytes) forward copies.
- //
- // First, try using two 8-byte load/stores, similar to the doLit technique
- // above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
- // still OK if offset >= 8. Note that this has to be two 8-byte load/stores
- // and not one 16-byte load/store, and the first store has to be before the
- // second load, due to the overlap if offset is in the range [8, 16).
- //
- // if length > 16 || offset < 8 || len(dst)-d < 16 {
- // goto slowForwardCopy
- // }
- // copy 16 bytes
- // d += length
- CMP $16, R4
- BGT slowForwardCopy
- CMP $8, R5
- BLT slowForwardCopy
- CMP $16, R14
- BLT slowForwardCopy
- MOVD 0(R15), R2
- MOVD R2, 0(R7)
- MOVD 8(R15), R3
- MOVD R3, 8(R7)
- ADD R4, R7, R7
- B loop
-
-slowForwardCopy:
- // !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
- // can still try 8-byte load stores, provided we can overrun up to 10 extra
- // bytes. As above, the overrun will be fixed up by subsequent iterations
- // of the outermost loop.
- //
- // The C++ snappy code calls this technique IncrementalCopyFastPath. Its
- // commentary says:
- //
- // ----
- //
- // The main part of this loop is a simple copy of eight bytes at a time
- // until we've copied (at least) the requested amount of bytes. However,
- // if d and d-offset are less than eight bytes apart (indicating a
- // repeating pattern of length < 8), we first need to expand the pattern in
- // order to get the correct results. For instance, if the buffer looks like
- // this, with the eight-byte <d-offset> and <d> patterns marked as
- // intervals:
- //
- // abxxxxxxxxxxxx
- // [------] d-offset
- // [------] d
- //
- // a single eight-byte copy from <d-offset> to <d> will repeat the pattern
- // once, after which we can move <d> two bytes without moving <d-offset>:
- //
- // ababxxxxxxxxxx
- // [------] d-offset
- // [------] d
- //
- // and repeat the exercise until the two no longer overlap.
- //
- // This allows us to do very well in the special case of one single byte
- // repeated many times, without taking a big hit for more general cases.
- //
- // The worst case of extra writing past the end of the match occurs when
- // offset == 1 and length == 1; the last copy will read from byte positions
- // [0..7] and write to [4..11], whereas it was only supposed to write to
- // position 1. Thus, ten excess bytes.
- //
- // ----
- //
- // That "10 byte overrun" worst case is confirmed by Go's
- // TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
- // and finishSlowForwardCopy algorithm.
- //
- // if length > len(dst)-d-10 {
- // goto verySlowForwardCopy
- // }
- SUB $10, R14, R14
- CMP R14, R4
- BGT verySlowForwardCopy
-
-makeOffsetAtLeast8:
- // !!! As above, expand the pattern so that offset >= 8 and we can use
- // 8-byte load/stores.
- //
- // for offset < 8 {
- // copy 8 bytes from dst[d-offset:] to dst[d:]
- // length -= offset
- // d += offset
- // offset += offset
- // // The two previous lines together means that d-offset, and therefore
- // // R15, is unchanged.
- // }
- CMP $8, R5
- BGE fixUpSlowForwardCopy
- MOVD (R15), R3
- MOVD R3, (R7)
- SUB R5, R4, R4
- ADD R5, R7, R7
- ADD R5, R5, R5
- B makeOffsetAtLeast8
-
-fixUpSlowForwardCopy:
- // !!! Add length (which might be negative now) to d (implied by R7 being
- // &dst[d]) so that d ends up at the right place when we jump back to the
- // top of the loop. Before we do that, though, we save R7 to R2 so that, if
- // length is positive, copying the remaining length bytes will write to the
- // right place.
- MOVD R7, R2
- ADD R4, R7, R7
-
-finishSlowForwardCopy:
- // !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
- // length means that we overrun, but as above, that will be fixed up by
- // subsequent iterations of the outermost loop.
- MOVD $0, R1
- CMP R1, R4
- BLE loop
- MOVD (R15), R3
- MOVD R3, (R2)
- ADD $8, R15, R15
- ADD $8, R2, R2
- SUB $8, R4, R4
- B finishSlowForwardCopy
-
-verySlowForwardCopy:
- // verySlowForwardCopy is a simple implementation of forward copy. In C
- // parlance, this is a do/while loop instead of a while loop, since we know
- // that length > 0. In Go syntax:
- //
- // for {
- // dst[d] = dst[d - offset]
- // d++
- // length--
- // if length == 0 {
- // break
- // }
- // }
- MOVB (R15), R3
- MOVB R3, (R7)
- ADD $1, R15, R15
- ADD $1, R7, R7
- SUB $1, R4, R4
- CBNZ R4, verySlowForwardCopy
- B loop
-
- // The code above handles copy tags.
- // ----------------------------------------
-
-end:
- // This is the end of the "for s < len(src)".
- //
- // if d != len(dst) { etc }
- CMP R10, R7
- BNE errCorrupt
-
- // return 0
- MOVD $0, ret+48(FP)
- RET
-
-errCorrupt:
- // return decodeErrCodeCorrupt
- MOVD $1, R2
- MOVD R2, ret+48(FP)
- RET
diff --git a/vendor/github.com/golang/snappy/decode_asm.go b/vendor/github.com/golang/snappy/decode_asm.go
deleted file mode 100644
index 7082b3491..000000000
--- a/vendor/github.com/golang/snappy/decode_asm.go
+++ /dev/null
@@ -1,15 +0,0 @@
-// Copyright 2016 The Snappy-Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !appengine
-// +build gc
-// +build !noasm
-// +build amd64 arm64
-
-package snappy
-
-// decode has the same semantics as in decode_other.go.
-//
-//go:noescape
-func decode(dst, src []byte) int
diff --git a/vendor/github.com/golang/snappy/decode_other.go b/vendor/github.com/golang/snappy/decode_other.go
deleted file mode 100644
index 2f672be55..000000000
--- a/vendor/github.com/golang/snappy/decode_other.go
+++ /dev/null
@@ -1,115 +0,0 @@
-// Copyright 2016 The Snappy-Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !amd64,!arm64 appengine !gc noasm
-
-package snappy
-
-// decode writes the decoding of src to dst. It assumes that the varint-encoded
-// length of the decompressed bytes has already been read, and that len(dst)
-// equals that length.
-//
-// It returns 0 on success or a decodeErrCodeXxx error code on failure.
-func decode(dst, src []byte) int {
- var d, s, offset, length int
- for s < len(src) {
- switch src[s] & 0x03 {
- case tagLiteral:
- x := uint32(src[s] >> 2)
- switch {
- case x < 60:
- s++
- case x == 60:
- s += 2
- if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
- return decodeErrCodeCorrupt
- }
- x = uint32(src[s-1])
- case x == 61:
- s += 3
- if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
- return decodeErrCodeCorrupt
- }
- x = uint32(src[s-2]) | uint32(src[s-1])<<8
- case x == 62:
- s += 4
- if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
- return decodeErrCodeCorrupt
- }
- x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
- case x == 63:
- s += 5
- if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
- return decodeErrCodeCorrupt
- }
- x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
- }
- length = int(x) + 1
- if length <= 0 {
- return decodeErrCodeUnsupportedLiteralLength
- }
- if length > len(dst)-d || length > len(src)-s {
- return decodeErrCodeCorrupt
- }
- copy(dst[d:], src[s:s+length])
- d += length
- s += length
- continue
-
- case tagCopy1:
- s += 2
- if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
- return decodeErrCodeCorrupt
- }
- length = 4 + int(src[s-2])>>2&0x7
- offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
-
- case tagCopy2:
- s += 3
- if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
- return decodeErrCodeCorrupt
- }
- length = 1 + int(src[s-3])>>2
- offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
-
- case tagCopy4:
- s += 5
- if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
- return decodeErrCodeCorrupt
- }
- length = 1 + int(src[s-5])>>2
- offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
- }
-
- if offset <= 0 || d < offset || length > len(dst)-d {
- return decodeErrCodeCorrupt
- }
- // Copy from an earlier sub-slice of dst to a later sub-slice.
- // If no overlap, use the built-in copy:
- if offset >= length {
- copy(dst[d:d+length], dst[d-offset:])
- d += length
- continue
- }
-
- // Unlike the built-in copy function, this byte-by-byte copy always runs
- // forwards, even if the slices overlap. Conceptually, this is:
- //
- // d += forwardCopy(dst[d:d+length], dst[d-offset:])
- //
- // We align the slices into a and b and show the compiler they are the same size.
- // This allows the loop to run without bounds checks.
- a := dst[d : d+length]
- b := dst[d-offset:]
- b = b[:len(a)]
- for i := range a {
- a[i] = b[i]
- }
- d += length
- }
- if d != len(dst) {
- return decodeErrCodeCorrupt
- }
- return 0
-}
diff --git a/vendor/github.com/golang/snappy/encode.go b/vendor/github.com/golang/snappy/encode.go
deleted file mode 100644
index 7f2365707..000000000
--- a/vendor/github.com/golang/snappy/encode.go
+++ /dev/null
@@ -1,289 +0,0 @@
-// Copyright 2011 The Snappy-Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package snappy
-
-import (
- "encoding/binary"
- "errors"
- "io"
-)
-
-// Encode returns the encoded form of src. The returned slice may be a sub-
-// slice of dst if dst was large enough to hold the entire encoded block.
-// Otherwise, a newly allocated slice will be returned.
-//
-// The dst and src must not overlap. It is valid to pass a nil dst.
-//
-// Encode handles the Snappy block format, not the Snappy stream format.
-func Encode(dst, src []byte) []byte {
- if n := MaxEncodedLen(len(src)); n < 0 {
- panic(ErrTooLarge)
- } else if len(dst) < n {
- dst = make([]byte, n)
- }
-
- // The block starts with the varint-encoded length of the decompressed bytes.
- d := binary.PutUvarint(dst, uint64(len(src)))
-
- for len(src) > 0 {
- p := src
- src = nil
- if len(p) > maxBlockSize {
- p, src = p[:maxBlockSize], p[maxBlockSize:]
- }
- if len(p) < minNonLiteralBlockSize {
- d += emitLiteral(dst[d:], p)
- } else {
- d += encodeBlock(dst[d:], p)
- }
- }
- return dst[:d]
-}
-
-// inputMargin is the minimum number of extra input bytes to keep, inside
-// encodeBlock's inner loop. On some architectures, this margin lets us
-// implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
-// literals can be implemented as a single load to and store from a 16-byte
-// register. That literal's actual length can be as short as 1 byte, so this
-// can copy up to 15 bytes too much, but that's OK as subsequent iterations of
-// the encoding loop will fix up the copy overrun, and this inputMargin ensures
-// that we don't overrun the dst and src buffers.
-const inputMargin = 16 - 1
-
-// minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
-// could be encoded with a copy tag. This is the minimum with respect to the
-// algorithm used by encodeBlock, not a minimum enforced by the file format.
-//
-// The encoded output must start with at least a 1 byte literal, as there are
-// no previous bytes to copy. A minimal (1 byte) copy after that, generated
-// from an emitCopy call in encodeBlock's main loop, would require at least
-// another inputMargin bytes, for the reason above: we want any emitLiteral
-// calls inside encodeBlock's main loop to use the fast path if possible, which
-// requires being able to overrun by inputMargin bytes. Thus,
-// minNonLiteralBlockSize equals 1 + 1 + inputMargin.
-//
-// The C++ code doesn't use this exact threshold, but it could, as discussed at
-// https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
-// The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
-// optimization. It should not affect the encoded form. This is tested by
-// TestSameEncodingAsCppShortCopies.
-const minNonLiteralBlockSize = 1 + 1 + inputMargin
-
-// MaxEncodedLen returns the maximum length of a snappy block, given its
-// uncompressed length.
-//
-// It will return a negative value if srcLen is too large to encode.
-func MaxEncodedLen(srcLen int) int {
- n := uint64(srcLen)
- if n > 0xffffffff {
- return -1
- }
- // Compressed data can be defined as:
- // compressed := item* literal*
- // item := literal* copy
- //
- // The trailing literal sequence has a space blowup of at most 62/60
- // since a literal of length 60 needs one tag byte + one extra byte
- // for length information.
- //
- // Item blowup is trickier to measure. Suppose the "copy" op copies
- // 4 bytes of data. Because of a special check in the encoding code,
- // we produce a 4-byte copy only if the offset is < 65536. Therefore
- // the copy op takes 3 bytes to encode, and this type of item leads
- // to at most the 62/60 blowup for representing literals.
- //
- // Suppose the "copy" op copies 5 bytes of data. If the offset is big
- // enough, it will take 5 bytes to encode the copy op. Therefore the
- // worst case here is a one-byte literal followed by a five-byte copy.
- // That is, 6 bytes of input turn into 7 bytes of "compressed" data.
- //
- // This last factor dominates the blowup, so the final estimate is:
- n = 32 + n + n/6
- if n > 0xffffffff {
- return -1
- }
- return int(n)
-}
-
-var errClosed = errors.New("snappy: Writer is closed")
-
-// NewWriter returns a new Writer that compresses to w.
-//
-// The Writer returned does not buffer writes. There is no need to Flush or
-// Close such a Writer.
-//
-// Deprecated: the Writer returned is not suitable for many small writes, only
-// for few large writes. Use NewBufferedWriter instead, which is efficient
-// regardless of the frequency and shape of the writes, and remember to Close
-// that Writer when done.
-func NewWriter(w io.Writer) *Writer {
- return &Writer{
- w: w,
- obuf: make([]byte, obufLen),
- }
-}
-
-// NewBufferedWriter returns a new Writer that compresses to w, using the
-// framing format described at
-// https://github.com/google/snappy/blob/master/framing_format.txt
-//
-// The Writer returned buffers writes. Users must call Close to guarantee all
-// data has been forwarded to the underlying io.Writer. They may also call
-// Flush zero or more times before calling Close.
-func NewBufferedWriter(w io.Writer) *Writer {
- return &Writer{
- w: w,
- ibuf: make([]byte, 0, maxBlockSize),
- obuf: make([]byte, obufLen),
- }
-}
-
-// Writer is an io.Writer that can write Snappy-compressed bytes.
-//
-// Writer handles the Snappy stream format, not the Snappy block format.
-type Writer struct {
- w io.Writer
- err error
-
- // ibuf is a buffer for the incoming (uncompressed) bytes.
- //
- // Its use is optional. For backwards compatibility, Writers created by the
- // NewWriter function have ibuf == nil, do not buffer incoming bytes, and
- // therefore do not need to be Flush'ed or Close'd.
- ibuf []byte
-
- // obuf is a buffer for the outgoing (compressed) bytes.
- obuf []byte
-
- // wroteStreamHeader is whether we have written the stream header.
- wroteStreamHeader bool
-}
-
-// Reset discards the writer's state and switches the Snappy writer to write to
-// w. This permits reusing a Writer rather than allocating a new one.
-func (w *Writer) Reset(writer io.Writer) {
- w.w = writer
- w.err = nil
- if w.ibuf != nil {
- w.ibuf = w.ibuf[:0]
- }
- w.wroteStreamHeader = false
-}
-
-// Write satisfies the io.Writer interface.
-func (w *Writer) Write(p []byte) (nRet int, errRet error) {
- if w.ibuf == nil {
- // Do not buffer incoming bytes. This does not perform or compress well
- // if the caller of Writer.Write writes many small slices. This
- // behavior is therefore deprecated, but still supported for backwards
- // compatibility with code that doesn't explicitly Flush or Close.
- return w.write(p)
- }
-
- // The remainder of this method is based on bufio.Writer.Write from the
- // standard library.
-
- for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
- var n int
- if len(w.ibuf) == 0 {
- // Large write, empty buffer.
- // Write directly from p to avoid copy.
- n, _ = w.write(p)
- } else {
- n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
- w.ibuf = w.ibuf[:len(w.ibuf)+n]
- w.Flush()
- }
- nRet += n
- p = p[n:]
- }
- if w.err != nil {
- return nRet, w.err
- }
- n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
- w.ibuf = w.ibuf[:len(w.ibuf)+n]
- nRet += n
- return nRet, nil
-}
-
-func (w *Writer) write(p []byte) (nRet int, errRet error) {
- if w.err != nil {
- return 0, w.err
- }
- for len(p) > 0 {
- obufStart := len(magicChunk)
- if !w.wroteStreamHeader {
- w.wroteStreamHeader = true
- copy(w.obuf, magicChunk)
- obufStart = 0
- }
-
- var uncompressed []byte
- if len(p) > maxBlockSize {
- uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
- } else {
- uncompressed, p = p, nil
- }
- checksum := crc(uncompressed)
-
- // Compress the buffer, discarding the result if the improvement
- // isn't at least 12.5%.
- compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
- chunkType := uint8(chunkTypeCompressedData)
- chunkLen := 4 + len(compressed)
- obufEnd := obufHeaderLen + len(compressed)
- if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
- chunkType = chunkTypeUncompressedData
- chunkLen = 4 + len(uncompressed)
- obufEnd = obufHeaderLen
- }
-
- // Fill in the per-chunk header that comes before the body.
- w.obuf[len(magicChunk)+0] = chunkType
- w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
- w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
- w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
- w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
- w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
- w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
- w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
-
- if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
- w.err = err
- return nRet, err
- }
- if chunkType == chunkTypeUncompressedData {
- if _, err := w.w.Write(uncompressed); err != nil {
- w.err = err
- return nRet, err
- }
- }
- nRet += len(uncompressed)
- }
- return nRet, nil
-}
-
-// Flush flushes the Writer to its underlying io.Writer.
-func (w *Writer) Flush() error {
- if w.err != nil {
- return w.err
- }
- if len(w.ibuf) == 0 {
- return nil
- }
- w.write(w.ibuf)
- w.ibuf = w.ibuf[:0]
- return w.err
-}
-
-// Close calls Flush and then closes the Writer.
-func (w *Writer) Close() error {
- w.Flush()
- ret := w.err
- if w.err == nil {
- w.err = errClosed
- }
- return ret
-}
diff --git a/vendor/github.com/golang/snappy/encode_amd64.s b/vendor/github.com/golang/snappy/encode_amd64.s
deleted file mode 100644
index adfd979fe..000000000
--- a/vendor/github.com/golang/snappy/encode_amd64.s
+++ /dev/null
@@ -1,730 +0,0 @@
-// Copyright 2016 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !appengine
-// +build gc
-// +build !noasm
-
-#include "textflag.h"
-
-// The XXX lines assemble on Go 1.4, 1.5 and 1.7, but not 1.6, due to a
-// Go toolchain regression. See https://github.com/golang/go/issues/15426 and
-// https://github.com/golang/snappy/issues/29
-//
-// As a workaround, the package was built with a known good assembler, and
-// those instructions were disassembled by "objdump -d" to yield the
-// 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
-// style comments, in AT&T asm syntax. Note that rsp here is a physical
-// register, not Go/asm's SP pseudo-register (see https://golang.org/doc/asm).
-// The instructions were then encoded as "BYTE $0x.." sequences, which assemble
-// fine on Go 1.6.
-
-// The asm code generally follows the pure Go code in encode_other.go, except
-// where marked with a "!!!".
-
-// ----------------------------------------------------------------------------
-
-// func emitLiteral(dst, lit []byte) int
-//
-// All local variables fit into registers. The register allocation:
-// - AX len(lit)
-// - BX n
-// - DX return value
-// - DI &dst[i]
-// - R10 &lit[0]
-//
-// The 24 bytes of stack space is to call runtime·memmove.
-//
-// The unusual register allocation of local variables, such as R10 for the
-// source pointer, matches the allocation used at the call site in encodeBlock,
-// which makes it easier to manually inline this function.
-TEXT ·emitLiteral(SB), NOSPLIT, $24-56
- MOVQ dst_base+0(FP), DI
- MOVQ lit_base+24(FP), R10
- MOVQ lit_len+32(FP), AX
- MOVQ AX, DX
- MOVL AX, BX
- SUBL $1, BX
-
- CMPL BX, $60
- JLT oneByte
- CMPL BX, $256
- JLT twoBytes
-
-threeBytes:
- MOVB $0xf4, 0(DI)
- MOVW BX, 1(DI)
- ADDQ $3, DI
- ADDQ $3, DX
- JMP memmove
-
-twoBytes:
- MOVB $0xf0, 0(DI)
- MOVB BX, 1(DI)
- ADDQ $2, DI
- ADDQ $2, DX
- JMP memmove
-
-oneByte:
- SHLB $2, BX
- MOVB BX, 0(DI)
- ADDQ $1, DI
- ADDQ $1, DX
-
-memmove:
- MOVQ DX, ret+48(FP)
-
- // copy(dst[i:], lit)
- //
- // This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
- // DI, R10 and AX as arguments.
- MOVQ DI, 0(SP)
- MOVQ R10, 8(SP)
- MOVQ AX, 16(SP)
- CALL runtime·memmove(SB)
- RET
-
-// ----------------------------------------------------------------------------
-
-// func emitCopy(dst []byte, offset, length int) int
-//
-// All local variables fit into registers. The register allocation:
-// - AX length
-// - SI &dst[0]
-// - DI &dst[i]
-// - R11 offset
-//
-// The unusual register allocation of local variables, such as R11 for the
-// offset, matches the allocation used at the call site in encodeBlock, which
-// makes it easier to manually inline this function.
-TEXT ·emitCopy(SB), NOSPLIT, $0-48
- MOVQ dst_base+0(FP), DI
- MOVQ DI, SI
- MOVQ offset+24(FP), R11
- MOVQ length+32(FP), AX
-
-loop0:
- // for length >= 68 { etc }
- CMPL AX, $68
- JLT step1
-
- // Emit a length 64 copy, encoded as 3 bytes.
- MOVB $0xfe, 0(DI)
- MOVW R11, 1(DI)
- ADDQ $3, DI
- SUBL $64, AX
- JMP loop0
-
-step1:
- // if length > 64 { etc }
- CMPL AX, $64
- JLE step2
-
- // Emit a length 60 copy, encoded as 3 bytes.
- MOVB $0xee, 0(DI)
- MOVW R11, 1(DI)
- ADDQ $3, DI
- SUBL $60, AX
-
-step2:
- // if length >= 12 || offset >= 2048 { goto step3 }
- CMPL AX, $12
- JGE step3
- CMPL R11, $2048
- JGE step3
-
- // Emit the remaining copy, encoded as 2 bytes.
- MOVB R11, 1(DI)
- SHRL $8, R11
- SHLB $5, R11
- SUBB $4, AX
- SHLB $2, AX
- ORB AX, R11
- ORB $1, R11
- MOVB R11, 0(DI)
- ADDQ $2, DI
-
- // Return the number of bytes written.
- SUBQ SI, DI
- MOVQ DI, ret+40(FP)
- RET
-
-step3:
- // Emit the remaining copy, encoded as 3 bytes.
- SUBL $1, AX
- SHLB $2, AX
- ORB $2, AX
- MOVB AX, 0(DI)
- MOVW R11, 1(DI)
- ADDQ $3, DI
-
- // Return the number of bytes written.
- SUBQ SI, DI
- MOVQ DI, ret+40(FP)
- RET
-
-// ----------------------------------------------------------------------------
-
-// func extendMatch(src []byte, i, j int) int
-//
-// All local variables fit into registers. The register allocation:
-// - DX &src[0]
-// - SI &src[j]
-// - R13 &src[len(src) - 8]
-// - R14 &src[len(src)]
-// - R15 &src[i]
-//
-// The unusual register allocation of local variables, such as R15 for a source
-// pointer, matches the allocation used at the call site in encodeBlock, which
-// makes it easier to manually inline this function.
-TEXT ·extendMatch(SB), NOSPLIT, $0-48
- MOVQ src_base+0(FP), DX
- MOVQ src_len+8(FP), R14
- MOVQ i+24(FP), R15
- MOVQ j+32(FP), SI
- ADDQ DX, R14
- ADDQ DX, R15
- ADDQ DX, SI
- MOVQ R14, R13
- SUBQ $8, R13
-
-cmp8:
- // As long as we are 8 or more bytes before the end of src, we can load and
- // compare 8 bytes at a time. If those 8 bytes are equal, repeat.
- CMPQ SI, R13
- JA cmp1
- MOVQ (R15), AX
- MOVQ (SI), BX
- CMPQ AX, BX
- JNE bsf
- ADDQ $8, R15
- ADDQ $8, SI
- JMP cmp8
-
-bsf:
- // If those 8 bytes were not equal, XOR the two 8 byte values, and return
- // the index of the first byte that differs. The BSF instruction finds the
- // least significant 1 bit, the amd64 architecture is little-endian, and
- // the shift by 3 converts a bit index to a byte index.
- XORQ AX, BX
- BSFQ BX, BX
- SHRQ $3, BX
- ADDQ BX, SI
-
- // Convert from &src[ret] to ret.
- SUBQ DX, SI
- MOVQ SI, ret+40(FP)
- RET
-
-cmp1:
- // In src's tail, compare 1 byte at a time.
- CMPQ SI, R14
- JAE extendMatchEnd
- MOVB (R15), AX
- MOVB (SI), BX
- CMPB AX, BX
- JNE extendMatchEnd
- ADDQ $1, R15
- ADDQ $1, SI
- JMP cmp1
-
-extendMatchEnd:
- // Convert from &src[ret] to ret.
- SUBQ DX, SI
- MOVQ SI, ret+40(FP)
- RET
-
-// ----------------------------------------------------------------------------
-
-// func encodeBlock(dst, src []byte) (d int)
-//
-// All local variables fit into registers, other than "var table". The register
-// allocation:
-// - AX . .
-// - BX . .
-// - CX 56 shift (note that amd64 shifts by non-immediates must use CX).
-// - DX 64 &src[0], tableSize
-// - SI 72 &src[s]
-// - DI 80 &dst[d]
-// - R9 88 sLimit
-// - R10 . &src[nextEmit]
-// - R11 96 prevHash, currHash, nextHash, offset
-// - R12 104 &src[base], skip
-// - R13 . &src[nextS], &src[len(src) - 8]
-// - R14 . len(src), bytesBetweenHashLookups, &src[len(src)], x
-// - R15 112 candidate
-//
-// The second column (56, 64, etc) is the stack offset to spill the registers
-// when calling other functions. We could pack this slightly tighter, but it's
-// simpler to have a dedicated spill map independent of the function called.
-//
-// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
-// extra 56 bytes, to call other functions, and an extra 64 bytes, to spill
-// local variables (registers) during calls gives 32768 + 56 + 64 = 32888.
-TEXT ·encodeBlock(SB), 0, $32888-56
- MOVQ dst_base+0(FP), DI
- MOVQ src_base+24(FP), SI
- MOVQ src_len+32(FP), R14
-
- // shift, tableSize := uint32(32-8), 1<<8
- MOVQ $24, CX
- MOVQ $256, DX
-
-calcShift:
- // for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
- // shift--
- // }
- CMPQ DX, $16384
- JGE varTable
- CMPQ DX, R14
- JGE varTable
- SUBQ $1, CX
- SHLQ $1, DX
- JMP calcShift
-
-varTable:
- // var table [maxTableSize]uint16
- //
- // In the asm code, unlike the Go code, we can zero-initialize only the
- // first tableSize elements. Each uint16 element is 2 bytes and each MOVOU
- // writes 16 bytes, so we can do only tableSize/8 writes instead of the
- // 2048 writes that would zero-initialize all of table's 32768 bytes.
- SHRQ $3, DX
- LEAQ table-32768(SP), BX
- PXOR X0, X0
-
-memclr:
- MOVOU X0, 0(BX)
- ADDQ $16, BX
- SUBQ $1, DX
- JNZ memclr
-
- // !!! DX = &src[0]
- MOVQ SI, DX
-
- // sLimit := len(src) - inputMargin
- MOVQ R14, R9
- SUBQ $15, R9
-
- // !!! Pre-emptively spill CX, DX and R9 to the stack. Their values don't
- // change for the rest of the function.
- MOVQ CX, 56(SP)
- MOVQ DX, 64(SP)
- MOVQ R9, 88(SP)
-
- // nextEmit := 0
- MOVQ DX, R10
-
- // s := 1
- ADDQ $1, SI
-
- // nextHash := hash(load32(src, s), shift)
- MOVL 0(SI), R11
- IMULL $0x1e35a7bd, R11
- SHRL CX, R11
-
-outer:
- // for { etc }
-
- // skip := 32
- MOVQ $32, R12
-
- // nextS := s
- MOVQ SI, R13
-
- // candidate := 0
- MOVQ $0, R15
-
-inner0:
- // for { etc }
-
- // s := nextS
- MOVQ R13, SI
-
- // bytesBetweenHashLookups := skip >> 5
- MOVQ R12, R14
- SHRQ $5, R14
-
- // nextS = s + bytesBetweenHashLookups
- ADDQ R14, R13
-
- // skip += bytesBetweenHashLookups
- ADDQ R14, R12
-
- // if nextS > sLimit { goto emitRemainder }
- MOVQ R13, AX
- SUBQ DX, AX
- CMPQ AX, R9
- JA emitRemainder
-
- // candidate = int(table[nextHash])
- // XXX: MOVWQZX table-32768(SP)(R11*2), R15
- // XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
- BYTE $0x4e
- BYTE $0x0f
- BYTE $0xb7
- BYTE $0x7c
- BYTE $0x5c
- BYTE $0x78
-
- // table[nextHash] = uint16(s)
- MOVQ SI, AX
- SUBQ DX, AX
-
- // XXX: MOVW AX, table-32768(SP)(R11*2)
- // XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
- BYTE $0x66
- BYTE $0x42
- BYTE $0x89
- BYTE $0x44
- BYTE $0x5c
- BYTE $0x78
-
- // nextHash = hash(load32(src, nextS), shift)
- MOVL 0(R13), R11
- IMULL $0x1e35a7bd, R11
- SHRL CX, R11
-
- // if load32(src, s) != load32(src, candidate) { continue } break
- MOVL 0(SI), AX
- MOVL (DX)(R15*1), BX
- CMPL AX, BX
- JNE inner0
-
-fourByteMatch:
- // As per the encode_other.go code:
- //
- // A 4-byte match has been found. We'll later see etc.
-
- // !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
- // on inputMargin in encode.go.
- MOVQ SI, AX
- SUBQ R10, AX
- CMPQ AX, $16
- JLE emitLiteralFastPath
-
- // ----------------------------------------
- // Begin inline of the emitLiteral call.
- //
- // d += emitLiteral(dst[d:], src[nextEmit:s])
-
- MOVL AX, BX
- SUBL $1, BX
-
- CMPL BX, $60
- JLT inlineEmitLiteralOneByte
- CMPL BX, $256
- JLT inlineEmitLiteralTwoBytes
-
-inlineEmitLiteralThreeBytes:
- MOVB $0xf4, 0(DI)
- MOVW BX, 1(DI)
- ADDQ $3, DI
- JMP inlineEmitLiteralMemmove
-
-inlineEmitLiteralTwoBytes:
- MOVB $0xf0, 0(DI)
- MOVB BX, 1(DI)
- ADDQ $2, DI
- JMP inlineEmitLiteralMemmove
-
-inlineEmitLiteralOneByte:
- SHLB $2, BX
- MOVB BX, 0(DI)
- ADDQ $1, DI
-
-inlineEmitLiteralMemmove:
- // Spill local variables (registers) onto the stack; call; unspill.
- //
- // copy(dst[i:], lit)
- //
- // This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
- // DI, R10 and AX as arguments.
- MOVQ DI, 0(SP)
- MOVQ R10, 8(SP)
- MOVQ AX, 16(SP)
- ADDQ AX, DI // Finish the "d +=" part of "d += emitLiteral(etc)".
- MOVQ SI, 72(SP)
- MOVQ DI, 80(SP)
- MOVQ R15, 112(SP)
- CALL runtime·memmove(SB)
- MOVQ 56(SP), CX
- MOVQ 64(SP), DX
- MOVQ 72(SP), SI
- MOVQ 80(SP), DI
- MOVQ 88(SP), R9
- MOVQ 112(SP), R15
- JMP inner1
-
-inlineEmitLiteralEnd:
- // End inline of the emitLiteral call.
- // ----------------------------------------
-
-emitLiteralFastPath:
- // !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
- MOVB AX, BX
- SUBB $1, BX
- SHLB $2, BX
- MOVB BX, (DI)
- ADDQ $1, DI
-
- // !!! Implement the copy from lit to dst as a 16-byte load and store.
- // (Encode's documentation says that dst and src must not overlap.)
- //
- // This always copies 16 bytes, instead of only len(lit) bytes, but that's
- // OK. Subsequent iterations will fix up the overrun.
- //
- // Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
- // 16-byte loads and stores. This technique probably wouldn't be as
- // effective on architectures that are fussier about alignment.
- MOVOU 0(R10), X0
- MOVOU X0, 0(DI)
- ADDQ AX, DI
-
-inner1:
- // for { etc }
-
- // base := s
- MOVQ SI, R12
-
- // !!! offset := base - candidate
- MOVQ R12, R11
- SUBQ R15, R11
- SUBQ DX, R11
-
- // ----------------------------------------
- // Begin inline of the extendMatch call.
- //
- // s = extendMatch(src, candidate+4, s+4)
-
- // !!! R14 = &src[len(src)]
- MOVQ src_len+32(FP), R14
- ADDQ DX, R14
-
- // !!! R13 = &src[len(src) - 8]
- MOVQ R14, R13
- SUBQ $8, R13
-
- // !!! R15 = &src[candidate + 4]
- ADDQ $4, R15
- ADDQ DX, R15
-
- // !!! s += 4
- ADDQ $4, SI
-
-inlineExtendMatchCmp8:
- // As long as we are 8 or more bytes before the end of src, we can load and
- // compare 8 bytes at a time. If those 8 bytes are equal, repeat.
- CMPQ SI, R13
- JA inlineExtendMatchCmp1
- MOVQ (R15), AX
- MOVQ (SI), BX
- CMPQ AX, BX
- JNE inlineExtendMatchBSF
- ADDQ $8, R15
- ADDQ $8, SI
- JMP inlineExtendMatchCmp8
-
-inlineExtendMatchBSF:
- // If those 8 bytes were not equal, XOR the two 8 byte values, and return
- // the index of the first byte that differs. The BSF instruction finds the
- // least significant 1 bit, the amd64 architecture is little-endian, and
- // the shift by 3 converts a bit index to a byte index.
- XORQ AX, BX
- BSFQ BX, BX
- SHRQ $3, BX
- ADDQ BX, SI
- JMP inlineExtendMatchEnd
-
-inlineExtendMatchCmp1:
- // In src's tail, compare 1 byte at a time.
- CMPQ SI, R14
- JAE inlineExtendMatchEnd
- MOVB (R15), AX
- MOVB (SI), BX
- CMPB AX, BX
- JNE inlineExtendMatchEnd
- ADDQ $1, R15
- ADDQ $1, SI
- JMP inlineExtendMatchCmp1
-
-inlineExtendMatchEnd:
- // End inline of the extendMatch call.
- // ----------------------------------------
-
- // ----------------------------------------
- // Begin inline of the emitCopy call.
- //
- // d += emitCopy(dst[d:], base-candidate, s-base)
-
- // !!! length := s - base
- MOVQ SI, AX
- SUBQ R12, AX
-
-inlineEmitCopyLoop0:
- // for length >= 68 { etc }
- CMPL AX, $68
- JLT inlineEmitCopyStep1
-
- // Emit a length 64 copy, encoded as 3 bytes.
- MOVB $0xfe, 0(DI)
- MOVW R11, 1(DI)
- ADDQ $3, DI
- SUBL $64, AX
- JMP inlineEmitCopyLoop0
-
-inlineEmitCopyStep1:
- // if length > 64 { etc }
- CMPL AX, $64
- JLE inlineEmitCopyStep2
-
- // Emit a length 60 copy, encoded as 3 bytes.
- MOVB $0xee, 0(DI)
- MOVW R11, 1(DI)
- ADDQ $3, DI
- SUBL $60, AX
-
-inlineEmitCopyStep2:
- // if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 }
- CMPL AX, $12
- JGE inlineEmitCopyStep3
- CMPL R11, $2048
- JGE inlineEmitCopyStep3
-
- // Emit the remaining copy, encoded as 2 bytes.
- MOVB R11, 1(DI)
- SHRL $8, R11
- SHLB $5, R11
- SUBB $4, AX
- SHLB $2, AX
- ORB AX, R11
- ORB $1, R11
- MOVB R11, 0(DI)
- ADDQ $2, DI
- JMP inlineEmitCopyEnd
-
-inlineEmitCopyStep3:
- // Emit the remaining copy, encoded as 3 bytes.
- SUBL $1, AX
- SHLB $2, AX
- ORB $2, AX
- MOVB AX, 0(DI)
- MOVW R11, 1(DI)
- ADDQ $3, DI
-
-inlineEmitCopyEnd:
- // End inline of the emitCopy call.
- // ----------------------------------------
-
- // nextEmit = s
- MOVQ SI, R10
-
- // if s >= sLimit { goto emitRemainder }
- MOVQ SI, AX
- SUBQ DX, AX
- CMPQ AX, R9
- JAE emitRemainder
-
- // As per the encode_other.go code:
- //
- // We could immediately etc.
-
- // x := load64(src, s-1)
- MOVQ -1(SI), R14
-
- // prevHash := hash(uint32(x>>0), shift)
- MOVL R14, R11
- IMULL $0x1e35a7bd, R11
- SHRL CX, R11
-
- // table[prevHash] = uint16(s-1)
- MOVQ SI, AX
- SUBQ DX, AX
- SUBQ $1, AX
-
- // XXX: MOVW AX, table-32768(SP)(R11*2)
- // XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
- BYTE $0x66
- BYTE $0x42
- BYTE $0x89
- BYTE $0x44
- BYTE $0x5c
- BYTE $0x78
-
- // currHash := hash(uint32(x>>8), shift)
- SHRQ $8, R14
- MOVL R14, R11
- IMULL $0x1e35a7bd, R11
- SHRL CX, R11
-
- // candidate = int(table[currHash])
- // XXX: MOVWQZX table-32768(SP)(R11*2), R15
- // XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
- BYTE $0x4e
- BYTE $0x0f
- BYTE $0xb7
- BYTE $0x7c
- BYTE $0x5c
- BYTE $0x78
-
- // table[currHash] = uint16(s)
- ADDQ $1, AX
-
- // XXX: MOVW AX, table-32768(SP)(R11*2)
- // XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
- BYTE $0x66
- BYTE $0x42
- BYTE $0x89
- BYTE $0x44
- BYTE $0x5c
- BYTE $0x78
-
- // if uint32(x>>8) == load32(src, candidate) { continue }
- MOVL (DX)(R15*1), BX
- CMPL R14, BX
- JEQ inner1
-
- // nextHash = hash(uint32(x>>16), shift)
- SHRQ $8, R14
- MOVL R14, R11
- IMULL $0x1e35a7bd, R11
- SHRL CX, R11
-
- // s++
- ADDQ $1, SI
-
- // break out of the inner1 for loop, i.e. continue the outer loop.
- JMP outer
-
-emitRemainder:
- // if nextEmit < len(src) { etc }
- MOVQ src_len+32(FP), AX
- ADDQ DX, AX
- CMPQ R10, AX
- JEQ encodeBlockEnd
-
- // d += emitLiteral(dst[d:], src[nextEmit:])
- //
- // Push args.
- MOVQ DI, 0(SP)
- MOVQ $0, 8(SP) // Unnecessary, as the callee ignores it, but conservative.
- MOVQ $0, 16(SP) // Unnecessary, as the callee ignores it, but conservative.
- MOVQ R10, 24(SP)
- SUBQ R10, AX
- MOVQ AX, 32(SP)
- MOVQ AX, 40(SP) // Unnecessary, as the callee ignores it, but conservative.
-
- // Spill local variables (registers) onto the stack; call; unspill.
- MOVQ DI, 80(SP)
- CALL ·emitLiteral(SB)
- MOVQ 80(SP), DI
-
- // Finish the "d +=" part of "d += emitLiteral(etc)".
- ADDQ 48(SP), DI
-
-encodeBlockEnd:
- MOVQ dst_base+0(FP), AX
- SUBQ AX, DI
- MOVQ DI, d+48(FP)
- RET
diff --git a/vendor/github.com/golang/snappy/encode_arm64.s b/vendor/github.com/golang/snappy/encode_arm64.s
deleted file mode 100644
index bf83667d7..000000000
--- a/vendor/github.com/golang/snappy/encode_arm64.s
+++ /dev/null
@@ -1,722 +0,0 @@
-// Copyright 2020 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !appengine
-// +build gc
-// +build !noasm
-
-#include "textflag.h"
-
-// The asm code generally follows the pure Go code in encode_other.go, except
-// where marked with a "!!!".
-
-// ----------------------------------------------------------------------------
-
-// func emitLiteral(dst, lit []byte) int
-//
-// All local variables fit into registers. The register allocation:
-// - R3 len(lit)
-// - R4 n
-// - R6 return value
-// - R8 &dst[i]
-// - R10 &lit[0]
-//
-// The 32 bytes of stack space is to call runtime·memmove.
-//
-// The unusual register allocation of local variables, such as R10 for the
-// source pointer, matches the allocation used at the call site in encodeBlock,
-// which makes it easier to manually inline this function.
-TEXT ·emitLiteral(SB), NOSPLIT, $32-56
- MOVD dst_base+0(FP), R8
- MOVD lit_base+24(FP), R10
- MOVD lit_len+32(FP), R3
- MOVD R3, R6
- MOVW R3, R4
- SUBW $1, R4, R4
-
- CMPW $60, R4
- BLT oneByte
- CMPW $256, R4
- BLT twoBytes
-
-threeBytes:
- MOVD $0xf4, R2
- MOVB R2, 0(R8)
- MOVW R4, 1(R8)
- ADD $3, R8, R8
- ADD $3, R6, R6
- B memmove
-
-twoBytes:
- MOVD $0xf0, R2
- MOVB R2, 0(R8)
- MOVB R4, 1(R8)
- ADD $2, R8, R8
- ADD $2, R6, R6
- B memmove
-
-oneByte:
- LSLW $2, R4, R4
- MOVB R4, 0(R8)
- ADD $1, R8, R8
- ADD $1, R6, R6
-
-memmove:
- MOVD R6, ret+48(FP)
-
- // copy(dst[i:], lit)
- //
- // This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
- // R8, R10 and R3 as arguments.
- MOVD R8, 8(RSP)
- MOVD R10, 16(RSP)
- MOVD R3, 24(RSP)
- CALL runtime·memmove(SB)
- RET
-
-// ----------------------------------------------------------------------------
-
-// func emitCopy(dst []byte, offset, length int) int
-//
-// All local variables fit into registers. The register allocation:
-// - R3 length
-// - R7 &dst[0]
-// - R8 &dst[i]
-// - R11 offset
-//
-// The unusual register allocation of local variables, such as R11 for the
-// offset, matches the allocation used at the call site in encodeBlock, which
-// makes it easier to manually inline this function.
-TEXT ·emitCopy(SB), NOSPLIT, $0-48
- MOVD dst_base+0(FP), R8
- MOVD R8, R7
- MOVD offset+24(FP), R11
- MOVD length+32(FP), R3
-
-loop0:
- // for length >= 68 { etc }
- CMPW $68, R3
- BLT step1
-
- // Emit a length 64 copy, encoded as 3 bytes.
- MOVD $0xfe, R2
- MOVB R2, 0(R8)
- MOVW R11, 1(R8)
- ADD $3, R8, R8
- SUB $64, R3, R3
- B loop0
-
-step1:
- // if length > 64 { etc }
- CMP $64, R3
- BLE step2
-
- // Emit a length 60 copy, encoded as 3 bytes.
- MOVD $0xee, R2
- MOVB R2, 0(R8)
- MOVW R11, 1(R8)
- ADD $3, R8, R8
- SUB $60, R3, R3
-
-step2:
- // if length >= 12 || offset >= 2048 { goto step3 }
- CMP $12, R3
- BGE step3
- CMPW $2048, R11
- BGE step3
-
- // Emit the remaining copy, encoded as 2 bytes.
- MOVB R11, 1(R8)
- LSRW $3, R11, R11
- AND $0xe0, R11, R11
- SUB $4, R3, R3
- LSLW $2, R3
- AND $0xff, R3, R3
- ORRW R3, R11, R11
- ORRW $1, R11, R11
- MOVB R11, 0(R8)
- ADD $2, R8, R8
-
- // Return the number of bytes written.
- SUB R7, R8, R8
- MOVD R8, ret+40(FP)
- RET
-
-step3:
- // Emit the remaining copy, encoded as 3 bytes.
- SUB $1, R3, R3
- AND $0xff, R3, R3
- LSLW $2, R3, R3
- ORRW $2, R3, R3
- MOVB R3, 0(R8)
- MOVW R11, 1(R8)
- ADD $3, R8, R8
-
- // Return the number of bytes written.
- SUB R7, R8, R8
- MOVD R8, ret+40(FP)
- RET
-
-// ----------------------------------------------------------------------------
-
-// func extendMatch(src []byte, i, j int) int
-//
-// All local variables fit into registers. The register allocation:
-// - R6 &src[0]
-// - R7 &src[j]
-// - R13 &src[len(src) - 8]
-// - R14 &src[len(src)]
-// - R15 &src[i]
-//
-// The unusual register allocation of local variables, such as R15 for a source
-// pointer, matches the allocation used at the call site in encodeBlock, which
-// makes it easier to manually inline this function.
-TEXT ·extendMatch(SB), NOSPLIT, $0-48
- MOVD src_base+0(FP), R6
- MOVD src_len+8(FP), R14
- MOVD i+24(FP), R15
- MOVD j+32(FP), R7
- ADD R6, R14, R14
- ADD R6, R15, R15
- ADD R6, R7, R7
- MOVD R14, R13
- SUB $8, R13, R13
-
-cmp8:
- // As long as we are 8 or more bytes before the end of src, we can load and
- // compare 8 bytes at a time. If those 8 bytes are equal, repeat.
- CMP R13, R7
- BHI cmp1
- MOVD (R15), R3
- MOVD (R7), R4
- CMP R4, R3
- BNE bsf
- ADD $8, R15, R15
- ADD $8, R7, R7
- B cmp8
-
-bsf:
- // If those 8 bytes were not equal, XOR the two 8 byte values, and return
- // the index of the first byte that differs.
- // RBIT reverses the bit order, then CLZ counts the leading zeros, the
- // combination of which finds the least significant bit which is set.
- // The arm64 architecture is little-endian, and the shift by 3 converts
- // a bit index to a byte index.
- EOR R3, R4, R4
- RBIT R4, R4
- CLZ R4, R4
- ADD R4>>3, R7, R7
-
- // Convert from &src[ret] to ret.
- SUB R6, R7, R7
- MOVD R7, ret+40(FP)
- RET
-
-cmp1:
- // In src's tail, compare 1 byte at a time.
- CMP R7, R14
- BLS extendMatchEnd
- MOVB (R15), R3
- MOVB (R7), R4
- CMP R4, R3
- BNE extendMatchEnd
- ADD $1, R15, R15
- ADD $1, R7, R7
- B cmp1
-
-extendMatchEnd:
- // Convert from &src[ret] to ret.
- SUB R6, R7, R7
- MOVD R7, ret+40(FP)
- RET
-
-// ----------------------------------------------------------------------------
-
-// func encodeBlock(dst, src []byte) (d int)
-//
-// All local variables fit into registers, other than "var table". The register
-// allocation:
-// - R3 . .
-// - R4 . .
-// - R5 64 shift
-// - R6 72 &src[0], tableSize
-// - R7 80 &src[s]
-// - R8 88 &dst[d]
-// - R9 96 sLimit
-// - R10 . &src[nextEmit]
-// - R11 104 prevHash, currHash, nextHash, offset
-// - R12 112 &src[base], skip
-// - R13 . &src[nextS], &src[len(src) - 8]
-// - R14 . len(src), bytesBetweenHashLookups, &src[len(src)], x
-// - R15 120 candidate
-// - R16 . hash constant, 0x1e35a7bd
-// - R17 . &table
-// - . 128 table
-//
-// The second column (64, 72, etc) is the stack offset to spill the registers
-// when calling other functions. We could pack this slightly tighter, but it's
-// simpler to have a dedicated spill map independent of the function called.
-//
-// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
-// extra 64 bytes, to call other functions, and an extra 64 bytes, to spill
-// local variables (registers) during calls gives 32768 + 64 + 64 = 32896.
-TEXT ·encodeBlock(SB), 0, $32896-56
- MOVD dst_base+0(FP), R8
- MOVD src_base+24(FP), R7
- MOVD src_len+32(FP), R14
-
- // shift, tableSize := uint32(32-8), 1<<8
- MOVD $24, R5
- MOVD $256, R6
- MOVW $0xa7bd, R16
- MOVKW $(0x1e35<<16), R16
-
-calcShift:
- // for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
- // shift--
- // }
- MOVD $16384, R2
- CMP R2, R6
- BGE varTable
- CMP R14, R6
- BGE varTable
- SUB $1, R5, R5
- LSL $1, R6, R6
- B calcShift
-
-varTable:
- // var table [maxTableSize]uint16
- //
- // In the asm code, unlike the Go code, we can zero-initialize only the
- // first tableSize elements. Each uint16 element is 2 bytes and each
- // iterations writes 64 bytes, so we can do only tableSize/32 writes
- // instead of the 2048 writes that would zero-initialize all of table's
- // 32768 bytes. This clear could overrun the first tableSize elements, but
- // it won't overrun the allocated stack size.
- ADD $128, RSP, R17
- MOVD R17, R4
-
- // !!! R6 = &src[tableSize]
- ADD R6<<1, R17, R6
-
-memclr:
- STP.P (ZR, ZR), 64(R4)
- STP (ZR, ZR), -48(R4)
- STP (ZR, ZR), -32(R4)
- STP (ZR, ZR), -16(R4)
- CMP R4, R6
- BHI memclr
-
- // !!! R6 = &src[0]
- MOVD R7, R6
-
- // sLimit := len(src) - inputMargin
- MOVD R14, R9
- SUB $15, R9, R9
-
- // !!! Pre-emptively spill R5, R6 and R9 to the stack. Their values don't
- // change for the rest of the function.
- MOVD R5, 64(RSP)
- MOVD R6, 72(RSP)
- MOVD R9, 96(RSP)
-
- // nextEmit := 0
- MOVD R6, R10
-
- // s := 1
- ADD $1, R7, R7
-
- // nextHash := hash(load32(src, s), shift)
- MOVW 0(R7), R11
- MULW R16, R11, R11
- LSRW R5, R11, R11
-
-outer:
- // for { etc }
-
- // skip := 32
- MOVD $32, R12
-
- // nextS := s
- MOVD R7, R13
-
- // candidate := 0
- MOVD $0, R15
-
-inner0:
- // for { etc }
-
- // s := nextS
- MOVD R13, R7
-
- // bytesBetweenHashLookups := skip >> 5
- MOVD R12, R14
- LSR $5, R14, R14
-
- // nextS = s + bytesBetweenHashLookups
- ADD R14, R13, R13
-
- // skip += bytesBetweenHashLookups
- ADD R14, R12, R12
-
- // if nextS > sLimit { goto emitRemainder }
- MOVD R13, R3
- SUB R6, R3, R3
- CMP R9, R3
- BHI emitRemainder
-
- // candidate = int(table[nextHash])
- MOVHU 0(R17)(R11<<1), R15
-
- // table[nextHash] = uint16(s)
- MOVD R7, R3
- SUB R6, R3, R3
-
- MOVH R3, 0(R17)(R11<<1)
-
- // nextHash = hash(load32(src, nextS), shift)
- MOVW 0(R13), R11
- MULW R16, R11
- LSRW R5, R11, R11
-
- // if load32(src, s) != load32(src, candidate) { continue } break
- MOVW 0(R7), R3
- MOVW (R6)(R15*1), R4
- CMPW R4, R3
- BNE inner0
-
-fourByteMatch:
- // As per the encode_other.go code:
- //
- // A 4-byte match has been found. We'll later see etc.
-
- // !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
- // on inputMargin in encode.go.
- MOVD R7, R3
- SUB R10, R3, R3
- CMP $16, R3
- BLE emitLiteralFastPath
-
- // ----------------------------------------
- // Begin inline of the emitLiteral call.
- //
- // d += emitLiteral(dst[d:], src[nextEmit:s])
-
- MOVW R3, R4
- SUBW $1, R4, R4
-
- MOVW $60, R2
- CMPW R2, R4
- BLT inlineEmitLiteralOneByte
- MOVW $256, R2
- CMPW R2, R4
- BLT inlineEmitLiteralTwoBytes
-
-inlineEmitLiteralThreeBytes:
- MOVD $0xf4, R1
- MOVB R1, 0(R8)
- MOVW R4, 1(R8)
- ADD $3, R8, R8
- B inlineEmitLiteralMemmove
-
-inlineEmitLiteralTwoBytes:
- MOVD $0xf0, R1
- MOVB R1, 0(R8)
- MOVB R4, 1(R8)
- ADD $2, R8, R8
- B inlineEmitLiteralMemmove
-
-inlineEmitLiteralOneByte:
- LSLW $2, R4, R4
- MOVB R4, 0(R8)
- ADD $1, R8, R8
-
-inlineEmitLiteralMemmove:
- // Spill local variables (registers) onto the stack; call; unspill.
- //
- // copy(dst[i:], lit)
- //
- // This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
- // R8, R10 and R3 as arguments.
- MOVD R8, 8(RSP)
- MOVD R10, 16(RSP)
- MOVD R3, 24(RSP)
-
- // Finish the "d +=" part of "d += emitLiteral(etc)".
- ADD R3, R8, R8
- MOVD R7, 80(RSP)
- MOVD R8, 88(RSP)
- MOVD R15, 120(RSP)
- CALL runtime·memmove(SB)
- MOVD 64(RSP), R5
- MOVD 72(RSP), R6
- MOVD 80(RSP), R7
- MOVD 88(RSP), R8
- MOVD 96(RSP), R9
- MOVD 120(RSP), R15
- ADD $128, RSP, R17
- MOVW $0xa7bd, R16
- MOVKW $(0x1e35<<16), R16
- B inner1
-
-inlineEmitLiteralEnd:
- // End inline of the emitLiteral call.
- // ----------------------------------------
-
-emitLiteralFastPath:
- // !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
- MOVB R3, R4
- SUBW $1, R4, R4
- AND $0xff, R4, R4
- LSLW $2, R4, R4
- MOVB R4, (R8)
- ADD $1, R8, R8
-
- // !!! Implement the copy from lit to dst as a 16-byte load and store.
- // (Encode's documentation says that dst and src must not overlap.)
- //
- // This always copies 16 bytes, instead of only len(lit) bytes, but that's
- // OK. Subsequent iterations will fix up the overrun.
- //
- // Note that on arm64, it is legal and cheap to issue unaligned 8-byte or
- // 16-byte loads and stores. This technique probably wouldn't be as
- // effective on architectures that are fussier about alignment.
- LDP 0(R10), (R0, R1)
- STP (R0, R1), 0(R8)
- ADD R3, R8, R8
-
-inner1:
- // for { etc }
-
- // base := s
- MOVD R7, R12
-
- // !!! offset := base - candidate
- MOVD R12, R11
- SUB R15, R11, R11
- SUB R6, R11, R11
-
- // ----------------------------------------
- // Begin inline of the extendMatch call.
- //
- // s = extendMatch(src, candidate+4, s+4)
-
- // !!! R14 = &src[len(src)]
- MOVD src_len+32(FP), R14
- ADD R6, R14, R14
-
- // !!! R13 = &src[len(src) - 8]
- MOVD R14, R13
- SUB $8, R13, R13
-
- // !!! R15 = &src[candidate + 4]
- ADD $4, R15, R15
- ADD R6, R15, R15
-
- // !!! s += 4
- ADD $4, R7, R7
-
-inlineExtendMatchCmp8:
- // As long as we are 8 or more bytes before the end of src, we can load and
- // compare 8 bytes at a time. If those 8 bytes are equal, repeat.
- CMP R13, R7
- BHI inlineExtendMatchCmp1
- MOVD (R15), R3
- MOVD (R7), R4
- CMP R4, R3
- BNE inlineExtendMatchBSF
- ADD $8, R15, R15
- ADD $8, R7, R7
- B inlineExtendMatchCmp8
-
-inlineExtendMatchBSF:
- // If those 8 bytes were not equal, XOR the two 8 byte values, and return
- // the index of the first byte that differs.
- // RBIT reverses the bit order, then CLZ counts the leading zeros, the
- // combination of which finds the least significant bit which is set.
- // The arm64 architecture is little-endian, and the shift by 3 converts
- // a bit index to a byte index.
- EOR R3, R4, R4
- RBIT R4, R4
- CLZ R4, R4
- ADD R4>>3, R7, R7
- B inlineExtendMatchEnd
-
-inlineExtendMatchCmp1:
- // In src's tail, compare 1 byte at a time.
- CMP R7, R14
- BLS inlineExtendMatchEnd
- MOVB (R15), R3
- MOVB (R7), R4
- CMP R4, R3
- BNE inlineExtendMatchEnd
- ADD $1, R15, R15
- ADD $1, R7, R7
- B inlineExtendMatchCmp1
-
-inlineExtendMatchEnd:
- // End inline of the extendMatch call.
- // ----------------------------------------
-
- // ----------------------------------------
- // Begin inline of the emitCopy call.
- //
- // d += emitCopy(dst[d:], base-candidate, s-base)
-
- // !!! length := s - base
- MOVD R7, R3
- SUB R12, R3, R3
-
-inlineEmitCopyLoop0:
- // for length >= 68 { etc }
- MOVW $68, R2
- CMPW R2, R3
- BLT inlineEmitCopyStep1
-
- // Emit a length 64 copy, encoded as 3 bytes.
- MOVD $0xfe, R1
- MOVB R1, 0(R8)
- MOVW R11, 1(R8)
- ADD $3, R8, R8
- SUBW $64, R3, R3
- B inlineEmitCopyLoop0
-
-inlineEmitCopyStep1:
- // if length > 64 { etc }
- MOVW $64, R2
- CMPW R2, R3
- BLE inlineEmitCopyStep2
-
- // Emit a length 60 copy, encoded as 3 bytes.
- MOVD $0xee, R1
- MOVB R1, 0(R8)
- MOVW R11, 1(R8)
- ADD $3, R8, R8
- SUBW $60, R3, R3
-
-inlineEmitCopyStep2:
- // if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 }
- MOVW $12, R2
- CMPW R2, R3
- BGE inlineEmitCopyStep3
- MOVW $2048, R2
- CMPW R2, R11
- BGE inlineEmitCopyStep3
-
- // Emit the remaining copy, encoded as 2 bytes.
- MOVB R11, 1(R8)
- LSRW $8, R11, R11
- LSLW $5, R11, R11
- SUBW $4, R3, R3
- AND $0xff, R3, R3
- LSLW $2, R3, R3
- ORRW R3, R11, R11
- ORRW $1, R11, R11
- MOVB R11, 0(R8)
- ADD $2, R8, R8
- B inlineEmitCopyEnd
-
-inlineEmitCopyStep3:
- // Emit the remaining copy, encoded as 3 bytes.
- SUBW $1, R3, R3
- LSLW $2, R3, R3
- ORRW $2, R3, R3
- MOVB R3, 0(R8)
- MOVW R11, 1(R8)
- ADD $3, R8, R8
-
-inlineEmitCopyEnd:
- // End inline of the emitCopy call.
- // ----------------------------------------
-
- // nextEmit = s
- MOVD R7, R10
-
- // if s >= sLimit { goto emitRemainder }
- MOVD R7, R3
- SUB R6, R3, R3
- CMP R3, R9
- BLS emitRemainder
-
- // As per the encode_other.go code:
- //
- // We could immediately etc.
-
- // x := load64(src, s-1)
- MOVD -1(R7), R14
-
- // prevHash := hash(uint32(x>>0), shift)
- MOVW R14, R11
- MULW R16, R11, R11
- LSRW R5, R11, R11
-
- // table[prevHash] = uint16(s-1)
- MOVD R7, R3
- SUB R6, R3, R3
- SUB $1, R3, R3
-
- MOVHU R3, 0(R17)(R11<<1)
-
- // currHash := hash(uint32(x>>8), shift)
- LSR $8, R14, R14
- MOVW R14, R11
- MULW R16, R11, R11
- LSRW R5, R11, R11
-
- // candidate = int(table[currHash])
- MOVHU 0(R17)(R11<<1), R15
-
- // table[currHash] = uint16(s)
- ADD $1, R3, R3
- MOVHU R3, 0(R17)(R11<<1)
-
- // if uint32(x>>8) == load32(src, candidate) { continue }
- MOVW (R6)(R15*1), R4
- CMPW R4, R14
- BEQ inner1
-
- // nextHash = hash(uint32(x>>16), shift)
- LSR $8, R14, R14
- MOVW R14, R11
- MULW R16, R11, R11
- LSRW R5, R11, R11
-
- // s++
- ADD $1, R7, R7
-
- // break out of the inner1 for loop, i.e. continue the outer loop.
- B outer
-
-emitRemainder:
- // if nextEmit < len(src) { etc }
- MOVD src_len+32(FP), R3
- ADD R6, R3, R3
- CMP R3, R10
- BEQ encodeBlockEnd
-
- // d += emitLiteral(dst[d:], src[nextEmit:])
- //
- // Push args.
- MOVD R8, 8(RSP)
- MOVD $0, 16(RSP) // Unnecessary, as the callee ignores it, but conservative.
- MOVD $0, 24(RSP) // Unnecessary, as the callee ignores it, but conservative.
- MOVD R10, 32(RSP)
- SUB R10, R3, R3
- MOVD R3, 40(RSP)
- MOVD R3, 48(RSP) // Unnecessary, as the callee ignores it, but conservative.
-
- // Spill local variables (registers) onto the stack; call; unspill.
- MOVD R8, 88(RSP)
- CALL ·emitLiteral(SB)
- MOVD 88(RSP), R8
-
- // Finish the "d +=" part of "d += emitLiteral(etc)".
- MOVD 56(RSP), R1
- ADD R1, R8, R8
-
-encodeBlockEnd:
- MOVD dst_base+0(FP), R3
- SUB R3, R8, R8
- MOVD R8, d+48(FP)
- RET
diff --git a/vendor/github.com/golang/snappy/encode_asm.go b/vendor/github.com/golang/snappy/encode_asm.go
deleted file mode 100644
index 107c1e714..000000000
--- a/vendor/github.com/golang/snappy/encode_asm.go
+++ /dev/null
@@ -1,30 +0,0 @@
-// Copyright 2016 The Snappy-Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !appengine
-// +build gc
-// +build !noasm
-// +build amd64 arm64
-
-package snappy
-
-// emitLiteral has the same semantics as in encode_other.go.
-//
-//go:noescape
-func emitLiteral(dst, lit []byte) int
-
-// emitCopy has the same semantics as in encode_other.go.
-//
-//go:noescape
-func emitCopy(dst []byte, offset, length int) int
-
-// extendMatch has the same semantics as in encode_other.go.
-//
-//go:noescape
-func extendMatch(src []byte, i, j int) int
-
-// encodeBlock has the same semantics as in encode_other.go.
-//
-//go:noescape
-func encodeBlock(dst, src []byte) (d int)
diff --git a/vendor/github.com/golang/snappy/encode_other.go b/vendor/github.com/golang/snappy/encode_other.go
deleted file mode 100644
index 296d7f0be..000000000
--- a/vendor/github.com/golang/snappy/encode_other.go
+++ /dev/null
@@ -1,238 +0,0 @@
-// Copyright 2016 The Snappy-Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !amd64,!arm64 appengine !gc noasm
-
-package snappy
-
-func load32(b []byte, i int) uint32 {
- b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
-}
-
-func load64(b []byte, i int) uint64 {
- b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
- uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
-}
-
-// emitLiteral writes a literal chunk and returns the number of bytes written.
-//
-// It assumes that:
-// dst is long enough to hold the encoded bytes
-// 1 <= len(lit) && len(lit) <= 65536
-func emitLiteral(dst, lit []byte) int {
- i, n := 0, uint(len(lit)-1)
- switch {
- case n < 60:
- dst[0] = uint8(n)<<2 | tagLiteral
- i = 1
- case n < 1<<8:
- dst[0] = 60<<2 | tagLiteral
- dst[1] = uint8(n)
- i = 2
- default:
- dst[0] = 61<<2 | tagLiteral
- dst[1] = uint8(n)
- dst[2] = uint8(n >> 8)
- i = 3
- }
- return i + copy(dst[i:], lit)
-}
-
-// emitCopy writes a copy chunk and returns the number of bytes written.
-//
-// It assumes that:
-// dst is long enough to hold the encoded bytes
-// 1 <= offset && offset <= 65535
-// 4 <= length && length <= 65535
-func emitCopy(dst []byte, offset, length int) int {
- i := 0
- // The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
- // threshold for this loop is a little higher (at 68 = 64 + 4), and the
- // length emitted down below is is a little lower (at 60 = 64 - 4), because
- // it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
- // by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
- // a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
- // 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
- // tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
- // encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
- for length >= 68 {
- // Emit a length 64 copy, encoded as 3 bytes.
- dst[i+0] = 63<<2 | tagCopy2
- dst[i+1] = uint8(offset)
- dst[i+2] = uint8(offset >> 8)
- i += 3
- length -= 64
- }
- if length > 64 {
- // Emit a length 60 copy, encoded as 3 bytes.
- dst[i+0] = 59<<2 | tagCopy2
- dst[i+1] = uint8(offset)
- dst[i+2] = uint8(offset >> 8)
- i += 3
- length -= 60
- }
- if length >= 12 || offset >= 2048 {
- // Emit the remaining copy, encoded as 3 bytes.
- dst[i+0] = uint8(length-1)<<2 | tagCopy2
- dst[i+1] = uint8(offset)
- dst[i+2] = uint8(offset >> 8)
- return i + 3
- }
- // Emit the remaining copy, encoded as 2 bytes.
- dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
- dst[i+1] = uint8(offset)
- return i + 2
-}
-
-// extendMatch returns the largest k such that k <= len(src) and that
-// src[i:i+k-j] and src[j:k] have the same contents.
-//
-// It assumes that:
-// 0 <= i && i < j && j <= len(src)
-func extendMatch(src []byte, i, j int) int {
- for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 {
- }
- return j
-}
-
-func hash(u, shift uint32) uint32 {
- return (u * 0x1e35a7bd) >> shift
-}
-
-// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
-// assumes that the varint-encoded length of the decompressed bytes has already
-// been written.
-//
-// It also assumes that:
-// len(dst) >= MaxEncodedLen(len(src)) &&
-// minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
-func encodeBlock(dst, src []byte) (d int) {
- // Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
- // The table element type is uint16, as s < sLimit and sLimit < len(src)
- // and len(src) <= maxBlockSize and maxBlockSize == 65536.
- const (
- maxTableSize = 1 << 14
- // tableMask is redundant, but helps the compiler eliminate bounds
- // checks.
- tableMask = maxTableSize - 1
- )
- shift := uint32(32 - 8)
- for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
- shift--
- }
- // In Go, all array elements are zero-initialized, so there is no advantage
- // to a smaller tableSize per se. However, it matches the C++ algorithm,
- // and in the asm versions of this code, we can get away with zeroing only
- // the first tableSize elements.
- var table [maxTableSize]uint16
-
- // sLimit is when to stop looking for offset/length copies. The inputMargin
- // lets us use a fast path for emitLiteral in the main loop, while we are
- // looking for copies.
- sLimit := len(src) - inputMargin
-
- // nextEmit is where in src the next emitLiteral should start from.
- nextEmit := 0
-
- // The encoded form must start with a literal, as there are no previous
- // bytes to copy, so we start looking for hash matches at s == 1.
- s := 1
- nextHash := hash(load32(src, s), shift)
-
- for {
- // Copied from the C++ snappy implementation:
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match
- // is found, immediately go back to looking at every byte. This is a
- // small loss (~5% performance, ~0.1% density) for compressible data
- // due to more bookkeeping, but for non-compressible data (such as
- // JPEG) it's a huge win since the compressor quickly "realizes" the
- // data is incompressible and doesn't bother looking for matches
- // everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since
- // the last match; dividing it by 32 (ie. right-shifting by five) gives
- // the number of bytes to move ahead for each iteration.
- skip := 32
-
- nextS := s
- candidate := 0
- for {
- s = nextS
- bytesBetweenHashLookups := skip >> 5
- nextS = s + bytesBetweenHashLookups
- skip += bytesBetweenHashLookups
- if nextS > sLimit {
- goto emitRemainder
- }
- candidate = int(table[nextHash&tableMask])
- table[nextHash&tableMask] = uint16(s)
- nextHash = hash(load32(src, nextS), shift)
- if load32(src, s) == load32(src, candidate) {
- break
- }
- }
-
- // A 4-byte match has been found. We'll later see if more than 4 bytes
- // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
- // them as literal bytes.
- d += emitLiteral(dst[d:], src[nextEmit:s])
-
- // Call emitCopy, and then see if another emitCopy could be our next
- // move. Repeat until we find no match for the input immediately after
- // what was consumed by the last emitCopy call.
- //
- // If we exit this loop normally then we need to call emitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can
- // exit this loop via goto if we get close to exhausting the input.
- for {
- // Invariant: we have a 4-byte match at s, and no need to emit any
- // literal bytes prior to s.
- base := s
-
- // Extend the 4-byte match as long as possible.
- //
- // This is an inlined version of:
- // s = extendMatch(src, candidate+4, s+4)
- s += 4
- for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
- }
-
- d += emitCopy(dst[d:], base-candidate, s-base)
- nextEmit = s
- if s >= sLimit {
- goto emitRemainder
- }
-
- // We could immediately start working at s now, but to improve
- // compression we first update the hash table at s-1 and at s. If
- // another emitCopy is not our next move, also calculate nextHash
- // at s+1. At least on GOARCH=amd64, these three hash calculations
- // are faster as one load64 call (with some shifts) instead of
- // three load32 calls.
- x := load64(src, s-1)
- prevHash := hash(uint32(x>>0), shift)
- table[prevHash&tableMask] = uint16(s - 1)
- currHash := hash(uint32(x>>8), shift)
- candidate = int(table[currHash&tableMask])
- table[currHash&tableMask] = uint16(s)
- if uint32(x>>8) != load32(src, candidate) {
- nextHash = hash(uint32(x>>16), shift)
- s++
- break
- }
- }
- }
-
-emitRemainder:
- if nextEmit < len(src) {
- d += emitLiteral(dst[d:], src[nextEmit:])
- }
- return d
-}
diff --git a/vendor/github.com/golang/snappy/go.mod b/vendor/github.com/golang/snappy/go.mod
deleted file mode 100644
index f6406bb2c..000000000
--- a/vendor/github.com/golang/snappy/go.mod
+++ /dev/null
@@ -1 +0,0 @@
-module github.com/golang/snappy
diff --git a/vendor/github.com/golang/snappy/snappy.go b/vendor/github.com/golang/snappy/snappy.go
deleted file mode 100644
index ece692ea4..000000000
--- a/vendor/github.com/golang/snappy/snappy.go
+++ /dev/null
@@ -1,98 +0,0 @@
-// Copyright 2011 The Snappy-Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package snappy implements the Snappy compression format. It aims for very
-// high speeds and reasonable compression.
-//
-// There are actually two Snappy formats: block and stream. They are related,
-// but different: trying to decompress block-compressed data as a Snappy stream
-// will fail, and vice versa. The block format is the Decode and Encode
-// functions and the stream format is the Reader and Writer types.
-//
-// The block format, the more common case, is used when the complete size (the
-// number of bytes) of the original data is known upfront, at the time
-// compression starts. The stream format, also known as the framing format, is
-// for when that isn't always true.
-//
-// The canonical, C++ implementation is at https://github.com/google/snappy and
-// it only implements the block format.
-package snappy // import "github.com/golang/snappy"
-
-import (
- "hash/crc32"
-)
-
-/*
-Each encoded block begins with the varint-encoded length of the decoded data,
-followed by a sequence of chunks. Chunks begin and end on byte boundaries. The
-first byte of each chunk is broken into its 2 least and 6 most significant bits
-called l and m: l ranges in [0, 4) and m ranges in [0, 64). l is the chunk tag.
-Zero means a literal tag. All other values mean a copy tag.
-
-For literal tags:
- - If m < 60, the next 1 + m bytes are literal bytes.
- - Otherwise, let n be the little-endian unsigned integer denoted by the next
- m - 59 bytes. The next 1 + n bytes after that are literal bytes.
-
-For copy tags, length bytes are copied from offset bytes ago, in the style of
-Lempel-Ziv compression algorithms. In particular:
- - For l == 1, the offset ranges in [0, 1<<11) and the length in [4, 12).
- The length is 4 + the low 3 bits of m. The high 3 bits of m form bits 8-10
- of the offset. The next byte is bits 0-7 of the offset.
- - For l == 2, the offset ranges in [0, 1<<16) and the length in [1, 65).
- The length is 1 + m. The offset is the little-endian unsigned integer
- denoted by the next 2 bytes.
- - For l == 3, this tag is a legacy format that is no longer issued by most
- encoders. Nonetheless, the offset ranges in [0, 1<<32) and the length in
- [1, 65). The length is 1 + m. The offset is the little-endian unsigned
- integer denoted by the next 4 bytes.
-*/
-const (
- tagLiteral = 0x00
- tagCopy1 = 0x01
- tagCopy2 = 0x02
- tagCopy4 = 0x03
-)
-
-const (
- checksumSize = 4
- chunkHeaderSize = 4
- magicChunk = "\xff\x06\x00\x00" + magicBody
- magicBody = "sNaPpY"
-
- // maxBlockSize is the maximum size of the input to encodeBlock. It is not
- // part of the wire format per se, but some parts of the encoder assume
- // that an offset fits into a uint16.
- //
- // Also, for the framing format (Writer type instead of Encode function),
- // https://github.com/google/snappy/blob/master/framing_format.txt says
- // that "the uncompressed data in a chunk must be no longer than 65536
- // bytes".
- maxBlockSize = 65536
-
- // maxEncodedLenOfMaxBlockSize equals MaxEncodedLen(maxBlockSize), but is
- // hard coded to be a const instead of a variable, so that obufLen can also
- // be a const. Their equivalence is confirmed by
- // TestMaxEncodedLenOfMaxBlockSize.
- maxEncodedLenOfMaxBlockSize = 76490
-
- obufHeaderLen = len(magicChunk) + checksumSize + chunkHeaderSize
- obufLen = obufHeaderLen + maxEncodedLenOfMaxBlockSize
-)
-
-const (
- chunkTypeCompressedData = 0x00
- chunkTypeUncompressedData = 0x01
- chunkTypePadding = 0xfe
- chunkTypeStreamIdentifier = 0xff
-)
-
-var crcTable = crc32.MakeTable(crc32.Castagnoli)
-
-// crc implements the checksum specified in section 3 of
-// https://github.com/google/snappy/blob/master/framing_format.txt
-func crc(b []byte) uint32 {
- c := crc32.Update(0, crcTable, b)
- return uint32(c>>15|c<<17) + 0xa282ead8
-}