summaryrefslogtreecommitdiff
path: root/vendor/github.com/klauspost/compress/flate/huffman_code.go
blob: f65f793361480e0d11522eaff8856b5024ac6066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package flate

import (
	"math"
	"math/bits"
	"sort"
)

// hcode is a huffman code with a bit code and bit length.
type hcode struct {
	code, len uint16
}

type huffmanEncoder struct {
	codes     []hcode
	freqcache []literalNode
	bitCount  [17]int32
	lns       byLiteral // stored to avoid repeated allocation in generate
	lfs       byFreq    // stored to avoid repeated allocation in generate
}

type literalNode struct {
	literal uint16
	freq    int32
}

// A levelInfo describes the state of the constructed tree for a given depth.
type levelInfo struct {
	// Our level.  for better printing
	level int32

	// The frequency of the last node at this level
	lastFreq int32

	// The frequency of the next character to add to this level
	nextCharFreq int32

	// The frequency of the next pair (from level below) to add to this level.
	// Only valid if the "needed" value of the next lower level is 0.
	nextPairFreq int32

	// The number of chains remaining to generate for this level before moving
	// up to the next level
	needed int32
}

// set sets the code and length of an hcode.
func (h *hcode) set(code uint16, length uint16) {
	h.len = length
	h.code = code
}

func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }

func newHuffmanEncoder(size int) *huffmanEncoder {
	// Make capacity to next power of two.
	c := uint(bits.Len32(uint32(size - 1)))
	return &huffmanEncoder{codes: make([]hcode, size, 1<<c)}
}

// Generates a HuffmanCode corresponding to the fixed literal table
func generateFixedLiteralEncoding() *huffmanEncoder {
	h := newHuffmanEncoder(maxNumLit)
	codes := h.codes
	var ch uint16
	for ch = 0; ch < maxNumLit; ch++ {
		var bits uint16
		var size uint16
		switch {
		case ch < 144:
			// size 8, 000110000  .. 10111111
			bits = ch + 48
			size = 8
			break
		case ch < 256:
			// size 9, 110010000 .. 111111111
			bits = ch + 400 - 144
			size = 9
			break
		case ch < 280:
			// size 7, 0000000 .. 0010111
			bits = ch - 256
			size = 7
			break
		default:
			// size 8, 11000000 .. 11000111
			bits = ch + 192 - 280
			size = 8
		}
		codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
	}
	return h
}

func generateFixedOffsetEncoding() *huffmanEncoder {
	h := newHuffmanEncoder(30)
	codes := h.codes
	for ch := range codes {
		codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
	}
	return h
}

var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()

func (h *huffmanEncoder) bitLength(freq []int32) int {
	var total int
	for i, f := range freq {
		if f != 0 {
			total += int(f) * int(h.codes[i].len)
		}
	}
	return total
}

const maxBitsLimit = 16

// Return the number of literals assigned to each bit size in the Huffman encoding
//
// This method is only called when list.length >= 3
// The cases of 0, 1, and 2 literals are handled by special case code.
//
// list  An array of the literals with non-zero frequencies
//             and their associated frequencies. The array is in order of increasing
//             frequency, and has as its last element a special element with frequency
//             MaxInt32
// maxBits     The maximum number of bits that should be used to encode any literal.
//             Must be less than 16.
// return      An integer array in which array[i] indicates the number of literals
//             that should be encoded in i bits.
func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
	if maxBits >= maxBitsLimit {
		panic("flate: maxBits too large")
	}
	n := int32(len(list))
	list = list[0 : n+1]
	list[n] = maxNode()

	// The tree can't have greater depth than n - 1, no matter what. This
	// saves a little bit of work in some small cases
	if maxBits > n-1 {
		maxBits = n - 1
	}

	// Create information about each of the levels.
	// A bogus "Level 0" whose sole purpose is so that
	// level1.prev.needed==0.  This makes level1.nextPairFreq
	// be a legitimate value that never gets chosen.
	var levels [maxBitsLimit]levelInfo
	// leafCounts[i] counts the number of literals at the left
	// of ancestors of the rightmost node at level i.
	// leafCounts[i][j] is the number of literals at the left
	// of the level j ancestor.
	var leafCounts [maxBitsLimit][maxBitsLimit]int32

	for level := int32(1); level <= maxBits; level++ {
		// For every level, the first two items are the first two characters.
		// We initialize the levels as if we had already figured this out.
		levels[level] = levelInfo{
			level:        level,
			lastFreq:     list[1].freq,
			nextCharFreq: list[2].freq,
			nextPairFreq: list[0].freq + list[1].freq,
		}
		leafCounts[level][level] = 2
		if level == 1 {
			levels[level].nextPairFreq = math.MaxInt32
		}
	}

	// We need a total of 2*n - 2 items at top level and have already generated 2.
	levels[maxBits].needed = 2*n - 4

	level := maxBits
	for {
		l := &levels[level]
		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
			// We've run out of both leafs and pairs.
			// End all calculations for this level.
			// To make sure we never come back to this level or any lower level,
			// set nextPairFreq impossibly large.
			l.needed = 0
			levels[level+1].nextPairFreq = math.MaxInt32
			level++
			continue
		}

		prevFreq := l.lastFreq
		if l.nextCharFreq < l.nextPairFreq {
			// The next item on this row is a leaf node.
			n := leafCounts[level][level] + 1
			l.lastFreq = l.nextCharFreq
			// Lower leafCounts are the same of the previous node.
			leafCounts[level][level] = n
			l.nextCharFreq = list[n].freq
		} else {
			// The next item on this row is a pair from the previous row.
			// nextPairFreq isn't valid until we generate two
			// more values in the level below
			l.lastFreq = l.nextPairFreq
			// Take leaf counts from the lower level, except counts[level] remains the same.
			copy(leafCounts[level][:level], leafCounts[level-1][:level])
			levels[l.level-1].needed = 2
		}

		if l.needed--; l.needed == 0 {
			// We've done everything we need to do for this level.
			// Continue calculating one level up. Fill in nextPairFreq
			// of that level with the sum of the two nodes we've just calculated on
			// this level.
			if l.level == maxBits {
				// All done!
				break
			}
			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
			level++
		} else {
			// If we stole from below, move down temporarily to replenish it.
			for levels[level-1].needed > 0 {
				level--
			}
		}
	}

	// Somethings is wrong if at the end, the top level is null or hasn't used
	// all of the leaves.
	if leafCounts[maxBits][maxBits] != n {
		panic("leafCounts[maxBits][maxBits] != n")
	}

	bitCount := h.bitCount[:maxBits+1]
	bits := 1
	counts := &leafCounts[maxBits]
	for level := maxBits; level > 0; level-- {
		// chain.leafCount gives the number of literals requiring at least "bits"
		// bits to encode.
		bitCount[bits] = counts[level] - counts[level-1]
		bits++
	}
	return bitCount
}

// Look at the leaves and assign them a bit count and an encoding as specified
// in RFC 1951 3.2.2
func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
	code := uint16(0)
	for n, bits := range bitCount {
		code <<= 1
		if n == 0 || bits == 0 {
			continue
		}
		// The literals list[len(list)-bits] .. list[len(list)-bits]
		// are encoded using "bits" bits, and get the values
		// code, code + 1, ....  The code values are
		// assigned in literal order (not frequency order).
		chunk := list[len(list)-int(bits):]

		h.lns.sort(chunk)
		for _, node := range chunk {
			h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
			code++
		}
		list = list[0 : len(list)-int(bits)]
	}
}

// Update this Huffman Code object to be the minimum code for the specified frequency count.
//
// freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
// maxBits  The maximum number of bits to use for any literal.
func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
	if h.freqcache == nil {
		// Allocate a reusable buffer with the longest possible frequency table.
		// Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
		// The largest of these is maxNumLit, so we allocate for that case.
		h.freqcache = make([]literalNode, maxNumLit+1)
	}
	list := h.freqcache[:len(freq)+1]
	// Number of non-zero literals
	count := 0
	// Set list to be the set of all non-zero literals and their frequencies
	for i, f := range freq {
		if f != 0 {
			list[count] = literalNode{uint16(i), f}
			count++
		} else {
			list[count] = literalNode{}
			h.codes[i].len = 0
		}
	}
	list[len(freq)] = literalNode{}

	list = list[:count]
	if count <= 2 {
		// Handle the small cases here, because they are awkward for the general case code. With
		// two or fewer literals, everything has bit length 1.
		for i, node := range list {
			// "list" is in order of increasing literal value.
			h.codes[node.literal].set(uint16(i), 1)
		}
		return
	}
	h.lfs.sort(list)

	// Get the number of literals for each bit count
	bitCount := h.bitCounts(list, maxBits)
	// And do the assignment
	h.assignEncodingAndSize(bitCount, list)
}

type byLiteral []literalNode

func (s *byLiteral) sort(a []literalNode) {
	*s = byLiteral(a)
	sort.Sort(s)
}

func (s byLiteral) Len() int { return len(s) }

func (s byLiteral) Less(i, j int) bool {
	return s[i].literal < s[j].literal
}

func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }

type byFreq []literalNode

func (s *byFreq) sort(a []literalNode) {
	*s = byFreq(a)
	sort.Sort(s)
}

func (s byFreq) Len() int { return len(s) }

func (s byFreq) Less(i, j int) bool {
	if s[i].freq == s[j].freq {
		return s[i].literal < s[j].literal
	}
	return s[i].freq < s[j].freq
}

func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }