1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
|
// Copyright 2009 The Go Authors. All rights reserved.
// Copyright (c) 2015 Klaus Post
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"encoding/binary"
"fmt"
"io"
"math"
"math/bits"
comp "github.com/klauspost/compress"
)
const (
NoCompression = 0
BestSpeed = 1
BestCompression = 9
DefaultCompression = -1
// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
// entropy encoding. This mode is useful in compressing data that has
// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
// that lacks an entropy encoder. Compression gains are achieved when
// certain bytes in the input stream occur more frequently than others.
//
// Note that HuffmanOnly produces a compressed output that is
// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
// continue to be able to decompress this output.
HuffmanOnly = -2
ConstantCompression = HuffmanOnly // compatibility alias.
logWindowSize = 15
windowSize = 1 << logWindowSize
windowMask = windowSize - 1
logMaxOffsetSize = 15 // Standard DEFLATE
minMatchLength = 4 // The smallest match that the compressor looks for
maxMatchLength = 258 // The longest match for the compressor
minOffsetSize = 1 // The shortest offset that makes any sense
// The maximum number of tokens we will encode at the time.
// Smaller sizes usually creates less optimal blocks.
// Bigger can make context switching slow.
// We use this for levels 7-9, so we make it big.
maxFlateBlockTokens = 1 << 15
maxStoreBlockSize = 65535
hashBits = 17 // After 17 performance degrades
hashSize = 1 << hashBits
hashMask = (1 << hashBits) - 1
hashShift = (hashBits + minMatchLength - 1) / minMatchLength
maxHashOffset = 1 << 28
skipNever = math.MaxInt32
debugDeflate = false
)
type compressionLevel struct {
good, lazy, nice, chain, fastSkipHashing, level int
}
// Compression levels have been rebalanced from zlib deflate defaults
// to give a bigger spread in speed and compression.
// See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
var levels = []compressionLevel{
{}, // 0
// Level 1-6 uses specialized algorithm - values not used
{0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 2},
{0, 0, 0, 0, 0, 3},
{0, 0, 0, 0, 0, 4},
{0, 0, 0, 0, 0, 5},
{0, 0, 0, 0, 0, 6},
// Levels 7-9 use increasingly more lazy matching
// and increasingly stringent conditions for "good enough".
{6, 10, 12, 16, skipNever, 7},
{10, 24, 32, 64, skipNever, 8},
{32, 258, 258, 1024, skipNever, 9},
}
// advancedState contains state for the advanced levels, with bigger hash tables, etc.
type advancedState struct {
// deflate state
length int
offset int
maxInsertIndex int
// Input hash chains
// hashHead[hashValue] contains the largest inputIndex with the specified hash value
// If hashHead[hashValue] is within the current window, then
// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
// with the same hash value.
chainHead int
hashHead [hashSize]uint32
hashPrev [windowSize]uint32
hashOffset int
// input window: unprocessed data is window[index:windowEnd]
index int
estBitsPerByte int
hashMatch [maxMatchLength + minMatchLength]uint32
hash uint32
ii uint16 // position of last match, intended to overflow to reset.
}
type compressor struct {
compressionLevel
w *huffmanBitWriter
// compression algorithm
fill func(*compressor, []byte) int // copy data to window
step func(*compressor) // process window
window []byte
windowEnd int
blockStart int // window index where current tokens start
err error
// queued output tokens
tokens tokens
fast fastEnc
state *advancedState
sync bool // requesting flush
byteAvailable bool // if true, still need to process window[index-1].
}
func (d *compressor) fillDeflate(b []byte) int {
s := d.state
if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
// shift the window by windowSize
copy(d.window[:], d.window[windowSize:2*windowSize])
s.index -= windowSize
d.windowEnd -= windowSize
if d.blockStart >= windowSize {
d.blockStart -= windowSize
} else {
d.blockStart = math.MaxInt32
}
s.hashOffset += windowSize
if s.hashOffset > maxHashOffset {
delta := s.hashOffset - 1
s.hashOffset -= delta
s.chainHead -= delta
// Iterate over slices instead of arrays to avoid copying
// the entire table onto the stack (Issue #18625).
for i, v := range s.hashPrev[:] {
if int(v) > delta {
s.hashPrev[i] = uint32(int(v) - delta)
} else {
s.hashPrev[i] = 0
}
}
for i, v := range s.hashHead[:] {
if int(v) > delta {
s.hashHead[i] = uint32(int(v) - delta)
} else {
s.hashHead[i] = 0
}
}
}
}
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error {
if index > 0 || eof {
var window []byte
if d.blockStart <= index {
window = d.window[d.blockStart:index]
}
d.blockStart = index
//d.w.writeBlock(tok, eof, window)
d.w.writeBlockDynamic(tok, eof, window, d.sync)
return d.w.err
}
return nil
}
// writeBlockSkip writes the current block and uses the number of tokens
// to determine if the block should be stored on no matches, or
// only huffman encoded.
func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error {
if index > 0 || eof {
if d.blockStart <= index {
window := d.window[d.blockStart:index]
// If we removed less than a 64th of all literals
// we huffman compress the block.
if int(tok.n) > len(window)-int(tok.n>>6) {
d.w.writeBlockHuff(eof, window, d.sync)
} else {
// Write a dynamic huffman block.
d.w.writeBlockDynamic(tok, eof, window, d.sync)
}
} else {
d.w.writeBlock(tok, eof, nil)
}
d.blockStart = index
return d.w.err
}
return nil
}
// fillWindow will fill the current window with the supplied
// dictionary and calculate all hashes.
// This is much faster than doing a full encode.
// Should only be used after a start/reset.
func (d *compressor) fillWindow(b []byte) {
// Do not fill window if we are in store-only or huffman mode.
if d.level <= 0 {
return
}
if d.fast != nil {
// encode the last data, but discard the result
if len(b) > maxMatchOffset {
b = b[len(b)-maxMatchOffset:]
}
d.fast.Encode(&d.tokens, b)
d.tokens.Reset()
return
}
s := d.state
// If we are given too much, cut it.
if len(b) > windowSize {
b = b[len(b)-windowSize:]
}
// Add all to window.
n := copy(d.window[d.windowEnd:], b)
// Calculate 256 hashes at the time (more L1 cache hits)
loops := (n + 256 - minMatchLength) / 256
for j := 0; j < loops; j++ {
startindex := j * 256
end := startindex + 256 + minMatchLength - 1
if end > n {
end = n
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize <= 0 {
continue
}
dst := s.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
s.hashPrev[di&windowMask] = s.hashHead[newH]
// Set the head of the hash chain to us.
s.hashHead[newH] = uint32(di + s.hashOffset)
}
s.hash = newH
}
// Update window information.
d.windowEnd += n
s.index = n
}
// Try to find a match starting at index whose length is greater than prevSize.
// We only look at chainCount possibilities before giving up.
// pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead
func (d *compressor) findMatch(pos int, prevHead int, lookahead, bpb int) (length, offset int, ok bool) {
minMatchLook := maxMatchLength
if lookahead < minMatchLook {
minMatchLook = lookahead
}
win := d.window[0 : pos+minMatchLook]
// We quit when we get a match that's at least nice long
nice := len(win) - pos
if d.nice < nice {
nice = d.nice
}
// If we've got a match that's good enough, only look in 1/4 the chain.
tries := d.chain
length = minMatchLength - 1
wEnd := win[pos+length]
wPos := win[pos:]
minIndex := pos - windowSize
if minIndex < 0 {
minIndex = 0
}
offset = 0
// Base is 4 bytes at with an additional cost.
// Matches must be better than this.
cGain := minMatchLength*bpb - 12
for i := prevHead; tries > 0; tries-- {
if wEnd == win[i+length] {
n := matchLen(win[i:i+minMatchLook], wPos)
if n > length {
newGain := n*bpb - bits.Len32(uint32(pos-i))
if newGain > cGain {
length = n
offset = pos - i
cGain = newGain
ok = true
if n >= nice {
// The match is good enough that we don't try to find a better one.
break
}
wEnd = win[pos+n]
}
}
}
if i <= minIndex {
// hashPrev[i & windowMask] has already been overwritten, so stop now.
break
}
i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
if i < minIndex {
break
}
}
return
}
func (d *compressor) writeStoredBlock(buf []byte) error {
if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
return d.w.err
}
d.w.writeBytes(buf)
return d.w.err
}
// hash4 returns a hash representation of the first 4 bytes
// of the supplied slice.
// The caller must ensure that len(b) >= 4.
func hash4(b []byte) uint32 {
return hash4u(binary.LittleEndian.Uint32(b), hashBits)
}
// bulkHash4 will compute hashes using the same
// algorithm as hash4
func bulkHash4(b []byte, dst []uint32) {
if len(b) < 4 {
return
}
hb := binary.LittleEndian.Uint32(b)
dst[0] = hash4u(hb, hashBits)
end := len(b) - 4 + 1
for i := 1; i < end; i++ {
hb = (hb >> 8) | uint32(b[i+3])<<24
dst[i] = hash4u(hb, hashBits)
}
}
func (d *compressor) initDeflate() {
d.window = make([]byte, 2*windowSize)
d.byteAvailable = false
d.err = nil
if d.state == nil {
return
}
s := d.state
s.index = 0
s.hashOffset = 1
s.length = minMatchLength - 1
s.offset = 0
s.hash = 0
s.chainHead = -1
}
// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
// meaning it always has lazy matching on.
func (d *compressor) deflateLazy() {
s := d.state
// Sanity enables additional runtime tests.
// It's intended to be used during development
// to supplement the currently ad-hoc unit tests.
const sanity = debugDeflate
if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync {
return
}
s.estBitsPerByte = 8
if !d.sync {
s.estBitsPerByte = comp.ShannonEntropyBits(d.window[s.index:d.windowEnd])
s.estBitsPerByte = int(1 + float64(s.estBitsPerByte)/float64(d.windowEnd-s.index))
}
s.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
if s.index < s.maxInsertIndex {
s.hash = hash4(d.window[s.index:])
}
for {
if sanity && s.index > d.windowEnd {
panic("index > windowEnd")
}
lookahead := d.windowEnd - s.index
if lookahead < minMatchLength+maxMatchLength {
if !d.sync {
return
}
if sanity && s.index > d.windowEnd {
panic("index > windowEnd")
}
if lookahead == 0 {
// Flush current output block if any.
if d.byteAvailable {
// There is still one pending token that needs to be flushed
d.tokens.AddLiteral(d.window[s.index-1])
d.byteAvailable = false
}
if d.tokens.n > 0 {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
return
}
}
if s.index < s.maxInsertIndex {
// Update the hash
s.hash = hash4(d.window[s.index:])
ch := s.hashHead[s.hash&hashMask]
s.chainHead = int(ch)
s.hashPrev[s.index&windowMask] = ch
s.hashHead[s.hash&hashMask] = uint32(s.index + s.hashOffset)
}
prevLength := s.length
prevOffset := s.offset
s.length = minMatchLength - 1
s.offset = 0
minIndex := s.index - windowSize
if minIndex < 0 {
minIndex = 0
}
if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, lookahead, s.estBitsPerByte); ok {
s.length = newLength
s.offset = newOffset
}
}
if prevLength >= minMatchLength && s.length <= prevLength {
// Check for better match at end...
//
// checkOff must be >=2 since we otherwise risk checking s.index
// Offset of 2 seems to yield best results.
const checkOff = 2
prevIndex := s.index - 1
if prevIndex+prevLength+checkOff < s.maxInsertIndex {
end := lookahead
if lookahead > maxMatchLength {
end = maxMatchLength
}
end += prevIndex
idx := prevIndex + prevLength - (4 - checkOff)
h := hash4(d.window[idx:])
ch2 := int(s.hashHead[h&hashMask]) - s.hashOffset - prevLength + (4 - checkOff)
if ch2 > minIndex {
length := matchLen(d.window[prevIndex:end], d.window[ch2:])
// It seems like a pure length metric is best.
if length > prevLength {
prevLength = length
prevOffset = prevIndex - ch2
}
}
}
// There was a match at the previous step, and the current match is
// not better. Output the previous match.
d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
// Insert in the hash table all strings up to the end of the match.
// index and index-1 are already inserted. If there is not enough
// lookahead, the last two strings are not inserted into the hash
// table.
newIndex := s.index + prevLength - 1
// Calculate missing hashes
end := newIndex
if end > s.maxInsertIndex {
end = s.maxInsertIndex
}
end += minMatchLength - 1
startindex := s.index + 1
if startindex > s.maxInsertIndex {
startindex = s.maxInsertIndex
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize > 0 {
dst := s.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
s.hashPrev[di&windowMask] = s.hashHead[newH]
// Set the head of the hash chain to us.
s.hashHead[newH] = uint32(di + s.hashOffset)
}
s.hash = newH
}
s.index = newIndex
d.byteAvailable = false
s.length = minMatchLength - 1
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
s.ii = 0
} else {
// Reset, if we got a match this run.
if s.length >= minMatchLength {
s.ii = 0
}
// We have a byte waiting. Emit it.
if d.byteAvailable {
s.ii++
d.tokens.AddLiteral(d.window[s.index-1])
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
s.index++
// If we have a long run of no matches, skip additional bytes
// Resets when s.ii overflows after 64KB.
if n := int(s.ii) - d.chain; n > 0 {
n = 1 + int(n>>6)
for j := 0; j < n; j++ {
if s.index >= d.windowEnd-1 {
break
}
d.tokens.AddLiteral(d.window[s.index-1])
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
// Index...
if s.index < s.maxInsertIndex {
h := hash4(d.window[s.index:])
ch := s.hashHead[h]
s.chainHead = int(ch)
s.hashPrev[s.index&windowMask] = ch
s.hashHead[h] = uint32(s.index + s.hashOffset)
}
s.index++
}
// Flush last byte
d.tokens.AddLiteral(d.window[s.index-1])
d.byteAvailable = false
// s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
}
} else {
s.index++
d.byteAvailable = true
}
}
}
}
func (d *compressor) store() {
if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
d.windowEnd = 0
}
}
// fillWindow will fill the buffer with data for huffman-only compression.
// The number of bytes copied is returned.
func (d *compressor) fillBlock(b []byte) int {
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
// storeHuff will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeHuff() {
if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
return
}
d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
d.windowEnd = 0
}
// storeFast will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeFast() {
// We only compress if we have maxStoreBlockSize.
if d.windowEnd < len(d.window) {
if !d.sync {
return
}
// Handle extremely small sizes.
if d.windowEnd < 128 {
if d.windowEnd == 0 {
return
}
if d.windowEnd <= 32 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
} else {
d.w.writeBlockHuff(false, d.window[:d.windowEnd], true)
d.err = d.w.err
}
d.tokens.Reset()
d.windowEnd = 0
d.fast.Reset()
return
}
}
d.fast.Encode(&d.tokens, d.window[:d.windowEnd])
// If we made zero matches, store the block as is.
if d.tokens.n == 0 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
// If we removed less than 1/16th, huffman compress the block.
} else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
} else {
d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
}
d.tokens.Reset()
d.windowEnd = 0
}
// write will add input byte to the stream.
// Unless an error occurs all bytes will be consumed.
func (d *compressor) write(b []byte) (n int, err error) {
if d.err != nil {
return 0, d.err
}
n = len(b)
for len(b) > 0 {
if d.windowEnd == len(d.window) || d.sync {
d.step(d)
}
b = b[d.fill(d, b):]
if d.err != nil {
return 0, d.err
}
}
return n, d.err
}
func (d *compressor) syncFlush() error {
d.sync = true
if d.err != nil {
return d.err
}
d.step(d)
if d.err == nil {
d.w.writeStoredHeader(0, false)
d.w.flush()
d.err = d.w.err
}
d.sync = false
return d.err
}
func (d *compressor) init(w io.Writer, level int) (err error) {
d.w = newHuffmanBitWriter(w)
switch {
case level == NoCompression:
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).store
case level == ConstantCompression:
d.w.logNewTablePenalty = 10
d.window = make([]byte, 32<<10)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeHuff
case level == DefaultCompression:
level = 5
fallthrough
case level >= 1 && level <= 6:
d.w.logNewTablePenalty = 7
d.fast = newFastEnc(level)
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeFast
case 7 <= level && level <= 9:
d.w.logNewTablePenalty = 8
d.state = &advancedState{}
d.compressionLevel = levels[level]
d.initDeflate()
d.fill = (*compressor).fillDeflate
d.step = (*compressor).deflateLazy
default:
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
}
d.level = level
return nil
}
// reset the state of the compressor.
func (d *compressor) reset(w io.Writer) {
d.w.reset(w)
d.sync = false
d.err = nil
// We only need to reset a few things for Snappy.
if d.fast != nil {
d.fast.Reset()
d.windowEnd = 0
d.tokens.Reset()
return
}
switch d.compressionLevel.chain {
case 0:
// level was NoCompression or ConstantCompresssion.
d.windowEnd = 0
default:
s := d.state
s.chainHead = -1
for i := range s.hashHead {
s.hashHead[i] = 0
}
for i := range s.hashPrev {
s.hashPrev[i] = 0
}
s.hashOffset = 1
s.index, d.windowEnd = 0, 0
d.blockStart, d.byteAvailable = 0, false
d.tokens.Reset()
s.length = minMatchLength - 1
s.offset = 0
s.hash = 0
s.ii = 0
s.maxInsertIndex = 0
}
}
func (d *compressor) close() error {
if d.err != nil {
return d.err
}
d.sync = true
d.step(d)
if d.err != nil {
return d.err
}
if d.w.writeStoredHeader(0, true); d.w.err != nil {
return d.w.err
}
d.w.flush()
d.w.reset(nil)
return d.w.err
}
// NewWriter returns a new Writer compressing data at the given level.
// Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
// higher levels typically run slower but compress more.
// Level 0 (NoCompression) does not attempt any compression; it only adds the
// necessary DEFLATE framing.
// Level -1 (DefaultCompression) uses the default compression level.
// Level -2 (ConstantCompression) will use Huffman compression only, giving
// a very fast compression for all types of input, but sacrificing considerable
// compression efficiency.
//
// If level is in the range [-2, 9] then the error returned will be nil.
// Otherwise the error returned will be non-nil.
func NewWriter(w io.Writer, level int) (*Writer, error) {
var dw Writer
if err := dw.d.init(w, level); err != nil {
return nil, err
}
return &dw, nil
}
// NewWriterDict is like NewWriter but initializes the new
// Writer with a preset dictionary. The returned Writer behaves
// as if the dictionary had been written to it without producing
// any compressed output. The compressed data written to w
// can only be decompressed by a Reader initialized with the
// same dictionary.
func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
zw, err := NewWriter(w, level)
if err != nil {
return nil, err
}
zw.d.fillWindow(dict)
zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
return zw, err
}
// A Writer takes data written to it and writes the compressed
// form of that data to an underlying writer (see NewWriter).
type Writer struct {
d compressor
dict []byte
}
// Write writes data to w, which will eventually write the
// compressed form of data to its underlying writer.
func (w *Writer) Write(data []byte) (n int, err error) {
return w.d.write(data)
}
// Flush flushes any pending data to the underlying writer.
// It is useful mainly in compressed network protocols, to ensure that
// a remote reader has enough data to reconstruct a packet.
// Flush does not return until the data has been written.
// Calling Flush when there is no pending data still causes the Writer
// to emit a sync marker of at least 4 bytes.
// If the underlying writer returns an error, Flush returns that error.
//
// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
func (w *Writer) Flush() error {
// For more about flushing:
// http://www.bolet.org/~pornin/deflate-flush.html
return w.d.syncFlush()
}
// Close flushes and closes the writer.
func (w *Writer) Close() error {
return w.d.close()
}
// Reset discards the writer's state and makes it equivalent to
// the result of NewWriter or NewWriterDict called with dst
// and w's level and dictionary.
func (w *Writer) Reset(dst io.Writer) {
if len(w.dict) > 0 {
// w was created with NewWriterDict
w.d.reset(dst)
if dst != nil {
w.d.fillWindow(w.dict)
}
} else {
// w was created with NewWriter
w.d.reset(dst)
}
}
// ResetDict discards the writer's state and makes it equivalent to
// the result of NewWriter or NewWriterDict called with dst
// and w's level, but sets a specific dictionary.
func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
w.dict = dict
w.d.reset(dst)
w.d.fillWindow(w.dict)
}
|