aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/letsencrypt/boulder/goodkey/good_key.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/letsencrypt/boulder/goodkey/good_key.go')
-rw-r--r--vendor/github.com/letsencrypt/boulder/goodkey/good_key.go432
1 files changed, 432 insertions, 0 deletions
diff --git a/vendor/github.com/letsencrypt/boulder/goodkey/good_key.go b/vendor/github.com/letsencrypt/boulder/goodkey/good_key.go
new file mode 100644
index 000000000..b751c376c
--- /dev/null
+++ b/vendor/github.com/letsencrypt/boulder/goodkey/good_key.go
@@ -0,0 +1,432 @@
+package goodkey
+
+import (
+ "context"
+ "crypto"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rsa"
+ "errors"
+ "fmt"
+ "math/big"
+ "sync"
+
+ "github.com/letsencrypt/boulder/core"
+ berrors "github.com/letsencrypt/boulder/errors"
+ "github.com/letsencrypt/boulder/features"
+ sapb "github.com/letsencrypt/boulder/sa/proto"
+ "google.golang.org/grpc"
+
+ "github.com/titanous/rocacheck"
+)
+
+// To generate, run: primes 2 752 | tr '\n' ,
+var smallPrimeInts = []int64{
+ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
+ 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
+ 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
+ 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
+ 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
+ 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
+ 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
+ 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
+ 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
+ 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
+ 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,
+ 719, 727, 733, 739, 743, 751,
+}
+
+// singleton defines the object of a Singleton pattern
+var (
+ smallPrimesSingleton sync.Once
+ smallPrimesProduct *big.Int
+)
+
+type Config struct {
+ // WeakKeyFile is the path to a JSON file containing truncated modulus hashes
+ // of known weak RSA keys. If this config value is empty, then RSA modulus
+ // hash checking will be disabled.
+ WeakKeyFile string
+ // BlockedKeyFile is the path to a YAML file containing base64-encoded SHA256
+ // hashes of PKIX Subject Public Keys that should be blocked. If this config
+ // value is empty, then blocked key checking will be disabled.
+ BlockedKeyFile string
+ // FermatRounds is an integer number of rounds of Fermat's factorization
+ // method that should be performed to attempt to detect keys whose modulus can
+ // be trivially factored because the two factors are very close to each other.
+ // If this config value is empty (0), no factorization will be attempted.
+ FermatRounds int
+}
+
+// ErrBadKey represents an error with a key. It is distinct from the various
+// ways in which an ACME request can have an erroneous key (BadPublicKeyError,
+// BadCSRError) because this library is used to check both JWS signing keys and
+// keys in CSRs.
+var ErrBadKey = errors.New("")
+
+func badKey(msg string, args ...interface{}) error {
+ return fmt.Errorf("%w%s", ErrBadKey, fmt.Errorf(msg, args...))
+}
+
+// BlockedKeyCheckFunc is used to pass in the sa.BlockedKey method to KeyPolicy,
+// rather than storing a full sa.SQLStorageAuthority. This makes testing
+// significantly simpler.
+type BlockedKeyCheckFunc func(context.Context, *sapb.KeyBlockedRequest, ...grpc.CallOption) (*sapb.Exists, error)
+
+// KeyPolicy determines which types of key may be used with various boulder
+// operations.
+type KeyPolicy struct {
+ AllowRSA bool // Whether RSA keys should be allowed.
+ AllowECDSANISTP256 bool // Whether ECDSA NISTP256 keys should be allowed.
+ AllowECDSANISTP384 bool // Whether ECDSA NISTP384 keys should be allowed.
+ weakRSAList *WeakRSAKeys
+ blockedList *blockedKeys
+ fermatRounds int
+ dbCheck BlockedKeyCheckFunc
+}
+
+// NewKeyPolicy returns a KeyPolicy that allows RSA, ECDSA256 and ECDSA384.
+// weakKeyFile contains the path to a JSON file containing truncated modulus
+// hashes of known weak RSA keys. If this argument is empty RSA modulus hash
+// checking will be disabled. blockedKeyFile contains the path to a YAML file
+// containing Base64 encoded SHA256 hashes of pkix subject public keys that
+// should be blocked. If this argument is empty then no blocked key checking is
+// performed.
+func NewKeyPolicy(config *Config, bkc BlockedKeyCheckFunc) (KeyPolicy, error) {
+ kp := KeyPolicy{
+ AllowRSA: true,
+ AllowECDSANISTP256: true,
+ AllowECDSANISTP384: true,
+ dbCheck: bkc,
+ }
+ if config.WeakKeyFile != "" {
+ keyList, err := LoadWeakRSASuffixes(config.WeakKeyFile)
+ if err != nil {
+ return KeyPolicy{}, err
+ }
+ kp.weakRSAList = keyList
+ }
+ if config.BlockedKeyFile != "" {
+ blocked, err := loadBlockedKeysList(config.BlockedKeyFile)
+ if err != nil {
+ return KeyPolicy{}, err
+ }
+ kp.blockedList = blocked
+ }
+ if config.FermatRounds < 0 {
+ return KeyPolicy{}, fmt.Errorf("Fermat factorization rounds cannot be negative: %d", config.FermatRounds)
+ }
+ kp.fermatRounds = config.FermatRounds
+ return kp, nil
+}
+
+// GoodKey returns true if the key is acceptable for both TLS use and account
+// key use (our requirements are the same for either one), according to basic
+// strength and algorithm checking. GoodKey only supports pointers: *rsa.PublicKey
+// and *ecdsa.PublicKey. It will reject non-pointer types.
+// TODO: Support JSONWebKeys once go-jose migration is done.
+func (policy *KeyPolicy) GoodKey(ctx context.Context, key crypto.PublicKey) error {
+ // Early rejection of unacceptable key types to guard subsequent checks.
+ switch t := key.(type) {
+ case *rsa.PublicKey, *ecdsa.PublicKey:
+ break
+ default:
+ return badKey("unsupported key type %T", t)
+ }
+ // If there is a blocked list configured then check if the public key is one
+ // that has been administratively blocked.
+ if policy.blockedList != nil {
+ if blocked, err := policy.blockedList.blocked(key); err != nil {
+ return berrors.InternalServerError("error checking blocklist for key: %v", key)
+ } else if blocked {
+ return badKey("public key is forbidden")
+ }
+ }
+ if policy.dbCheck != nil {
+ digest, err := core.KeyDigest(key)
+ if err != nil {
+ return badKey("%w", err)
+ }
+ exists, err := policy.dbCheck(ctx, &sapb.KeyBlockedRequest{KeyHash: digest[:]})
+ if err != nil {
+ return err
+ } else if exists.Exists {
+ return badKey("public key is forbidden")
+ }
+ }
+ switch t := key.(type) {
+ case *rsa.PublicKey:
+ return policy.goodKeyRSA(t)
+ case *ecdsa.PublicKey:
+ return policy.goodKeyECDSA(t)
+ default:
+ return badKey("unsupported key type %T", key)
+ }
+}
+
+// GoodKeyECDSA determines if an ECDSA pubkey meets our requirements
+func (policy *KeyPolicy) goodKeyECDSA(key *ecdsa.PublicKey) (err error) {
+ // Check the curve.
+ //
+ // The validity of the curve is an assumption for all following tests.
+ err = policy.goodCurve(key.Curve)
+ if err != nil {
+ return err
+ }
+
+ // Key validation routine adapted from NIST SP800-56A § 5.6.2.3.2.
+ // <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf>
+ //
+ // Assuming a prime field since a) we are only allowing such curves and b)
+ // crypto/elliptic only supports prime curves. Where this assumption
+ // simplifies the code below, it is explicitly stated and explained. If ever
+ // adapting this code to support non-prime curves, refer to NIST SP800-56A §
+ // 5.6.2.3.2 and adapt this code appropriately.
+ params := key.Params()
+
+ // SP800-56A § 5.6.2.3.2 Step 1.
+ // Partial check of the public key for an invalid range in the EC group:
+ // Verify that key is not the point at infinity O.
+ // This code assumes that the point at infinity is (0,0), which is the
+ // case for all supported curves.
+ if isPointAtInfinityNISTP(key.X, key.Y) {
+ return badKey("key x, y must not be the point at infinity")
+ }
+
+ // SP800-56A § 5.6.2.3.2 Step 2.
+ // "Verify that x_Q and y_Q are integers in the interval [0,p-1] in the
+ // case that q is an odd prime p, or that x_Q and y_Q are bit strings
+ // of length m bits in the case that q = 2**m."
+ //
+ // Prove prime field: ASSUMED.
+ // Prove q != 2: ASSUMED. (Curve parameter. No supported curve has q == 2.)
+ // Prime field && q != 2 => q is an odd prime p
+ // Therefore "verify that x, y are in [0, p-1]" satisfies step 2.
+ //
+ // Therefore verify that both x and y of the public key point have the unique
+ // correct representation of an element in the underlying field by verifying
+ // that x and y are integers in [0, p-1].
+ if key.X.Sign() < 0 || key.Y.Sign() < 0 {
+ return badKey("key x, y must not be negative")
+ }
+
+ if key.X.Cmp(params.P) >= 0 || key.Y.Cmp(params.P) >= 0 {
+ return badKey("key x, y must not exceed P-1")
+ }
+
+ // SP800-56A § 5.6.2.3.2 Step 3.
+ // "If q is an odd prime p, verify that (y_Q)**2 === (x_Q)***3 + a*x_Q + b (mod p).
+ // If q = 2**m, verify that (y_Q)**2 + (x_Q)*(y_Q) == (x_Q)**3 + a*(x_Q)*2 + b in
+ // the finite field of size 2**m.
+ // (Ensures that the public key is on the correct elliptic curve.)"
+ //
+ // q is an odd prime p: proven/assumed above.
+ // a = -3 for all supported curves.
+ //
+ // Therefore step 3 is satisfied simply by showing that
+ // y**2 === x**3 - 3*x + B (mod P).
+ //
+ // This proves that the public key is on the correct elliptic curve.
+ // But in practice, this test is provided by crypto/elliptic, so use that.
+ if !key.Curve.IsOnCurve(key.X, key.Y) {
+ return badKey("key point is not on the curve")
+ }
+
+ // SP800-56A § 5.6.2.3.2 Step 4.
+ // "Verify that n*Q == Ø.
+ // (Ensures that the public key has the correct order. Along with check 1,
+ // ensures that the public key is in the correct range in the correct EC
+ // subgroup, that is, it is in the correct EC subgroup and is not the
+ // identity element.)"
+ //
+ // Ensure that public key has the correct order:
+ // verify that n*Q = Ø.
+ //
+ // n*Q = Ø iff n*Q is the point at infinity (see step 1).
+ ox, oy := key.Curve.ScalarMult(key.X, key.Y, params.N.Bytes())
+ if !isPointAtInfinityNISTP(ox, oy) {
+ return badKey("public key does not have correct order")
+ }
+
+ // End of SP800-56A § 5.6.2.3.2 Public Key Validation Routine.
+ // Key is valid.
+ return nil
+}
+
+// Returns true iff the point (x,y) on NIST P-256, NIST P-384 or NIST P-521 is
+// the point at infinity. These curves all have the same point at infinity
+// (0,0). This function must ONLY be used on points on curves verified to have
+// (0,0) as their point at infinity.
+func isPointAtInfinityNISTP(x, y *big.Int) bool {
+ return x.Sign() == 0 && y.Sign() == 0
+}
+
+// GoodCurve determines if an elliptic curve meets our requirements.
+func (policy *KeyPolicy) goodCurve(c elliptic.Curve) (err error) {
+ // Simply use a whitelist for now.
+ params := c.Params()
+ switch {
+ case policy.AllowECDSANISTP256 && params == elliptic.P256().Params():
+ return nil
+ case policy.AllowECDSANISTP384 && params == elliptic.P384().Params():
+ return nil
+ default:
+ return badKey("ECDSA curve %v not allowed", params.Name)
+ }
+}
+
+var acceptableRSAKeySizes = map[int]bool{
+ 2048: true,
+ 3072: true,
+ 4096: true,
+}
+
+// GoodKeyRSA determines if a RSA pubkey meets our requirements
+func (policy *KeyPolicy) goodKeyRSA(key *rsa.PublicKey) (err error) {
+ if !policy.AllowRSA {
+ return badKey("RSA keys are not allowed")
+ }
+ if policy.weakRSAList != nil && policy.weakRSAList.Known(key) {
+ return badKey("key is on a known weak RSA key list")
+ }
+
+ // Baseline Requirements Appendix A
+ // Modulus must be >= 2048 bits and <= 4096 bits
+ modulus := key.N
+ modulusBitLen := modulus.BitLen()
+ if features.Enabled(features.RestrictRSAKeySizes) {
+ if !acceptableRSAKeySizes[modulusBitLen] {
+ return badKey("key size not supported: %d", modulusBitLen)
+ }
+ } else {
+ const maxKeySize = 4096
+ if modulusBitLen < 2048 {
+ return badKey("key too small: %d", modulusBitLen)
+ }
+ if modulusBitLen > maxKeySize {
+ return badKey("key too large: %d > %d", modulusBitLen, maxKeySize)
+ }
+ // Bit lengths that are not a multiple of 8 may cause problems on some
+ // client implementations.
+ if modulusBitLen%8 != 0 {
+ return badKey("key length wasn't a multiple of 8: %d", modulusBitLen)
+ }
+ }
+
+ // Rather than support arbitrary exponents, which significantly increases
+ // the size of the key space we allow, we restrict E to the defacto standard
+ // RSA exponent 65537. There is no specific standards document that specifies
+ // 65537 as the 'best' exponent, but ITU X.509 Annex C suggests there are
+ // notable merits for using it if using a fixed exponent.
+ //
+ // The CABF Baseline Requirements state:
+ // The CA SHALL confirm that the value of the public exponent is an
+ // odd number equal to 3 or more. Additionally, the public exponent
+ // SHOULD be in the range between 2^16 + 1 and 2^256-1.
+ //
+ // By only allowing one exponent, which fits these constraints, we satisfy
+ // these requirements.
+ if key.E != 65537 {
+ return badKey("key exponent must be 65537")
+ }
+
+ // The modulus SHOULD also have the following characteristics: an odd
+ // number, not the power of a prime, and have no factors smaller than 752.
+ // TODO: We don't yet check for "power of a prime."
+ if checkSmallPrimes(modulus) {
+ return badKey("key divisible by small prime")
+ }
+ // Check for weak keys generated by Infineon hardware
+ // (see https://crocs.fi.muni.cz/public/papers/rsa_ccs17)
+ if rocacheck.IsWeak(key) {
+ return badKey("key generated by vulnerable Infineon-based hardware")
+ }
+ // Check if the key can be easily factored via Fermat's factorization method.
+ if policy.fermatRounds > 0 {
+ err := checkPrimeFactorsTooClose(modulus, policy.fermatRounds)
+ if err != nil {
+ return badKey("key generated with factors too close together: %w", err)
+ }
+ }
+
+ return nil
+}
+
+// Returns true iff integer i is divisible by any of the primes in smallPrimes.
+//
+// Short circuits; execution time is dependent on i. Do not use this on secret
+// values.
+//
+// Rather than checking each prime individually (invoking Mod on each),
+// multiply the primes together and let GCD do our work for us: if the
+// GCD between <key> and <product of primes> is not one, we know we have
+// a bad key. This is substantially faster than checking each prime
+// individually.
+func checkSmallPrimes(i *big.Int) bool {
+ smallPrimesSingleton.Do(func() {
+ smallPrimesProduct = big.NewInt(1)
+ for _, prime := range smallPrimeInts {
+ smallPrimesProduct.Mul(smallPrimesProduct, big.NewInt(prime))
+ }
+ })
+
+ // When the GCD is 1, i and smallPrimesProduct are coprime, meaning they
+ // share no common factors. When the GCD is not one, it is the product of
+ // all common factors, meaning we've identified at least one small prime
+ // which invalidates i as a valid key.
+
+ var result big.Int
+ result.GCD(nil, nil, i, smallPrimesProduct)
+ return result.Cmp(big.NewInt(1)) != 0
+}
+
+// Returns an error if the modulus n is able to be factored into primes p and q
+// via Fermat's factorization method. This method relies on the two primes being
+// very close together, which means that they were almost certainly not picked
+// independently from a uniform random distribution. Basically, if we can factor
+// the key this easily, so can anyone else.
+func checkPrimeFactorsTooClose(n *big.Int, rounds int) error {
+ // Pre-allocate some big numbers that we'll use a lot down below.
+ one := big.NewInt(1)
+ bb := new(big.Int)
+
+ // Any odd integer is equal to a difference of squares of integers:
+ // n = a^2 - b^2 = (a + b)(a - b)
+ // Any RSA public key modulus is equal to a product of two primes:
+ // n = pq
+ // Here we try to find values for a and b, since doing so also gives us the
+ // prime factors p = (a + b) and q = (a - b).
+
+ // We start with a close to the square root of the modulus n, to start with
+ // two candidate prime factors that are as close together as possible and
+ // work our way out from there. Specifically, we set a = ceil(sqrt(n)), the
+ // first integer greater than the square root of n. Unfortunately, big.Int's
+ // built-in square root function takes the floor, so we have to add one to get
+ // the ceil.
+ a := new(big.Int)
+ a.Sqrt(n).Add(a, one)
+
+ // We calculate b2 to see if it is a perfect square (i.e. b^2), and therefore
+ // b is an integer. Specifically, b2 = a^2 - n.
+ b2 := new(big.Int)
+ b2.Mul(a, a).Sub(b2, n)
+
+ for i := 0; i < rounds; i++ {
+ // To see if b2 is a perfect square, we take its square root, square that,
+ // and check to see if we got the same result back.
+ bb.Sqrt(b2).Mul(bb, bb)
+ if b2.Cmp(bb) == 0 {
+ // b2 is a perfect square, so we've found integer values of a and b,
+ // and can easily compute p and q as their sum and difference.
+ bb.Sqrt(bb)
+ p := new(big.Int).Add(a, bb)
+ q := new(big.Int).Sub(a, bb)
+ return fmt.Errorf("public modulus n = pq factored into p: %s; q: %s", p, q)
+ }
+
+ // Set up the next iteration by incrementing a by one and recalculating b2.
+ a.Add(a, one)
+ b2.Mul(a, a).Sub(b2, n)
+ }
+ return nil
+}