aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/digitalocean/go-libvirt/internal/go-xdr/xdr2/decode.go
blob: 7f33f7d32bea962b23968765948894fc0800ebf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
/*
 * Copyright (c) 2012-2014 Dave Collins <dave@davec.name>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

package xdr

import (
	"fmt"
	"io"
	"math"
	"reflect"
	"time"
)

var (
	errMaxSlice = "data exceeds max slice limit"
	errIODecode = "%s while decoding %d bytes"
)

/*
Unmarshal parses XDR-encoded data into the value pointed to by v reading from
reader r and returning the total number of bytes read.  An addressable pointer
must be provided since Unmarshal needs to both store the result of the decode as
well as obtain target type information.  Unmarhsal traverses v recursively and
automatically indirects pointers through arbitrary depth, allocating them as
necessary, to decode the data into the underlying value pointed to.

Unmarshal uses reflection to determine the type of the concrete value contained
by v and performs a mapping of underlying XDR types to Go types as follows:

	Go Type <- XDR Type
	--------------------
	int8, int16, int32, int <- XDR Integer
	uint8, uint16, uint32, uint <- XDR Unsigned Integer
	int64 <- XDR Hyper Integer
	uint64 <- XDR Unsigned Hyper Integer
	bool <- XDR Boolean
	float32 <- XDR Floating-Point
	float64 <- XDR Double-Precision Floating-Point
	string <- XDR String
	byte <- XDR Integer
	[]byte <- XDR Variable-Length Opaque Data
	[#]byte <- XDR Fixed-Length Opaque Data
	[]<type> <- XDR Variable-Length Array
	[#]<type> <- XDR Fixed-Length Array
	struct <- XDR Structure
	map <- XDR Variable-Length Array of two-element XDR Structures
	time.Time <- XDR String encoded with RFC3339 nanosecond precision

Notes and Limitations:

	* Automatic unmarshalling of variable and fixed-length arrays of uint8s
	  requires a special struct tag `xdropaque:"false"` since byte slices
	  and byte arrays are assumed to be opaque data and byte is a Go alias
	  for uint8 thus indistinguishable under reflection
	* Cyclic data structures are not supported and will result in infinite
	  loops

If any issues are encountered during the unmarshalling process, an
UnmarshalError is returned with a human readable description as well as
an ErrorCode value for further inspection from sophisticated callers.  Some
potential issues are unsupported Go types, attempting to decode a value which is
too large to fit into a specified Go type, and exceeding max slice limitations.
*/
func Unmarshal(r io.Reader, v interface{}) (int, error) {
	d := Decoder{r: r}
	return d.Decode(v)
}

// UnmarshalLimited is identical to Unmarshal but it sets maxReadSize in order
// to cap reads.
func UnmarshalLimited(r io.Reader, v interface{}, maxSize uint) (int, error) {
	d := Decoder{r: r, maxReadSize: maxSize}
	return d.Decode(v)
}

// TypeDecoder lets a caller provide a custom decode routine for a custom type.
type TypeDecoder interface {
	Decode(*Decoder, reflect.Value) (int, error)
}

// A Decoder wraps an io.Reader that is expected to provide an XDR-encoded byte
// stream and provides several exposed methods to manually decode various XDR
// primitives without relying on reflection.  The NewDecoder function can be
// used to get a new Decoder directly.
//
// Typically, Unmarshal should be used instead of manual decoding.  A Decoder
// is exposed so it is possible to perform manual decoding should it be
// necessary in complex scenarios where automatic reflection-based decoding
// won't work.
type Decoder struct {
	r io.Reader

	// maxReadSize is the default maximum bytes an element can contain.  0
	// is unlimited and provides backwards compatability.  Setting it to a
	// non-zero value caps reads.
	maxReadSize uint

	// customTypes is a map allowing the caller to provide decoder routines for
	// custom types known only to itself.
	customTypes map[string]TypeDecoder
}

// DecodeInt treats the next 4 bytes as an XDR encoded integer and returns the
// result as an int32 along with the number of bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// 	RFC Section 4.1 - Integer
// 	32-bit big-endian signed integer in range [-2147483648, 2147483647]
func (d *Decoder) DecodeInt() (int32, int, error) {
	var buf [4]byte
	n, err := io.ReadFull(d.r, buf[:])
	if err != nil {
		msg := fmt.Sprintf(errIODecode, err.Error(), 4)
		err := unmarshalError("DecodeInt", ErrIO, msg, buf[:n], err)
		return 0, n, err
	}

	rv := int32(buf[3]) | int32(buf[2])<<8 |
		int32(buf[1])<<16 | int32(buf[0])<<24
	return rv, n, nil
}

// DecodeUint treats the next 4 bytes as an XDR encoded unsigned integer and
// returns the result as a uint32 along with the number of bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// 	RFC Section 4.2 - Unsigned Integer
// 	32-bit big-endian unsigned integer in range [0, 4294967295]
func (d *Decoder) DecodeUint() (uint32, int, error) {
	var buf [4]byte
	n, err := io.ReadFull(d.r, buf[:])
	if err != nil {
		msg := fmt.Sprintf(errIODecode, err.Error(), 4)
		err := unmarshalError("DecodeUint", ErrIO, msg, buf[:n], err)
		return 0, n, err
	}

	rv := uint32(buf[3]) | uint32(buf[2])<<8 |
		uint32(buf[1])<<16 | uint32(buf[0])<<24
	return rv, n, nil
}

// DecodeEnum treats the next 4 bytes as an XDR encoded enumeration value and
// returns the result as an int32 after verifying that the value is in the
// provided map of valid values.   It also returns the number of bytes actually
// read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining or
// the parsed enumeration value is not one of the provided valid values.
//
// Reference:
// 	RFC Section 4.3 - Enumeration
// 	Represented as an XDR encoded signed integer
func (d *Decoder) DecodeEnum(validEnums map[int32]bool) (int32, int, error) {
	val, n, err := d.DecodeInt()
	if err != nil {
		return 0, n, err
	}

	if !validEnums[val] {
		err := unmarshalError("DecodeEnum", ErrBadEnumValue,
			"invalid enum", val, nil)
		return 0, n, err
	}
	return val, n, nil
}

// DecodeBool treats the next 4 bytes as an XDR encoded boolean value and
// returns the result as a bool along with the number of bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining or
// the parsed value is not a 0 or 1.
//
// Reference:
// 	RFC Section 4.4 - Boolean
// 	Represented as an XDR encoded enumeration where 0 is false and 1 is true
func (d *Decoder) DecodeBool() (bool, int, error) {
	val, n, err := d.DecodeInt()
	if err != nil {
		return false, n, err
	}
	switch val {
	case 0:
		return false, n, nil
	case 1:
		return true, n, nil
	}

	err = unmarshalError("DecodeBool", ErrBadEnumValue, "bool not 0 or 1",
		val, nil)
	return false, n, err
}

// DecodeHyper treats the next 8 bytes as an XDR encoded hyper value and
// returns the result as an int64  along with the number of bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// 	RFC Section 4.5 - Hyper Integer
// 	64-bit big-endian signed integer in range [-9223372036854775808, 9223372036854775807]
func (d *Decoder) DecodeHyper() (int64, int, error) {
	var buf [8]byte
	n, err := io.ReadFull(d.r, buf[:])
	if err != nil {
		msg := fmt.Sprintf(errIODecode, err.Error(), 8)
		err := unmarshalError("DecodeHyper", ErrIO, msg, buf[:n], err)
		return 0, n, err
	}

	rv := int64(buf[7]) | int64(buf[6])<<8 |
		int64(buf[5])<<16 | int64(buf[4])<<24 |
		int64(buf[3])<<32 | int64(buf[2])<<40 |
		int64(buf[1])<<48 | int64(buf[0])<<56
	return rv, n, err
}

// DecodeUhyper treats the next 8  bytes as an XDR encoded unsigned hyper value
// and returns the result as a uint64  along with the number of bytes actually
// read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// 	RFC Section 4.5 - Unsigned Hyper Integer
// 	64-bit big-endian unsigned integer in range [0, 18446744073709551615]
func (d *Decoder) DecodeUhyper() (uint64, int, error) {
	var buf [8]byte
	n, err := io.ReadFull(d.r, buf[:])
	if err != nil {
		msg := fmt.Sprintf(errIODecode, err.Error(), 8)
		err := unmarshalError("DecodeUhyper", ErrIO, msg, buf[:n], err)
		return 0, n, err
	}

	rv := uint64(buf[7]) | uint64(buf[6])<<8 |
		uint64(buf[5])<<16 | uint64(buf[4])<<24 |
		uint64(buf[3])<<32 | uint64(buf[2])<<40 |
		uint64(buf[1])<<48 | uint64(buf[0])<<56
	return rv, n, nil
}

// DecodeFloat treats the next 4 bytes as an XDR encoded floating point and
// returns the result as a float32 along with the number of bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// 	RFC Section 4.6 - Floating Point
// 	32-bit single-precision IEEE 754 floating point
func (d *Decoder) DecodeFloat() (float32, int, error) {
	var buf [4]byte
	n, err := io.ReadFull(d.r, buf[:])
	if err != nil {
		msg := fmt.Sprintf(errIODecode, err.Error(), 4)
		err := unmarshalError("DecodeFloat", ErrIO, msg, buf[:n], err)
		return 0, n, err
	}

	val := uint32(buf[3]) | uint32(buf[2])<<8 |
		uint32(buf[1])<<16 | uint32(buf[0])<<24
	return math.Float32frombits(val), n, nil
}

// DecodeDouble treats the next 8 bytes as an XDR encoded double-precision
// floating point and returns the result as a float64 along with the number of
// bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// 	RFC Section 4.7 -  Double-Precision Floating Point
// 	64-bit double-precision IEEE 754 floating point
func (d *Decoder) DecodeDouble() (float64, int, error) {
	var buf [8]byte
	n, err := io.ReadFull(d.r, buf[:])
	if err != nil {
		msg := fmt.Sprintf(errIODecode, err.Error(), 8)
		err := unmarshalError("DecodeDouble", ErrIO, msg, buf[:n], err)
		return 0, n, err
	}

	val := uint64(buf[7]) | uint64(buf[6])<<8 |
		uint64(buf[5])<<16 | uint64(buf[4])<<24 |
		uint64(buf[3])<<32 | uint64(buf[2])<<40 |
		uint64(buf[1])<<48 | uint64(buf[0])<<56
	return math.Float64frombits(val), n, nil
}

// RFC Section 4.8 -  Quadruple-Precision Floating Point
// 128-bit quadruple-precision floating point
// Not Implemented

// DecodeFixedOpaque treats the next 'size' bytes as XDR encoded opaque data and
// returns the result as a byte slice along with the number of bytes actually
// read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining to
// satisfy the passed size, including the necessary padding to make it a
// multiple of 4.
//
// Reference:
// 	RFC Section 4.9 - Fixed-Length Opaque Data
// 	Fixed-length uninterpreted data zero-padded to a multiple of four
func (d *Decoder) DecodeFixedOpaque(size int32) ([]byte, int, error) {
	// Nothing to do if size is 0.
	if size == 0 {
		return nil, 0, nil
	}

	pad := (4 - (size % 4)) % 4
	paddedSize := size + pad
	if uint(paddedSize) > uint(math.MaxInt32) {
		err := unmarshalError("DecodeFixedOpaque", ErrOverflow,
			errMaxSlice, paddedSize, nil)
		return nil, 0, err
	}

	buf := make([]byte, paddedSize)
	n, err := io.ReadFull(d.r, buf)
	if err != nil {
		msg := fmt.Sprintf(errIODecode, err.Error(), paddedSize)
		err := unmarshalError("DecodeFixedOpaque", ErrIO, msg, buf[:n],
			err)
		return nil, n, err
	}
	return buf[0:size], n, nil
}

// DecodeOpaque treats the next bytes as variable length XDR encoded opaque
// data and returns the result as a byte slice along with the number of bytes
// actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining or
// the opaque data is larger than the max length of a Go slice.
//
// Reference:
// 	RFC Section 4.10 - Variable-Length Opaque Data
// 	Unsigned integer length followed by fixed opaque data of that length
func (d *Decoder) DecodeOpaque() ([]byte, int, error) {
	dataLen, n, err := d.DecodeUint()
	if err != nil {
		return nil, n, err
	}
	if uint(dataLen) > uint(math.MaxInt32) ||
		(d.maxReadSize != 0 && uint(dataLen) > d.maxReadSize) {
		err := unmarshalError("DecodeOpaque", ErrOverflow, errMaxSlice,
			dataLen, nil)
		return nil, n, err
	}

	rv, n2, err := d.DecodeFixedOpaque(int32(dataLen))
	n += n2
	if err != nil {
		return nil, n, err
	}
	return rv, n, nil
}

// DecodeString treats the next bytes as a variable length XDR encoded string
// and returns the result as a string along with the number of bytes actually
// read.  Character encoding is assumed to be UTF-8 and therefore ASCII
// compatible.  If the underlying character encoding is not compatibile with
// this assumption, the data can instead be read as variable-length opaque data
// (DecodeOpaque) and manually converted as needed.
//
// An UnmarshalError is returned if there are insufficient bytes remaining or
// the string data is larger than the max length of a Go slice.
//
// Reference:
// 	RFC Section 4.11 - String
// 	Unsigned integer length followed by bytes zero-padded to a multiple of
// 	four
func (d *Decoder) DecodeString() (string, int, error) {
	dataLen, n, err := d.DecodeUint()
	if err != nil {
		return "", n, err
	}
	if uint(dataLen) > uint(math.MaxInt32) ||
		(d.maxReadSize != 0 && uint(dataLen) > d.maxReadSize) {
		err = unmarshalError("DecodeString", ErrOverflow, errMaxSlice,
			dataLen, nil)
		return "", n, err
	}

	opaque, n2, err := d.DecodeFixedOpaque(int32(dataLen))
	n += n2
	if err != nil {
		return "", n, err
	}
	return string(opaque), n, nil
}

// decodeFixedArray treats the next bytes as a series of XDR encoded elements
// of the same type as the array represented by the reflection value and decodes
// each element into the passed array.  The ignoreOpaque flag controls whether
// or not uint8 (byte) elements should be decoded individually or as a fixed
// sequence of opaque data.  It returns the  the number of bytes actually read.
//
// An UnmarshalError is returned if any issues are encountered while decoding
// the array elements.
//
// Reference:
// 	RFC Section 4.12 - Fixed-Length Array
// 	Individually XDR encoded array elements
func (d *Decoder) decodeFixedArray(v reflect.Value, ignoreOpaque bool) (int, error) {
	// Treat [#]byte (byte is alias for uint8) as opaque data unless
	// ignored.
	if !ignoreOpaque && v.Type().Elem().Kind() == reflect.Uint8 {
		data, n, err := d.DecodeFixedOpaque(int32(v.Len()))
		if err != nil {
			return n, err
		}
		reflect.Copy(v, reflect.ValueOf(data))
		return n, nil
	}

	// Decode each array element.
	var n int
	for i := 0; i < v.Len(); i++ {
		n2, err := d.decode(v.Index(i))
		n += n2
		if err != nil {
			return n, err
		}
	}
	return n, nil
}

// decodeArray treats the next bytes as a variable length series of XDR encoded
// elements of the same type as the array represented by the reflection value.
// The number of elements is obtained by first decoding the unsigned integer
// element count.  Then each element is decoded into the passed array. The
// ignoreOpaque flag controls whether or not uint8 (byte) elements should be
// decoded individually or as a variable sequence of opaque data.  It returns
// the number of bytes actually read.
//
// An UnmarshalError is returned if any issues are encountered while decoding
// the array elements.
//
// Reference:
// 	RFC Section 4.13 - Variable-Length Array
// 	Unsigned integer length followed by individually XDR encoded array
// 	elements
func (d *Decoder) decodeArray(v reflect.Value, ignoreOpaque bool) (int, error) {
	dataLen, n, err := d.DecodeUint()
	if err != nil {
		return n, err
	}
	if uint(dataLen) > uint(math.MaxInt32) ||
		(d.maxReadSize != 0 && uint(dataLen) > d.maxReadSize) {
		err := unmarshalError("decodeArray", ErrOverflow, errMaxSlice,
			dataLen, nil)
		return n, err
	}

	// Allocate storage for the slice elements (the underlying array) if
	// existing slice does not have enough capacity.
	sliceLen := int(dataLen)
	if v.Cap() < sliceLen {
		v.Set(reflect.MakeSlice(v.Type(), sliceLen, sliceLen))
	}
	if v.Len() < sliceLen {
		v.SetLen(sliceLen)
	}

	// Treat []byte (byte is alias for uint8) as opaque data unless ignored.
	if !ignoreOpaque && v.Type().Elem().Kind() == reflect.Uint8 {
		data, n2, err := d.DecodeFixedOpaque(int32(sliceLen))
		n += n2
		if err != nil {
			return n, err
		}
		v.SetBytes(data)
		return n, nil
	}

	// Decode each slice element.
	for i := 0; i < sliceLen; i++ {
		n2, err := d.decode(v.Index(i))
		n += n2
		if err != nil {
			return n, err
		}
	}
	return n, nil
}

// decodeStruct treats the next bytes as a series of XDR encoded elements
// of the same type as the exported fields of the struct represented by the
// passed reflection value.  Pointers are automatically indirected and
// allocated as necessary.  It returns the  the number of bytes actually read.
//
// An UnmarshalError is returned if any issues are encountered while decoding
// the elements.
//
// Reference:
// 	RFC Section 4.14 - Structure
// 	XDR encoded elements in the order of their declaration in the struct
func (d *Decoder) decodeStruct(v reflect.Value) (int, error) {
	var n int
	vt := v.Type()
	for i := 0; i < v.NumField(); i++ {
		// Skip unexported fields.
		vtf := vt.Field(i)
		if vtf.PkgPath != "" {
			continue
		}

		// Indirect through pointers allocating them as needed and
		// ensure the field is settable.
		vf := v.Field(i)
		vf, err := d.indirect(vf)
		if err != nil {
			return n, err
		}
		if !vf.CanSet() {
			msg := fmt.Sprintf("can't decode to unsettable '%v'",
				vf.Type().String())
			err := unmarshalError("decodeStruct", ErrNotSettable,
				msg, nil, nil)
			return n, err
		}

		// Handle non-opaque data to []uint8 and [#]uint8 based on
		// struct tag.
		tag := vtf.Tag.Get("xdropaque")
		if tag == "false" {
			switch vf.Kind() {
			case reflect.Slice:
				n2, err := d.decodeArray(vf, true)
				n += n2
				if err != nil {
					return n, err
				}
				continue

			case reflect.Array:
				n2, err := d.decodeFixedArray(vf, true)
				n += n2
				if err != nil {
					return n, err
				}
				continue
			}
		}

		// Decode each struct field.
		n2, err := d.decode(vf)
		n += n2
		if err != nil {
			return n, err
		}
	}

	return n, nil
}

// RFC Section 4.15 - Discriminated Union
// RFC Section 4.16 - Void
// RFC Section 4.17 - Constant
// RFC Section 4.18 - Typedef
// RFC Section 4.19 - Optional data
// RFC Sections 4.15 though 4.19 only apply to the data specification language
// which is not implemented by this package.  In the case of discriminated
// unions, struct tags are used to perform a similar function.

// decodeMap treats the next bytes as an XDR encoded variable array of 2-element
// structures whose fields are of the same type as the map keys and elements
// represented by the passed reflection value.  Pointers are automatically
// indirected and allocated as necessary.  It returns the  the number of bytes
// actually read.
//
// An UnmarshalError is returned if any issues are encountered while decoding
// the elements.
func (d *Decoder) decodeMap(v reflect.Value) (int, error) {
	dataLen, n, err := d.DecodeUint()
	if err != nil {
		return n, err
	}

	// Allocate storage for the underlying map if needed.
	vt := v.Type()
	if v.IsNil() {
		v.Set(reflect.MakeMap(vt))
	}

	// Decode each key and value according to their type.
	keyType := vt.Key()
	elemType := vt.Elem()
	for i := uint32(0); i < dataLen; i++ {
		key := reflect.New(keyType).Elem()
		n2, err := d.decode(key)
		n += n2
		if err != nil {
			return n, err
		}

		val := reflect.New(elemType).Elem()
		n2, err = d.decode(val)
		n += n2
		if err != nil {
			return n, err
		}
		v.SetMapIndex(key, val)
	}
	return n, nil
}

// decodeInterface examines the interface represented by the passed reflection
// value to detect whether it is an interface that can be decoded into and
// if it is, extracts the underlying value to pass back into the decode function
// for decoding according to its type.  It returns the  the number of bytes
// actually read.
//
// An UnmarshalError is returned if any issues are encountered while decoding
// the interface.
func (d *Decoder) decodeInterface(v reflect.Value) (int, error) {
	if v.IsNil() || !v.CanInterface() {
		msg := fmt.Sprintf("can't decode to nil interface")
		err := unmarshalError("decodeInterface", ErrNilInterface, msg,
			nil, nil)
		return 0, err
	}

	// Extract underlying value from the interface and indirect through
	// pointers allocating them as needed.
	ve := reflect.ValueOf(v.Interface())
	ve, err := d.indirect(ve)
	if err != nil {
		return 0, err
	}
	if !ve.CanSet() {
		msg := fmt.Sprintf("can't decode to unsettable '%v'",
			ve.Type().String())
		err := unmarshalError("decodeInterface", ErrNotSettable, msg,
			nil, nil)
		return 0, err
	}
	return d.decode(ve)
}

// decode is the main workhorse for unmarshalling via reflection.  It uses
// the passed reflection value to choose the XDR primitives to decode from
// the encapsulated reader.  It is a recursive function,
// so cyclic data structures are not supported and will result in an infinite
// loop.  It returns the  the number of bytes actually read.
func (d *Decoder) decode(v reflect.Value) (int, error) {
	if !v.IsValid() {
		msg := fmt.Sprintf("type '%s' is not valid", v.Kind().String())
		err := unmarshalError("decode", ErrUnsupportedType, msg, nil, nil)
		return 0, err
	}

	// Indirect through pointers allocating them as needed.
	ve, err := d.indirect(v)
	if err != nil {
		return 0, err
	}

	// Handle time.Time values by decoding them as an RFC3339 formatted
	// string with nanosecond precision.  Check the type string rather
	// than doing a full blown conversion to interface and type assertion
	// since checking a string is much quicker.
	switch ve.Type().String() {
	case "time.Time":
		// Read the value as a string and parse it.
		timeString, n, err := d.DecodeString()
		if err != nil {
			return n, err
		}
		ttv, err := time.Parse(time.RFC3339, timeString)
		if err != nil {
			err := unmarshalError("decode", ErrParseTime,
				err.Error(), timeString, err)
			return n, err
		}
		ve.Set(reflect.ValueOf(ttv))
		return n, nil
	}
	// If this type is in our custom types map, call the decode routine set up
	// for it.
	if dt, ok := d.customTypes[ve.Type().String()]; ok {
		return dt.Decode(d, v)
	}

	// Handle native Go types.
	switch ve.Kind() {
	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int:
		i, n, err := d.DecodeInt()
		if err != nil {
			return n, err
		}
		if ve.OverflowInt(int64(i)) {
			msg := fmt.Sprintf("signed integer too large to fit '%s'",
				ve.Kind().String())
			err = unmarshalError("decode", ErrOverflow, msg, i, nil)
			return n, err
		}
		ve.SetInt(int64(i))
		return n, nil

	case reflect.Int64:
		i, n, err := d.DecodeHyper()
		if err != nil {
			return n, err
		}
		ve.SetInt(i)
		return n, nil

	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint:
		ui, n, err := d.DecodeUint()
		if err != nil {
			return n, err
		}
		if ve.OverflowUint(uint64(ui)) {
			msg := fmt.Sprintf("unsigned integer too large to fit '%s'",
				ve.Kind().String())
			err = unmarshalError("decode", ErrOverflow, msg, ui, nil)
			return n, err
		}
		ve.SetUint(uint64(ui))
		return n, nil

	case reflect.Uint64:
		ui, n, err := d.DecodeUhyper()
		if err != nil {
			return n, err
		}
		ve.SetUint(ui)
		return n, nil

	case reflect.Bool:
		b, n, err := d.DecodeBool()
		if err != nil {
			return n, err
		}
		ve.SetBool(b)
		return n, nil

	case reflect.Float32:
		f, n, err := d.DecodeFloat()
		if err != nil {
			return n, err
		}
		ve.SetFloat(float64(f))
		return n, nil

	case reflect.Float64:
		f, n, err := d.DecodeDouble()
		if err != nil {
			return n, err
		}
		ve.SetFloat(f)
		return n, nil

	case reflect.String:
		s, n, err := d.DecodeString()
		if err != nil {
			return n, err
		}
		ve.SetString(s)
		return n, nil

	case reflect.Array:
		n, err := d.decodeFixedArray(ve, false)
		if err != nil {
			return n, err
		}
		return n, nil

	case reflect.Slice:
		n, err := d.decodeArray(ve, false)
		if err != nil {
			return n, err
		}
		return n, nil

	case reflect.Struct:
		n, err := d.decodeStruct(ve)
		if err != nil {
			return n, err
		}
		return n, nil

	case reflect.Map:
		n, err := d.decodeMap(ve)
		if err != nil {
			return n, err
		}
		return n, nil

	case reflect.Interface:
		n, err := d.decodeInterface(ve)
		if err != nil {
			return n, err
		}
		return n, nil
	}

	// The only unhandled types left are unsupported.  At the time of this
	// writing the only remaining unsupported types that exist are
	// reflect.Uintptr and reflect.UnsafePointer.
	msg := fmt.Sprintf("unsupported Go type '%s'", ve.Kind().String())
	err = unmarshalError("decode", ErrUnsupportedType, msg, nil, nil)
	return 0, err
}

// indirect dereferences pointers allocating them as needed until it reaches
// a non-pointer.  This allows transparent decoding through arbitrary levels
// of indirection.
func (d *Decoder) indirect(v reflect.Value) (reflect.Value, error) {
	rv := v
	for rv.Kind() == reflect.Ptr {
		// Allocate pointer if needed.
		isNil := rv.IsNil()
		if isNil && !rv.CanSet() {
			msg := fmt.Sprintf("unable to allocate pointer for '%v'",
				rv.Type().String())
			err := unmarshalError("indirect", ErrNotSettable, msg,
				nil, nil)
			return rv, err
		}
		if isNil {
			rv.Set(reflect.New(rv.Type().Elem()))
		}
		rv = rv.Elem()
	}
	return rv, nil
}

// Decode operates identically to the Unmarshal function with the exception of
// using the reader associated with the Decoder as the source of XDR-encoded
// data instead of a user-supplied reader.  See the Unmarhsal documentation for
// specifics.
func (d *Decoder) Decode(v interface{}) (int, error) {
	if v == nil {
		msg := "can't unmarshal to nil interface"
		return 0, unmarshalError("Unmarshal", ErrNilInterface, msg, nil,
			nil)
	}

	vv := reflect.ValueOf(v)
	if vv.Kind() != reflect.Ptr {
		msg := fmt.Sprintf("can't unmarshal to non-pointer '%v' - use "+
			"& operator", vv.Type().String())
		err := unmarshalError("Unmarshal", ErrBadArguments, msg, nil, nil)
		return 0, err
	}
	if vv.IsNil() && !vv.CanSet() {
		msg := fmt.Sprintf("can't unmarshal to unsettable '%v' - use "+
			"& operator", vv.Type().String())
		err := unmarshalError("Unmarshal", ErrNotSettable, msg, nil, nil)
		return 0, err
	}

	return d.decode(vv)
}

// NewDecoder returns a Decoder that can be used to manually decode XDR data
// from a provided reader.  Typically, Unmarshal should be used instead of
// manually creating a Decoder.
func NewDecoder(r io.Reader) *Decoder {
	return &Decoder{r: r}
}

// NewDecoderLimited is identical to NewDecoder but it sets maxReadSize in
// order to cap reads.
func NewDecoderLimited(r io.Reader, maxSize uint) *Decoder {
	return &Decoder{r: r, maxReadSize: maxSize}
}

// NewDecoderCustomTypes returns a decoder with support for custom types known
// to the caller. The second parameter is a map of the type name to the decoder
// routine. When the decoder finds a type matching one of the entries in the map
// it will call the custom routine for that type.
func NewDecoderCustomTypes(r io.Reader, maxSize uint, ct map[string]TypeDecoder) *Decoder {
	return &Decoder{r: r, maxReadSize: maxSize, customTypes: ct}
}