diff options
Diffstat (limited to 'vendor/github.com/letsencrypt/boulder/goodkey/good_key.go')
-rw-r--r-- | vendor/github.com/letsencrypt/boulder/goodkey/good_key.go | 432 |
1 files changed, 432 insertions, 0 deletions
diff --git a/vendor/github.com/letsencrypt/boulder/goodkey/good_key.go b/vendor/github.com/letsencrypt/boulder/goodkey/good_key.go new file mode 100644 index 000000000..b751c376c --- /dev/null +++ b/vendor/github.com/letsencrypt/boulder/goodkey/good_key.go @@ -0,0 +1,432 @@ +package goodkey + +import ( + "context" + "crypto" + "crypto/ecdsa" + "crypto/elliptic" + "crypto/rsa" + "errors" + "fmt" + "math/big" + "sync" + + "github.com/letsencrypt/boulder/core" + berrors "github.com/letsencrypt/boulder/errors" + "github.com/letsencrypt/boulder/features" + sapb "github.com/letsencrypt/boulder/sa/proto" + "google.golang.org/grpc" + + "github.com/titanous/rocacheck" +) + +// To generate, run: primes 2 752 | tr '\n' , +var smallPrimeInts = []int64{ + 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, + 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, + 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, + 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, + 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, + 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, + 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, + 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, + 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, + 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, + 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, + 719, 727, 733, 739, 743, 751, +} + +// singleton defines the object of a Singleton pattern +var ( + smallPrimesSingleton sync.Once + smallPrimesProduct *big.Int +) + +type Config struct { + // WeakKeyFile is the path to a JSON file containing truncated modulus hashes + // of known weak RSA keys. If this config value is empty, then RSA modulus + // hash checking will be disabled. + WeakKeyFile string + // BlockedKeyFile is the path to a YAML file containing base64-encoded SHA256 + // hashes of PKIX Subject Public Keys that should be blocked. If this config + // value is empty, then blocked key checking will be disabled. + BlockedKeyFile string + // FermatRounds is an integer number of rounds of Fermat's factorization + // method that should be performed to attempt to detect keys whose modulus can + // be trivially factored because the two factors are very close to each other. + // If this config value is empty (0), no factorization will be attempted. + FermatRounds int +} + +// ErrBadKey represents an error with a key. It is distinct from the various +// ways in which an ACME request can have an erroneous key (BadPublicKeyError, +// BadCSRError) because this library is used to check both JWS signing keys and +// keys in CSRs. +var ErrBadKey = errors.New("") + +func badKey(msg string, args ...interface{}) error { + return fmt.Errorf("%w%s", ErrBadKey, fmt.Errorf(msg, args...)) +} + +// BlockedKeyCheckFunc is used to pass in the sa.BlockedKey method to KeyPolicy, +// rather than storing a full sa.SQLStorageAuthority. This makes testing +// significantly simpler. +type BlockedKeyCheckFunc func(context.Context, *sapb.KeyBlockedRequest, ...grpc.CallOption) (*sapb.Exists, error) + +// KeyPolicy determines which types of key may be used with various boulder +// operations. +type KeyPolicy struct { + AllowRSA bool // Whether RSA keys should be allowed. + AllowECDSANISTP256 bool // Whether ECDSA NISTP256 keys should be allowed. + AllowECDSANISTP384 bool // Whether ECDSA NISTP384 keys should be allowed. + weakRSAList *WeakRSAKeys + blockedList *blockedKeys + fermatRounds int + dbCheck BlockedKeyCheckFunc +} + +// NewKeyPolicy returns a KeyPolicy that allows RSA, ECDSA256 and ECDSA384. +// weakKeyFile contains the path to a JSON file containing truncated modulus +// hashes of known weak RSA keys. If this argument is empty RSA modulus hash +// checking will be disabled. blockedKeyFile contains the path to a YAML file +// containing Base64 encoded SHA256 hashes of pkix subject public keys that +// should be blocked. If this argument is empty then no blocked key checking is +// performed. +func NewKeyPolicy(config *Config, bkc BlockedKeyCheckFunc) (KeyPolicy, error) { + kp := KeyPolicy{ + AllowRSA: true, + AllowECDSANISTP256: true, + AllowECDSANISTP384: true, + dbCheck: bkc, + } + if config.WeakKeyFile != "" { + keyList, err := LoadWeakRSASuffixes(config.WeakKeyFile) + if err != nil { + return KeyPolicy{}, err + } + kp.weakRSAList = keyList + } + if config.BlockedKeyFile != "" { + blocked, err := loadBlockedKeysList(config.BlockedKeyFile) + if err != nil { + return KeyPolicy{}, err + } + kp.blockedList = blocked + } + if config.FermatRounds < 0 { + return KeyPolicy{}, fmt.Errorf("Fermat factorization rounds cannot be negative: %d", config.FermatRounds) + } + kp.fermatRounds = config.FermatRounds + return kp, nil +} + +// GoodKey returns true if the key is acceptable for both TLS use and account +// key use (our requirements are the same for either one), according to basic +// strength and algorithm checking. GoodKey only supports pointers: *rsa.PublicKey +// and *ecdsa.PublicKey. It will reject non-pointer types. +// TODO: Support JSONWebKeys once go-jose migration is done. +func (policy *KeyPolicy) GoodKey(ctx context.Context, key crypto.PublicKey) error { + // Early rejection of unacceptable key types to guard subsequent checks. + switch t := key.(type) { + case *rsa.PublicKey, *ecdsa.PublicKey: + break + default: + return badKey("unsupported key type %T", t) + } + // If there is a blocked list configured then check if the public key is one + // that has been administratively blocked. + if policy.blockedList != nil { + if blocked, err := policy.blockedList.blocked(key); err != nil { + return berrors.InternalServerError("error checking blocklist for key: %v", key) + } else if blocked { + return badKey("public key is forbidden") + } + } + if policy.dbCheck != nil { + digest, err := core.KeyDigest(key) + if err != nil { + return badKey("%w", err) + } + exists, err := policy.dbCheck(ctx, &sapb.KeyBlockedRequest{KeyHash: digest[:]}) + if err != nil { + return err + } else if exists.Exists { + return badKey("public key is forbidden") + } + } + switch t := key.(type) { + case *rsa.PublicKey: + return policy.goodKeyRSA(t) + case *ecdsa.PublicKey: + return policy.goodKeyECDSA(t) + default: + return badKey("unsupported key type %T", key) + } +} + +// GoodKeyECDSA determines if an ECDSA pubkey meets our requirements +func (policy *KeyPolicy) goodKeyECDSA(key *ecdsa.PublicKey) (err error) { + // Check the curve. + // + // The validity of the curve is an assumption for all following tests. + err = policy.goodCurve(key.Curve) + if err != nil { + return err + } + + // Key validation routine adapted from NIST SP800-56A § 5.6.2.3.2. + // <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf> + // + // Assuming a prime field since a) we are only allowing such curves and b) + // crypto/elliptic only supports prime curves. Where this assumption + // simplifies the code below, it is explicitly stated and explained. If ever + // adapting this code to support non-prime curves, refer to NIST SP800-56A § + // 5.6.2.3.2 and adapt this code appropriately. + params := key.Params() + + // SP800-56A § 5.6.2.3.2 Step 1. + // Partial check of the public key for an invalid range in the EC group: + // Verify that key is not the point at infinity O. + // This code assumes that the point at infinity is (0,0), which is the + // case for all supported curves. + if isPointAtInfinityNISTP(key.X, key.Y) { + return badKey("key x, y must not be the point at infinity") + } + + // SP800-56A § 5.6.2.3.2 Step 2. + // "Verify that x_Q and y_Q are integers in the interval [0,p-1] in the + // case that q is an odd prime p, or that x_Q and y_Q are bit strings + // of length m bits in the case that q = 2**m." + // + // Prove prime field: ASSUMED. + // Prove q != 2: ASSUMED. (Curve parameter. No supported curve has q == 2.) + // Prime field && q != 2 => q is an odd prime p + // Therefore "verify that x, y are in [0, p-1]" satisfies step 2. + // + // Therefore verify that both x and y of the public key point have the unique + // correct representation of an element in the underlying field by verifying + // that x and y are integers in [0, p-1]. + if key.X.Sign() < 0 || key.Y.Sign() < 0 { + return badKey("key x, y must not be negative") + } + + if key.X.Cmp(params.P) >= 0 || key.Y.Cmp(params.P) >= 0 { + return badKey("key x, y must not exceed P-1") + } + + // SP800-56A § 5.6.2.3.2 Step 3. + // "If q is an odd prime p, verify that (y_Q)**2 === (x_Q)***3 + a*x_Q + b (mod p). + // If q = 2**m, verify that (y_Q)**2 + (x_Q)*(y_Q) == (x_Q)**3 + a*(x_Q)*2 + b in + // the finite field of size 2**m. + // (Ensures that the public key is on the correct elliptic curve.)" + // + // q is an odd prime p: proven/assumed above. + // a = -3 for all supported curves. + // + // Therefore step 3 is satisfied simply by showing that + // y**2 === x**3 - 3*x + B (mod P). + // + // This proves that the public key is on the correct elliptic curve. + // But in practice, this test is provided by crypto/elliptic, so use that. + if !key.Curve.IsOnCurve(key.X, key.Y) { + return badKey("key point is not on the curve") + } + + // SP800-56A § 5.6.2.3.2 Step 4. + // "Verify that n*Q == Ø. + // (Ensures that the public key has the correct order. Along with check 1, + // ensures that the public key is in the correct range in the correct EC + // subgroup, that is, it is in the correct EC subgroup and is not the + // identity element.)" + // + // Ensure that public key has the correct order: + // verify that n*Q = Ø. + // + // n*Q = Ø iff n*Q is the point at infinity (see step 1). + ox, oy := key.Curve.ScalarMult(key.X, key.Y, params.N.Bytes()) + if !isPointAtInfinityNISTP(ox, oy) { + return badKey("public key does not have correct order") + } + + // End of SP800-56A § 5.6.2.3.2 Public Key Validation Routine. + // Key is valid. + return nil +} + +// Returns true iff the point (x,y) on NIST P-256, NIST P-384 or NIST P-521 is +// the point at infinity. These curves all have the same point at infinity +// (0,0). This function must ONLY be used on points on curves verified to have +// (0,0) as their point at infinity. +func isPointAtInfinityNISTP(x, y *big.Int) bool { + return x.Sign() == 0 && y.Sign() == 0 +} + +// GoodCurve determines if an elliptic curve meets our requirements. +func (policy *KeyPolicy) goodCurve(c elliptic.Curve) (err error) { + // Simply use a whitelist for now. + params := c.Params() + switch { + case policy.AllowECDSANISTP256 && params == elliptic.P256().Params(): + return nil + case policy.AllowECDSANISTP384 && params == elliptic.P384().Params(): + return nil + default: + return badKey("ECDSA curve %v not allowed", params.Name) + } +} + +var acceptableRSAKeySizes = map[int]bool{ + 2048: true, + 3072: true, + 4096: true, +} + +// GoodKeyRSA determines if a RSA pubkey meets our requirements +func (policy *KeyPolicy) goodKeyRSA(key *rsa.PublicKey) (err error) { + if !policy.AllowRSA { + return badKey("RSA keys are not allowed") + } + if policy.weakRSAList != nil && policy.weakRSAList.Known(key) { + return badKey("key is on a known weak RSA key list") + } + + // Baseline Requirements Appendix A + // Modulus must be >= 2048 bits and <= 4096 bits + modulus := key.N + modulusBitLen := modulus.BitLen() + if features.Enabled(features.RestrictRSAKeySizes) { + if !acceptableRSAKeySizes[modulusBitLen] { + return badKey("key size not supported: %d", modulusBitLen) + } + } else { + const maxKeySize = 4096 + if modulusBitLen < 2048 { + return badKey("key too small: %d", modulusBitLen) + } + if modulusBitLen > maxKeySize { + return badKey("key too large: %d > %d", modulusBitLen, maxKeySize) + } + // Bit lengths that are not a multiple of 8 may cause problems on some + // client implementations. + if modulusBitLen%8 != 0 { + return badKey("key length wasn't a multiple of 8: %d", modulusBitLen) + } + } + + // Rather than support arbitrary exponents, which significantly increases + // the size of the key space we allow, we restrict E to the defacto standard + // RSA exponent 65537. There is no specific standards document that specifies + // 65537 as the 'best' exponent, but ITU X.509 Annex C suggests there are + // notable merits for using it if using a fixed exponent. + // + // The CABF Baseline Requirements state: + // The CA SHALL confirm that the value of the public exponent is an + // odd number equal to 3 or more. Additionally, the public exponent + // SHOULD be in the range between 2^16 + 1 and 2^256-1. + // + // By only allowing one exponent, which fits these constraints, we satisfy + // these requirements. + if key.E != 65537 { + return badKey("key exponent must be 65537") + } + + // The modulus SHOULD also have the following characteristics: an odd + // number, not the power of a prime, and have no factors smaller than 752. + // TODO: We don't yet check for "power of a prime." + if checkSmallPrimes(modulus) { + return badKey("key divisible by small prime") + } + // Check for weak keys generated by Infineon hardware + // (see https://crocs.fi.muni.cz/public/papers/rsa_ccs17) + if rocacheck.IsWeak(key) { + return badKey("key generated by vulnerable Infineon-based hardware") + } + // Check if the key can be easily factored via Fermat's factorization method. + if policy.fermatRounds > 0 { + err := checkPrimeFactorsTooClose(modulus, policy.fermatRounds) + if err != nil { + return badKey("key generated with factors too close together: %w", err) + } + } + + return nil +} + +// Returns true iff integer i is divisible by any of the primes in smallPrimes. +// +// Short circuits; execution time is dependent on i. Do not use this on secret +// values. +// +// Rather than checking each prime individually (invoking Mod on each), +// multiply the primes together and let GCD do our work for us: if the +// GCD between <key> and <product of primes> is not one, we know we have +// a bad key. This is substantially faster than checking each prime +// individually. +func checkSmallPrimes(i *big.Int) bool { + smallPrimesSingleton.Do(func() { + smallPrimesProduct = big.NewInt(1) + for _, prime := range smallPrimeInts { + smallPrimesProduct.Mul(smallPrimesProduct, big.NewInt(prime)) + } + }) + + // When the GCD is 1, i and smallPrimesProduct are coprime, meaning they + // share no common factors. When the GCD is not one, it is the product of + // all common factors, meaning we've identified at least one small prime + // which invalidates i as a valid key. + + var result big.Int + result.GCD(nil, nil, i, smallPrimesProduct) + return result.Cmp(big.NewInt(1)) != 0 +} + +// Returns an error if the modulus n is able to be factored into primes p and q +// via Fermat's factorization method. This method relies on the two primes being +// very close together, which means that they were almost certainly not picked +// independently from a uniform random distribution. Basically, if we can factor +// the key this easily, so can anyone else. +func checkPrimeFactorsTooClose(n *big.Int, rounds int) error { + // Pre-allocate some big numbers that we'll use a lot down below. + one := big.NewInt(1) + bb := new(big.Int) + + // Any odd integer is equal to a difference of squares of integers: + // n = a^2 - b^2 = (a + b)(a - b) + // Any RSA public key modulus is equal to a product of two primes: + // n = pq + // Here we try to find values for a and b, since doing so also gives us the + // prime factors p = (a + b) and q = (a - b). + + // We start with a close to the square root of the modulus n, to start with + // two candidate prime factors that are as close together as possible and + // work our way out from there. Specifically, we set a = ceil(sqrt(n)), the + // first integer greater than the square root of n. Unfortunately, big.Int's + // built-in square root function takes the floor, so we have to add one to get + // the ceil. + a := new(big.Int) + a.Sqrt(n).Add(a, one) + + // We calculate b2 to see if it is a perfect square (i.e. b^2), and therefore + // b is an integer. Specifically, b2 = a^2 - n. + b2 := new(big.Int) + b2.Mul(a, a).Sub(b2, n) + + for i := 0; i < rounds; i++ { + // To see if b2 is a perfect square, we take its square root, square that, + // and check to see if we got the same result back. + bb.Sqrt(b2).Mul(bb, bb) + if b2.Cmp(bb) == 0 { + // b2 is a perfect square, so we've found integer values of a and b, + // and can easily compute p and q as their sum and difference. + bb.Sqrt(bb) + p := new(big.Int).Add(a, bb) + q := new(big.Int).Sub(a, bb) + return fmt.Errorf("public modulus n = pq factored into p: %s; q: %s", p, q) + } + + // Set up the next iteration by incrementing a by one and recalculating b2. + a.Add(a, one) + b2.Mul(a, a).Sub(b2, n) + } + return nil +} |