aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/klauspost/compress/flate/gen_inflate.go
blob: 35fc072a3efa37fa61c62f9a70e44b5d83d609b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// +build generate

//go:generate go run $GOFILE && gofmt -w inflate_gen.go

package main

import (
	"os"
	"strings"
)

func main() {
	f, err := os.Create("inflate_gen.go")
	if err != nil {
		panic(err)
	}
	defer f.Close()
	types := []string{"*bytes.Buffer", "*bytes.Reader", "*bufio.Reader", "*strings.Reader"}
	names := []string{"BytesBuffer", "BytesReader", "BufioReader", "StringsReader"}
	imports := []string{"bytes", "bufio", "io", "strings", "math/bits"}
	f.WriteString(`// Code generated by go generate gen_inflate.go. DO NOT EDIT.

package flate

import (
`)

	for _, imp := range imports {
		f.WriteString("\t\"" + imp + "\"\n")
	}
	f.WriteString(")\n\n")

	template := `

// Decode a single Huffman block from f.
// hl and hd are the Huffman states for the lit/length values
// and the distance values, respectively. If hd == nil, using the
// fixed distance encoding associated with fixed Huffman blocks.
func (f *decompressor) $FUNCNAME$() {
	const (
		stateInit = iota // Zero value must be stateInit
		stateDict
	)
	fr := f.r.($TYPE$)

	switch f.stepState {
	case stateInit:
		goto readLiteral
	case stateDict:
		goto copyHistory
	}

readLiteral:
	// Read literal and/or (length, distance) according to RFC section 3.2.3.
	{
		var v int
		{
			// Inlined v, err := f.huffSym(f.hl)
			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
			// with single element, huffSym must error on these two edge cases. In both
			// cases, the chunks slice will be 0 for the invalid sequence, leading it
			// satisfy the n == 0 check below.
			n := uint(f.hl.maxRead)
			// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
			// but is smart enough to keep local variables in registers, so use nb and b,
			// inline call to moreBits and reassign b,nb back to f on return.
			nb, b := f.nb, f.b
			for {
				for nb < n {
					c, err := fr.ReadByte()
					if err != nil {
						f.b = b
						f.nb = nb
						f.err = noEOF(err)
						return
					}
					f.roffset++
					b |= uint32(c) << (nb & regSizeMaskUint32)
					nb += 8
				}
				chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
				n = uint(chunk & huffmanCountMask)
				if n > huffmanChunkBits {
					chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
					n = uint(chunk & huffmanCountMask)
				}
				if n <= nb {
					if n == 0 {
						f.b = b
						f.nb = nb
						if debugDecode {
							fmt.Println("huffsym: n==0")
						}
						f.err = CorruptInputError(f.roffset)
						return
					}
					f.b = b >> (n & regSizeMaskUint32)
					f.nb = nb - n
					v = int(chunk >> huffmanValueShift)
					break
				}
			}
		}

		var length int
		switch {
		case v < 256:
			f.dict.writeByte(byte(v))
			if f.dict.availWrite() == 0 {
				f.toRead = f.dict.readFlush()
				f.step = (*decompressor).$FUNCNAME$
				f.stepState = stateInit
				return
			}
			goto readLiteral
		case v == 256:
			f.finishBlock()
			return
		// otherwise, reference to older data
		case v < 265:
			length = v - (257 - 3)
		case v < maxNumLit:
			val := decCodeToLen[(v - 257)]
			length = int(val.length) + 3
			n := uint(val.extra)
			for f.nb < n {
				c, err := fr.ReadByte()
				if err != nil {
					if debugDecode {
						fmt.Println("morebits n>0:", err)
					}
					f.err = err
					return
				}
				f.roffset++
				f.b |= uint32(c) << f.nb
				f.nb += 8	
			}
			length += int(f.b & uint32(1<<(n&regSizeMaskUint32)-1))
			f.b >>= n & regSizeMaskUint32
			f.nb -= n
		default:
			if debugDecode {
				fmt.Println(v, ">= maxNumLit")
			}
			f.err = CorruptInputError(f.roffset)
			return
		}

		var dist uint32
		if f.hd == nil {
			for f.nb < 5 {
				c, err := fr.ReadByte()
				if err != nil {
					if debugDecode {
						fmt.Println("morebits f.nb<5:", err)
					}
					f.err = err
					return
				}
				f.roffset++
				f.b |= uint32(c) << f.nb
				f.nb += 8
			}
			dist = uint32(bits.Reverse8(uint8(f.b & 0x1F << 3)))
			f.b >>= 5
			f.nb -= 5
		} else {
			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
			// with single element, huffSym must error on these two edge cases. In both
			// cases, the chunks slice will be 0 for the invalid sequence, leading it
			// satisfy the n == 0 check below.
			n := uint(f.hd.maxRead)
			// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
			// but is smart enough to keep local variables in registers, so use nb and b,
			// inline call to moreBits and reassign b,nb back to f on return.
			nb, b := f.nb, f.b
			for {
				for nb < n {
					c, err := fr.ReadByte()
					if err != nil {
						f.b = b
						f.nb = nb
						f.err = noEOF(err)
						return
					}
					f.roffset++
					b |= uint32(c) << (nb & regSizeMaskUint32)
					nb += 8
				}
				chunk := f.hd.chunks[b&(huffmanNumChunks-1)]
				n = uint(chunk & huffmanCountMask)
				if n > huffmanChunkBits {
					chunk = f.hd.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hd.linkMask]
					n = uint(chunk & huffmanCountMask)
				}
				if n <= nb {
					if n == 0 {
						f.b = b
						f.nb = nb
						if debugDecode {
							fmt.Println("huffsym: n==0")
						}
						f.err = CorruptInputError(f.roffset)
						return
					}
					f.b = b >> (n & regSizeMaskUint32)
					f.nb = nb - n
					dist = uint32(chunk >> huffmanValueShift)
					break
				}
			}
		}

		switch {
		case dist < 4:
			dist++
		case dist < maxNumDist:
			nb := uint(dist-2) >> 1
			// have 1 bit in bottom of dist, need nb more.
			extra := (dist & 1) << (nb & regSizeMaskUint32)
			for f.nb < nb {
				c, err := fr.ReadByte()
				if err != nil {
					if debugDecode {
						fmt.Println("morebits f.nb<nb:", err)
					}
					f.err = err
					return
				}
				f.roffset++
				f.b |= uint32(c) << f.nb
				f.nb += 8
			}
			extra |= f.b & uint32(1<<(nb&regSizeMaskUint32)-1)
			f.b >>= nb & regSizeMaskUint32
			f.nb -= nb
			dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
		default:
			if debugDecode {
				fmt.Println("dist too big:", dist, maxNumDist)
			}
			f.err = CorruptInputError(f.roffset)
			return
		}

		// No check on length; encoding can be prescient.
		if dist > uint32(f.dict.histSize()) {
			if debugDecode {
				fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
			}
			f.err = CorruptInputError(f.roffset)
			return
		}

		f.copyLen, f.copyDist = length, int(dist)
		goto copyHistory
	}

copyHistory:
	// Perform a backwards copy according to RFC section 3.2.3.
	{
		cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
		if cnt == 0 {
			cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
		}
		f.copyLen -= cnt

		if f.dict.availWrite() == 0 || f.copyLen > 0 {
			f.toRead = f.dict.readFlush()
			f.step = (*decompressor).$FUNCNAME$ // We need to continue this work
			f.stepState = stateDict
			return
		}
		goto readLiteral
	}
}

`
	for i, t := range types {
		s := strings.Replace(template, "$FUNCNAME$", "huffman"+names[i], -1)
		s = strings.Replace(s, "$TYPE$", t, -1)
		f.WriteString(s)
	}
	f.WriteString("func (f *decompressor) huffmanBlockDecoder() func() {\n")
	f.WriteString("\tswitch f.r.(type) {\n")
	for i, t := range types {
		f.WriteString("\t\tcase " + t + ":\n")
		f.WriteString("\t\t\treturn f.huffman" + names[i] + "\n")
	}
	f.WriteString("\t\tdefault:\n")
	f.WriteString("\t\t\treturn f.huffmanBlockGeneric")
	f.WriteString("\t}\n}\n")
}