aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/cespare/xxhash/v2/xxhash.go
blob: 15c835d5417c06d14182c50afc7c5b2ca0b45fce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
// Package xxhash implements the 64-bit variant of xxHash (XXH64) as described
// at http://cyan4973.github.io/xxHash/.
package xxhash

import (
	"encoding/binary"
	"errors"
	"math/bits"
)

const (
	prime1 uint64 = 11400714785074694791
	prime2 uint64 = 14029467366897019727
	prime3 uint64 = 1609587929392839161
	prime4 uint64 = 9650029242287828579
	prime5 uint64 = 2870177450012600261
)

// NOTE(caleb): I'm using both consts and vars of the primes. Using consts where
// possible in the Go code is worth a small (but measurable) performance boost
// by avoiding some MOVQs. Vars are needed for the asm and also are useful for
// convenience in the Go code in a few places where we need to intentionally
// avoid constant arithmetic (e.g., v1 := prime1 + prime2 fails because the
// result overflows a uint64).
var (
	prime1v = prime1
	prime2v = prime2
	prime3v = prime3
	prime4v = prime4
	prime5v = prime5
)

// Digest implements hash.Hash64.
type Digest struct {
	v1    uint64
	v2    uint64
	v3    uint64
	v4    uint64
	total uint64
	mem   [32]byte
	n     int // how much of mem is used
}

// New creates a new Digest that computes the 64-bit xxHash algorithm.
func New() *Digest {
	var d Digest
	d.Reset()
	return &d
}

// Reset clears the Digest's state so that it can be reused.
func (d *Digest) Reset() {
	d.v1 = prime1v + prime2
	d.v2 = prime2
	d.v3 = 0
	d.v4 = -prime1v
	d.total = 0
	d.n = 0
}

// Size always returns 8 bytes.
func (d *Digest) Size() int { return 8 }

// BlockSize always returns 32 bytes.
func (d *Digest) BlockSize() int { return 32 }

// Write adds more data to d. It always returns len(b), nil.
func (d *Digest) Write(b []byte) (n int, err error) {
	n = len(b)
	d.total += uint64(n)

	if d.n+n < 32 {
		// This new data doesn't even fill the current block.
		copy(d.mem[d.n:], b)
		d.n += n
		return
	}

	if d.n > 0 {
		// Finish off the partial block.
		copy(d.mem[d.n:], b)
		d.v1 = round(d.v1, u64(d.mem[0:8]))
		d.v2 = round(d.v2, u64(d.mem[8:16]))
		d.v3 = round(d.v3, u64(d.mem[16:24]))
		d.v4 = round(d.v4, u64(d.mem[24:32]))
		b = b[32-d.n:]
		d.n = 0
	}

	if len(b) >= 32 {
		// One or more full blocks left.
		nw := writeBlocks(d, b)
		b = b[nw:]
	}

	// Store any remaining partial block.
	copy(d.mem[:], b)
	d.n = len(b)

	return
}

// Sum appends the current hash to b and returns the resulting slice.
func (d *Digest) Sum(b []byte) []byte {
	s := d.Sum64()
	return append(
		b,
		byte(s>>56),
		byte(s>>48),
		byte(s>>40),
		byte(s>>32),
		byte(s>>24),
		byte(s>>16),
		byte(s>>8),
		byte(s),
	)
}

// Sum64 returns the current hash.
func (d *Digest) Sum64() uint64 {
	var h uint64

	if d.total >= 32 {
		v1, v2, v3, v4 := d.v1, d.v2, d.v3, d.v4
		h = rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4)
		h = mergeRound(h, v1)
		h = mergeRound(h, v2)
		h = mergeRound(h, v3)
		h = mergeRound(h, v4)
	} else {
		h = d.v3 + prime5
	}

	h += d.total

	i, end := 0, d.n
	for ; i+8 <= end; i += 8 {
		k1 := round(0, u64(d.mem[i:i+8]))
		h ^= k1
		h = rol27(h)*prime1 + prime4
	}
	if i+4 <= end {
		h ^= uint64(u32(d.mem[i:i+4])) * prime1
		h = rol23(h)*prime2 + prime3
		i += 4
	}
	for i < end {
		h ^= uint64(d.mem[i]) * prime5
		h = rol11(h) * prime1
		i++
	}

	h ^= h >> 33
	h *= prime2
	h ^= h >> 29
	h *= prime3
	h ^= h >> 32

	return h
}

const (
	magic         = "xxh\x06"
	marshaledSize = len(magic) + 8*5 + 32
)

// MarshalBinary implements the encoding.BinaryMarshaler interface.
func (d *Digest) MarshalBinary() ([]byte, error) {
	b := make([]byte, 0, marshaledSize)
	b = append(b, magic...)
	b = appendUint64(b, d.v1)
	b = appendUint64(b, d.v2)
	b = appendUint64(b, d.v3)
	b = appendUint64(b, d.v4)
	b = appendUint64(b, d.total)
	b = append(b, d.mem[:d.n]...)
	b = b[:len(b)+len(d.mem)-d.n]
	return b, nil
}

// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
func (d *Digest) UnmarshalBinary(b []byte) error {
	if len(b) < len(magic) || string(b[:len(magic)]) != magic {
		return errors.New("xxhash: invalid hash state identifier")
	}
	if len(b) != marshaledSize {
		return errors.New("xxhash: invalid hash state size")
	}
	b = b[len(magic):]
	b, d.v1 = consumeUint64(b)
	b, d.v2 = consumeUint64(b)
	b, d.v3 = consumeUint64(b)
	b, d.v4 = consumeUint64(b)
	b, d.total = consumeUint64(b)
	copy(d.mem[:], b)
	d.n = int(d.total % uint64(len(d.mem)))
	return nil
}

func appendUint64(b []byte, x uint64) []byte {
	var a [8]byte
	binary.LittleEndian.PutUint64(a[:], x)
	return append(b, a[:]...)
}

func consumeUint64(b []byte) ([]byte, uint64) {
	x := u64(b)
	return b[8:], x
}

func u64(b []byte) uint64 { return binary.LittleEndian.Uint64(b) }
func u32(b []byte) uint32 { return binary.LittleEndian.Uint32(b) }

func round(acc, input uint64) uint64 {
	acc += input * prime2
	acc = rol31(acc)
	acc *= prime1
	return acc
}

func mergeRound(acc, val uint64) uint64 {
	val = round(0, val)
	acc ^= val
	acc = acc*prime1 + prime4
	return acc
}

func rol1(x uint64) uint64  { return bits.RotateLeft64(x, 1) }
func rol7(x uint64) uint64  { return bits.RotateLeft64(x, 7) }
func rol11(x uint64) uint64 { return bits.RotateLeft64(x, 11) }
func rol12(x uint64) uint64 { return bits.RotateLeft64(x, 12) }
func rol18(x uint64) uint64 { return bits.RotateLeft64(x, 18) }
func rol23(x uint64) uint64 { return bits.RotateLeft64(x, 23) }
func rol27(x uint64) uint64 { return bits.RotateLeft64(x, 27) }
func rol31(x uint64) uint64 { return bits.RotateLeft64(x, 31) }