aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/gogo/protobuf/README
blob: b4accc0c0b09df5a95ce6efff6032dde0ab95e25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
GoGoProtobuf http://github.com/gogo/protobuf extends 
GoProtobuf http://github.com/golang/protobuf

# Go support for Protocol Buffers

Google's data interchange format.
Copyright 2010 The Go Authors.
https://github.com/golang/protobuf

This package and the code it generates requires at least Go 1.4.

This software implements Go bindings for protocol buffers.  For
information about protocol buffers themselves, see
	https://developers.google.com/protocol-buffers/

## Installation ##

To use this software, you must:
- Install the standard C++ implementation of protocol buffers from
	https://developers.google.com/protocol-buffers/
- Of course, install the Go compiler and tools from
	https://golang.org/
  See
	https://golang.org/doc/install
  for details or, if you are using gccgo, follow the instructions at
	https://golang.org/doc/install/gccgo
- Grab the code from the repository and install the proto package.
  The simplest way is to run `go get -u github.com/golang/protobuf/{proto,protoc-gen-go}`.
  The compiler plugin, protoc-gen-go, will be installed in $GOBIN,
  defaulting to $GOPATH/bin.  It must be in your $PATH for the protocol
  compiler, protoc, to find it.

This software has two parts: a 'protocol compiler plugin' that
generates Go source files that, once compiled, can access and manage
protocol buffers; and a library that implements run-time support for
encoding (marshaling), decoding (unmarshaling), and accessing protocol
buffers.

There is support for gRPC in Go using protocol buffers.
See the note at the bottom of this file for details.

There are no insertion points in the plugin.

GoGoProtobuf provides extensions for protocol buffers and GoProtobuf
see http://github.com/gogo/protobuf/gogoproto/doc.go

## Using protocol buffers with Go ##

Once the software is installed, there are two steps to using it.
First you must compile the protocol buffer definitions and then import
them, with the support library, into your program.

To compile the protocol buffer definition, run protoc with the --gogo_out
parameter set to the directory you want to output the Go code to.

	protoc --gogo_out=. *.proto

The generated files will be suffixed .pb.go.  See the Test code below
for an example using such a file.

The package comment for the proto library contains text describing
the interface provided in Go for protocol buffers. Here is an edited
version.

If you are using any gogo.proto extensions you will need to specify the
proto_path to include the descriptor.proto and gogo.proto.
gogo.proto is located in github.com/gogo/protobuf/gogoproto
This should be fine, since your import is the same.
descriptor.proto is located in either github.com/gogo/protobuf/protobuf
or code.google.com/p/protobuf/trunk/src/
Its import is google/protobuf/descriptor.proto so it might need some help.

	protoc --gogo_out=. -I=.:github.com/gogo/protobuf/protobuf *.proto

==========

The proto package converts data structures to and from the
wire format of protocol buffers.  It works in concert with the
Go source code generated for .proto files by the protocol compiler.

A summary of the properties of the protocol buffer interface
for a protocol buffer variable v:

  - Names are turned from camel_case to CamelCase for export.
  - There are no methods on v to set fields; just treat
  	them as structure fields.
  - There are getters that return a field's value if set,
	and return the field's default value if unset.
	The getters work even if the receiver is a nil message.
  - The zero value for a struct is its correct initialization state.
	All desired fields must be set before marshaling.
  - A Reset() method will restore a protobuf struct to its zero state.
  - Non-repeated fields are pointers to the values; nil means unset.
	That is, optional or required field int32 f becomes F *int32.
  - Repeated fields are slices.
  - Helper functions are available to aid the setting of fields.
	Helpers for getting values are superseded by the
	GetFoo methods and their use is deprecated.
		msg.Foo = proto.String("hello") // set field
  - Constants are defined to hold the default values of all fields that
	have them.  They have the form Default_StructName_FieldName.
	Because the getter methods handle defaulted values,
	direct use of these constants should be rare.
  - Enums are given type names and maps from names to values.
	Enum values are prefixed with the enum's type name. Enum types have
	a String method, and a Enum method to assist in message construction.
  - Nested groups and enums have type names prefixed with the name of
  	the surrounding message type.
  - Extensions are given descriptor names that start with E_,
	followed by an underscore-delimited list of the nested messages
	that contain it (if any) followed by the CamelCased name of the
	extension field itself.  HasExtension, ClearExtension, GetExtension
	and SetExtension are functions for manipulating extensions.
  - Oneof field sets are given a single field in their message,
	with distinguished wrapper types for each possible field value.
  - Marshal and Unmarshal are functions to encode and decode the wire format.

When the .proto file specifies `syntax="proto3"`, there are some differences:

  - Non-repeated fields of non-message type are values instead of pointers.
  - Getters are only generated for message and oneof fields.
  - Enum types do not get an Enum method.

Consider file test.proto, containing

```proto
	package example;
	
	enum FOO { X = 17; };
	
	message Test {
	  required string label = 1;
	  optional int32 type = 2 [default=77];
	  repeated int64 reps = 3;
	  optional group OptionalGroup = 4 {
	    required string RequiredField = 5;
	  }
	}
```

To create and play with a Test object from the example package,

```go
	package main

	import (
		"log"

		"github.com/gogo/protobuf/proto"
		"path/to/example"
	)

	func main() {
		test := &example.Test {
			Label: proto.String("hello"),
			Type:  proto.Int32(17),
			Reps:  []int64{1, 2, 3},
			Optionalgroup: &example.Test_OptionalGroup {
				RequiredField: proto.String("good bye"),
			},
		}
		data, err := proto.Marshal(test)
		if err != nil {
			log.Fatal("marshaling error: ", err)
		}
		newTest := &example.Test{}
		err = proto.Unmarshal(data, newTest)
		if err != nil {
			log.Fatal("unmarshaling error: ", err)
		}
		// Now test and newTest contain the same data.
		if test.GetLabel() != newTest.GetLabel() {
			log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
		}
		// etc.
	}
```


## Parameters ##

To pass extra parameters to the plugin, use a comma-separated
parameter list separated from the output directory by a colon:


	protoc --gogo_out=plugins=grpc,import_path=mypackage:. *.proto


- `import_prefix=xxx` - a prefix that is added onto the beginning of
  all imports. Useful for things like generating protos in a
  subdirectory, or regenerating vendored protobufs in-place.
- `import_path=foo/bar` - used as the package if no input files
  declare `go_package`. If it contains slashes, everything up to the
  rightmost slash is ignored.
- `plugins=plugin1+plugin2` - specifies the list of sub-plugins to
  load. The only plugin in this repo is `grpc`.
- `Mfoo/bar.proto=quux/shme` - declares that foo/bar.proto is
  associated with Go package quux/shme.  This is subject to the
  import_prefix parameter.

## gRPC Support ##

If a proto file specifies RPC services, protoc-gen-go can be instructed to
generate code compatible with gRPC (http://www.grpc.io/). To do this, pass
the `plugins` parameter to protoc-gen-go; the usual way is to insert it into
the --go_out argument to protoc:

	protoc --gogo_out=plugins=grpc:. *.proto

## Plugins ##

The `protoc-gen-go/generator` package exposes a plugin interface,
which is used by the gRPC code generation. This interface is not
supported and is subject to incompatible changes without notice.