aboutsummaryrefslogtreecommitdiff
path: root/libpod/lock/shm_lock.c
blob: 3fe41f63c6481e432037ae2da12a579e34c6d9fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#include <errno.h>
#include <fcntl.h>
#include <semaphore.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#include "shm_lock.h"

// Compute the size of the SHM struct
size_t compute_shm_size(uint32_t num_bitmaps) {
  return sizeof(shm_struct_t) + (num_bitmaps * sizeof(lock_group_t));
}

// Set up an SHM segment holding locks for libpod.
// num_locks must be a multiple of BITMAP_SIZE (32 by default).
// Returns a valid pointer on success or NULL on error.
// If an error occurs, it will be written to the int pointed to by error_code.
shm_struct_t *setup_lock_shm(uint32_t num_locks, int *error_code) {
  int shm_fd, i, j, ret_code;
  uint32_t num_bitmaps;
  size_t shm_size;
  shm_struct_t *shm;

  // If error_code doesn't point to anything, we can't reasonably return errors
  // So fail immediately
  if (error_code == NULL) {
    return NULL;
  }

  // We need a nonzero number of locks
  if (num_locks == 0) {
    *error_code = EINVAL;
    return NULL;
  }

  // Calculate the number of bitmaps required
  if (num_locks % BITMAP_SIZE != 0) {
    // Number of locks not a multiple of BITMAP_SIZE
    *error_code = EINVAL;
    return NULL;
  }
  num_bitmaps = num_locks / BITMAP_SIZE;

  // Calculate size of the shm segment
  shm_size = compute_shm_size(num_bitmaps);

  // Create a new SHM segment for us
  shm_fd = shm_open(SHM_NAME, O_RDWR | O_CREAT | O_EXCL, 0600);
  if (shm_fd < 0) {
    *error_code = errno;
    return NULL;
  }

  // Increase its size to what we need
  ret_code = ftruncate(shm_fd, shm_size);
  if (ret_code < 0) {
    *error_code = errno;
    goto CLEANUP_UNLINK;
  }

  // Map the shared memory in
  shm = mmap(NULL, shm_size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
  if (shm == MAP_FAILED) {
    *error_code = errno;
    goto CLEANUP_UNLINK;
  }

  // We have successfully mapped the memory, now initialize the region
  shm->magic = MAGIC;
  shm->num_locks = num_locks;
  shm->num_bitmaps = num_bitmaps;

  // Initialize the semaphore that protects the bitmaps.
  // Initialize to value 1, as we're a mutex, and set pshared as this will be
  // shared between processes in an SHM.
  ret_code = sem_init(&(shm->segment_lock), true, 1);
  if (ret_code < 0) {
    *error_code = errno;
    goto CLEANUP_UNMAP;
  }

  // Initialize all bitmaps to 0 initially
  // And initialize all semaphores they use
  for (i = 0; i < num_bitmaps; i++) {
    shm->locks[i].bitmap = 0;
    for (j = 0; j < BITMAP_SIZE; j++) {
      // As above, initialize to 1 to act as a mutex, and set pshared as we'll
      // be living in an SHM.
      ret_code = sem_init(&(shm->locks[i].locks[j]), true, 1);
      if (ret_code < 0) {
	*error_code = errno;
	goto CLEANUP_UNMAP;
      }
    }
  }

  // Close the file descriptor, we're done with it
  // Ignore errors, it's ok if we leak a single FD and this should only run once
  close(shm_fd);

  return shm;

  // Cleanup after an error
 CLEANUP_UNMAP:
  munmap(shm, shm_size);
 CLEANUP_UNLINK:
  close(shm_fd);
  shm_unlink(SHM_NAME);
  return NULL;
}

// Open an existing SHM segment holding libpod locks.
// num_locks is the number of locks that will be configured in the SHM segment.
// num_locks must be a multiple of BITMAP_SIZE (32 by default).
// Returns a valid pointer on success or NULL on error.
// If an error occurs, it will be written to the int pointed to by error_code.
shm_struct_t *open_lock_shm(uint32_t num_locks, int *error_code) {
  int shm_fd;
  shm_struct_t *shm;
  size_t shm_size;
  uint32_t num_bitmaps;

  if (error_code == NULL) {
    return NULL;
  }

  // We need a nonzero number of locks
  if (num_locks == 0) {
    *error_code = EINVAL;
    return NULL;
  }

  // Calculate the number of bitmaps required
  if (num_locks % BITMAP_SIZE != 0) {
    // Number of locks not a multiple of BITMAP_SIZE
    *error_code = EINVAL;
    return NULL;
  }
  num_bitmaps = num_locks / BITMAP_SIZE;

  // Calculate size of the shm segment
  shm_size = compute_shm_size(num_bitmaps);

  shm_fd = shm_open(SHM_NAME, O_RDWR, 0600);
  if (shm_fd < 0) {
    return NULL;
  }

  // Map the shared memory in
  shm = mmap(NULL, shm_size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
  if (shm == MAP_FAILED) {
    *error_code = errno;
  }

  // Ignore errors, it's ok if we leak a single FD since this only runs once
  close(shm_fd);

  // Check if we successfully mmap'd
  if (shm == MAP_FAILED) {
    return NULL;
  }

  // Need to check the SHM to see if it's actually our locks
  if (shm->magic != MAGIC) {
    *error_code = errno;
    goto CLEANUP;
  }
  if (shm->num_locks != num_locks) {
    *error_code = errno;
    goto CLEANUP;
  }

  return shm;

 CLEANUP:
  munmap(shm, shm_size);
  return NULL;
}

// Close an open SHM lock struct, unmapping the backing memory.
// The given shm_struct_t will be rendered unusable as a result.
// On success, 0 is returned. On failure, negative ERRNO values are returned.
int32_t close_lock_shm(shm_struct_t *shm) {
  int ret_code;
  size_t shm_size;

  // We can't unmap null...
  if (shm == NULL) {
    return -1 * EINVAL;
  }

  shm_size = compute_shm_size(shm->num_bitmaps);

  ret_code = munmap(shm, shm_size);

  if (ret_code != 0) {
    return -1 * errno;
  }

  return 0;
}

// Allocate the first available semaphore
// Returns a positive integer guaranteed to be less than UINT32_MAX on success,
// or negative errno values on failure
// On sucess, the returned integer is the number of the semaphore allocated
int64_t allocate_semaphore(shm_struct_t *shm) {
  int ret_code, i;
  bitmap_t test_map;
  int64_t sem_number, num_within_bitmap;

  if (shm == NULL) {
    return -1 * EINVAL;
  }

  // Lock the semaphore controlling access to our shared memory
  do {
    ret_code = sem_wait(&(shm->segment_lock));
  } while(ret_code == EINTR);
  if (ret_code != 0) {
    return -1 * errno;
  }

  // Loop through our bitmaps to search for one that is not full
  for (i = 0; i < shm->num_bitmaps; i++) {
    if (shm->locks[i].bitmap != 0xFFFFFFFF) {
      test_map = 0x1;
      num_within_bitmap = 0;
      while (test_map != 0) {
	if ((test_map & shm->locks[i].bitmap) == 0) {
	  // Compute the number of the semaphore we are allocating
	  sem_number = (BITMAP_SIZE * i) + num_within_bitmap;
	  // OR in the bitmap
	  shm->locks[i].bitmap = shm->locks[i].bitmap | test_map;
	  // Clear the semaphore
	  sem_post(&(shm->segment_lock));
	  // Return the semaphore we've allocated
	  return sem_number;
	}
	test_map = test_map << 1;
	num_within_bitmap++;
      }
      // We should never fall through this loop
      // TODO maybe an assert() here to panic if we do?
    }
  }

  // Post to the semaphore to clear the lock
  sem_post(&(shm->segment_lock));

  // All bitmaps are full
  // We have no available semaphores, report allocation failure
  return -1 * ENOSPC;
}

// Deallocate a given semaphore
// Returns 0 on success, negative ERRNO values on failure
int32_t deallocate_semaphore(shm_struct_t *shm, uint32_t sem_index) {
  bitmap_t test_map;
  int bitmap_index, index_in_bitmap, ret_code, i;

  if (shm == NULL) {
    return -1 * EINVAL;
  }

  // Check if the lock index is valid
  if (sem_index >= shm->num_locks) {
    return -1 * EINVAL;
  }

  bitmap_index = sem_index / BITMAP_SIZE;
  index_in_bitmap = sem_index % BITMAP_SIZE;

  // This should never happen if the sem_index test above succeeded, but better
  // safe than sorry
  if (bitmap_index >= shm->num_bitmaps) {
    return -1 * EFAULT;
  }

  test_map = 0x1;
  for (i = 0; i < index_in_bitmap; i++) {
    test_map = test_map << 1;
  }

  // Lock the semaphore controlling access to our shared memory
  do {
    ret_code = sem_wait(&(shm->segment_lock));
  } while(ret_code == EINTR);
  if (ret_code != 0) {
    return -1 * errno;
  }

  // Check if the semaphore is allocated
  if ((test_map & shm->locks[bitmap_index].bitmap) == 0) {
    // Post to the semaphore to clear the lock
    sem_post(&(shm->segment_lock));

    return -1 * ENOENT;
  }

  // The semaphore is allocated, clear it
  // Invert the bitmask we used to test to clear the bit
  test_map = ~test_map;
  shm->locks[bitmap_index].bitmap = shm->locks[bitmap_index].bitmap & test_map;

  // Post to the semaphore to clear the lock
  sem_post(&(shm->segment_lock));

  return 0;
}

// Lock a given semaphore
// Does not check if the semaphore is allocated - this ensures that, even for
// removed containers, we can still successfully lock to check status (and
// subsequently realize they have been removed).
// Returns 0 on success, -1 on failure
int32_t lock_semaphore(shm_struct_t *shm, uint32_t sem_index) {
  int bitmap_index, index_in_bitmap, ret_code;

  if (shm == NULL) {
    return -1 * EINVAL;
  }

  if (sem_index >= shm->num_locks) {
    return -1 * EINVAL;
  }

  bitmap_index = sem_index / BITMAP_SIZE;
  index_in_bitmap = sem_index % BITMAP_SIZE;

  // Lock the semaphore controlling access to our shared memory
  do {
    ret_code = sem_wait(&(shm->locks[bitmap_index].locks[index_in_bitmap]));
  } while(ret_code == EINTR);
  if (ret_code != 0) {
    return -1 * errno;
  }

  return 0;
}

// Unlock a given semaphore
// Does not check if the semaphore is allocated - this ensures that, even for
// removed containers, we can still successfully lock to check status (and
// subsequently realize they have been removed).
// Returns 0 on success, -1 on failure
int32_t unlock_semaphore(shm_struct_t *shm, uint32_t sem_index) {
  int bitmap_index, index_in_bitmap, ret_code;
  unsigned int sem_value = 0;

  if (shm == NULL) {
    return -1 * EINVAL;
  }

  if (sem_index >= shm->num_locks) {
    return -1 * EINVAL;
  }

  bitmap_index = sem_index / BITMAP_SIZE;
  index_in_bitmap = sem_index % BITMAP_SIZE;

  // Only allow a post if the semaphore is less than 1 (locked)
  // This allows us to preserve mutex behavior
  ret_code = sem_getvalue(&(shm->locks[bitmap_index].locks[index_in_bitmap]), &sem_value);
  if (ret_code != 0) {
    return -1 * errno;
  }
  if (sem_value >= 1) {
    return -1 * EBUSY;
  }

  ret_code = sem_post(&(shm->locks[bitmap_index].locks[index_in_bitmap]));
  if (ret_code != 0) {
    return -1 * errno;
  }

  return 0;
}