1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
// +build windows
package windowsconsole
import (
"bytes"
"errors"
"fmt"
"io"
"os"
"strings"
"unsafe"
ansiterm "github.com/Azure/go-ansiterm"
"github.com/Azure/go-ansiterm/winterm"
)
const (
escapeSequence = ansiterm.KEY_ESC_CSI
)
// ansiReader wraps a standard input file (e.g., os.Stdin) providing ANSI sequence translation.
type ansiReader struct {
file *os.File
fd uintptr
buffer []byte
cbBuffer int
command []byte
}
// NewAnsiReader returns an io.ReadCloser that provides VT100 terminal emulation on top of a
// Windows console input handle.
func NewAnsiReader(nFile int) io.ReadCloser {
file, fd := winterm.GetStdFile(nFile)
return &ansiReader{
file: file,
fd: fd,
command: make([]byte, 0, ansiterm.ANSI_MAX_CMD_LENGTH),
buffer: make([]byte, 0),
}
}
// Close closes the wrapped file.
func (ar *ansiReader) Close() (err error) {
return ar.file.Close()
}
// Fd returns the file descriptor of the wrapped file.
func (ar *ansiReader) Fd() uintptr {
return ar.fd
}
// Read reads up to len(p) bytes of translated input events into p.
func (ar *ansiReader) Read(p []byte) (int, error) {
if len(p) == 0 {
return 0, nil
}
// Previously read bytes exist, read as much as we can and return
if len(ar.buffer) > 0 {
originalLength := len(ar.buffer)
copiedLength := copy(p, ar.buffer)
if copiedLength == originalLength {
ar.buffer = make([]byte, 0, len(p))
} else {
ar.buffer = ar.buffer[copiedLength:]
}
return copiedLength, nil
}
// Read and translate key events
events, err := readInputEvents(ar, len(p))
if err != nil {
return 0, err
} else if len(events) == 0 {
return 0, nil
}
keyBytes := translateKeyEvents(events, []byte(escapeSequence))
// Save excess bytes and right-size keyBytes
if len(keyBytes) > len(p) {
ar.buffer = keyBytes[len(p):]
keyBytes = keyBytes[:len(p)]
} else if len(keyBytes) == 0 {
return 0, nil
}
copiedLength := copy(p, keyBytes)
if copiedLength != len(keyBytes) {
return 0, errors.New("unexpected copy length encountered")
}
return copiedLength, nil
}
// readInputEvents polls until at least one event is available.
func readInputEvents(ar *ansiReader, maxBytes int) ([]winterm.INPUT_RECORD, error) {
// Determine the maximum number of records to retrieve
// -- Cast around the type system to obtain the size of a single INPUT_RECORD.
// unsafe.Sizeof requires an expression vs. a type-reference; the casting
// tricks the type system into believing it has such an expression.
recordSize := int(unsafe.Sizeof(*((*winterm.INPUT_RECORD)(unsafe.Pointer(&maxBytes)))))
countRecords := maxBytes / recordSize
if countRecords > ansiterm.MAX_INPUT_EVENTS {
countRecords = ansiterm.MAX_INPUT_EVENTS
} else if countRecords == 0 {
countRecords = 1
}
// Wait for and read input events
events := make([]winterm.INPUT_RECORD, countRecords)
nEvents := uint32(0)
eventsExist, err := winterm.WaitForSingleObject(ar.fd, winterm.WAIT_INFINITE)
if err != nil {
return nil, err
}
if eventsExist {
err = winterm.ReadConsoleInput(ar.fd, events, &nEvents)
if err != nil {
return nil, err
}
}
// Return a slice restricted to the number of returned records
return events[:nEvents], nil
}
// KeyEvent Translation Helpers
var arrowKeyMapPrefix = map[uint16]string{
winterm.VK_UP: "%s%sA",
winterm.VK_DOWN: "%s%sB",
winterm.VK_RIGHT: "%s%sC",
winterm.VK_LEFT: "%s%sD",
}
var keyMapPrefix = map[uint16]string{
winterm.VK_UP: "\x1B[%sA",
winterm.VK_DOWN: "\x1B[%sB",
winterm.VK_RIGHT: "\x1B[%sC",
winterm.VK_LEFT: "\x1B[%sD",
winterm.VK_HOME: "\x1B[1%s~", // showkey shows ^[[1
winterm.VK_END: "\x1B[4%s~", // showkey shows ^[[4
winterm.VK_INSERT: "\x1B[2%s~",
winterm.VK_DELETE: "\x1B[3%s~",
winterm.VK_PRIOR: "\x1B[5%s~",
winterm.VK_NEXT: "\x1B[6%s~",
winterm.VK_F1: "",
winterm.VK_F2: "",
winterm.VK_F3: "\x1B[13%s~",
winterm.VK_F4: "\x1B[14%s~",
winterm.VK_F5: "\x1B[15%s~",
winterm.VK_F6: "\x1B[17%s~",
winterm.VK_F7: "\x1B[18%s~",
winterm.VK_F8: "\x1B[19%s~",
winterm.VK_F9: "\x1B[20%s~",
winterm.VK_F10: "\x1B[21%s~",
winterm.VK_F11: "\x1B[23%s~",
winterm.VK_F12: "\x1B[24%s~",
}
// translateKeyEvents converts the input events into the appropriate ANSI string.
func translateKeyEvents(events []winterm.INPUT_RECORD, escapeSequence []byte) []byte {
var buffer bytes.Buffer
for _, event := range events {
if event.EventType == winterm.KEY_EVENT && event.KeyEvent.KeyDown != 0 {
buffer.WriteString(keyToString(&event.KeyEvent, escapeSequence))
}
}
return buffer.Bytes()
}
// keyToString maps the given input event record to the corresponding string.
func keyToString(keyEvent *winterm.KEY_EVENT_RECORD, escapeSequence []byte) string {
if keyEvent.UnicodeChar == 0 {
return formatVirtualKey(keyEvent.VirtualKeyCode, keyEvent.ControlKeyState, escapeSequence)
}
_, alt, control := getControlKeys(keyEvent.ControlKeyState)
if control {
// TODO(azlinux): Implement following control sequences
// <Ctrl>-D Signals the end of input from the keyboard; also exits current shell.
// <Ctrl>-H Deletes the first character to the left of the cursor. Also called the ERASE key.
// <Ctrl>-Q Restarts printing after it has been stopped with <Ctrl>-s.
// <Ctrl>-S Suspends printing on the screen (does not stop the program).
// <Ctrl>-U Deletes all characters on the current line. Also called the KILL key.
// <Ctrl>-E Quits current command and creates a core
}
// <Alt>+Key generates ESC N Key
if !control && alt {
return ansiterm.KEY_ESC_N + strings.ToLower(string(keyEvent.UnicodeChar))
}
return string(keyEvent.UnicodeChar)
}
// formatVirtualKey converts a virtual key (e.g., up arrow) into the appropriate ANSI string.
func formatVirtualKey(key uint16, controlState uint32, escapeSequence []byte) string {
shift, alt, control := getControlKeys(controlState)
modifier := getControlKeysModifier(shift, alt, control)
if format, ok := arrowKeyMapPrefix[key]; ok {
return fmt.Sprintf(format, escapeSequence, modifier)
}
if format, ok := keyMapPrefix[key]; ok {
return fmt.Sprintf(format, modifier)
}
return ""
}
// getControlKeys extracts the shift, alt, and ctrl key states.
func getControlKeys(controlState uint32) (shift, alt, control bool) {
shift = 0 != (controlState & winterm.SHIFT_PRESSED)
alt = 0 != (controlState & (winterm.LEFT_ALT_PRESSED | winterm.RIGHT_ALT_PRESSED))
control = 0 != (controlState & (winterm.LEFT_CTRL_PRESSED | winterm.RIGHT_CTRL_PRESSED))
return shift, alt, control
}
// getControlKeysModifier returns the ANSI modifier for the given combination of control keys.
func getControlKeysModifier(shift, alt, control bool) string {
if shift && alt && control {
return ansiterm.KEY_CONTROL_PARAM_8
}
if alt && control {
return ansiterm.KEY_CONTROL_PARAM_7
}
if shift && control {
return ansiterm.KEY_CONTROL_PARAM_6
}
if control {
return ansiterm.KEY_CONTROL_PARAM_5
}
if shift && alt {
return ansiterm.KEY_CONTROL_PARAM_4
}
if alt {
return ansiterm.KEY_CONTROL_PARAM_3
}
if shift {
return ansiterm.KEY_CONTROL_PARAM_2
}
return ""
}
|