aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/uber/jaeger-client-go/thrift/compact_protocol.go
blob: a49225dabfb545e95ef4f82a40787507f8cdabeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package thrift

import (
	"context"
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"math"
)

const (
	COMPACT_PROTOCOL_ID       = 0x082
	COMPACT_VERSION           = 1
	COMPACT_VERSION_MASK      = 0x1f
	COMPACT_TYPE_MASK         = 0x0E0
	COMPACT_TYPE_BITS         = 0x07
	COMPACT_TYPE_SHIFT_AMOUNT = 5
)

type tCompactType byte

const (
	COMPACT_BOOLEAN_TRUE  = 0x01
	COMPACT_BOOLEAN_FALSE = 0x02
	COMPACT_BYTE          = 0x03
	COMPACT_I16           = 0x04
	COMPACT_I32           = 0x05
	COMPACT_I64           = 0x06
	COMPACT_DOUBLE        = 0x07
	COMPACT_BINARY        = 0x08
	COMPACT_LIST          = 0x09
	COMPACT_SET           = 0x0A
	COMPACT_MAP           = 0x0B
	COMPACT_STRUCT        = 0x0C
)

var (
	ttypeToCompactType map[TType]tCompactType
)

func init() {
	ttypeToCompactType = map[TType]tCompactType{
		STOP:   STOP,
		BOOL:   COMPACT_BOOLEAN_TRUE,
		BYTE:   COMPACT_BYTE,
		I16:    COMPACT_I16,
		I32:    COMPACT_I32,
		I64:    COMPACT_I64,
		DOUBLE: COMPACT_DOUBLE,
		STRING: COMPACT_BINARY,
		LIST:   COMPACT_LIST,
		SET:    COMPACT_SET,
		MAP:    COMPACT_MAP,
		STRUCT: COMPACT_STRUCT,
	}
}

type TCompactProtocolFactory struct {
	cfg *TConfiguration
}

// Deprecated: Use NewTCompactProtocolFactoryConf instead.
func NewTCompactProtocolFactory() *TCompactProtocolFactory {
	return NewTCompactProtocolFactoryConf(&TConfiguration{
		noPropagation: true,
	})
}

func NewTCompactProtocolFactoryConf(conf *TConfiguration) *TCompactProtocolFactory {
	return &TCompactProtocolFactory{
		cfg: conf,
	}
}

func (p *TCompactProtocolFactory) GetProtocol(trans TTransport) TProtocol {
	return NewTCompactProtocolConf(trans, p.cfg)
}

func (p *TCompactProtocolFactory) SetTConfiguration(conf *TConfiguration) {
	p.cfg = conf
}

type TCompactProtocol struct {
	trans         TRichTransport
	origTransport TTransport

	cfg *TConfiguration

	// Used to keep track of the last field for the current and previous structs,
	// so we can do the delta stuff.
	lastField   []int
	lastFieldId int

	// If we encounter a boolean field begin, save the TField here so it can
	// have the value incorporated.
	booleanFieldName    string
	booleanFieldId      int16
	booleanFieldPending bool

	// If we read a field header, and it's a boolean field, save the boolean
	// value here so that readBool can use it.
	boolValue          bool
	boolValueIsNotNull bool
	buffer             [64]byte
}

// Deprecated: Use NewTCompactProtocolConf instead.
func NewTCompactProtocol(trans TTransport) *TCompactProtocol {
	return NewTCompactProtocolConf(trans, &TConfiguration{
		noPropagation: true,
	})
}

func NewTCompactProtocolConf(trans TTransport, conf *TConfiguration) *TCompactProtocol {
	PropagateTConfiguration(trans, conf)
	p := &TCompactProtocol{
		origTransport: trans,
		cfg:           conf,
	}
	if et, ok := trans.(TRichTransport); ok {
		p.trans = et
	} else {
		p.trans = NewTRichTransport(trans)
	}

	return p
}

//
// Public Writing methods.
//

// Write a message header to the wire. Compact Protocol messages contain the
// protocol version so we can migrate forwards in the future if need be.
func (p *TCompactProtocol) WriteMessageBegin(ctx context.Context, name string, typeId TMessageType, seqid int32) error {
	err := p.writeByteDirect(COMPACT_PROTOCOL_ID)
	if err != nil {
		return NewTProtocolException(err)
	}
	err = p.writeByteDirect((COMPACT_VERSION & COMPACT_VERSION_MASK) | ((byte(typeId) << COMPACT_TYPE_SHIFT_AMOUNT) & COMPACT_TYPE_MASK))
	if err != nil {
		return NewTProtocolException(err)
	}
	_, err = p.writeVarint32(seqid)
	if err != nil {
		return NewTProtocolException(err)
	}
	e := p.WriteString(ctx, name)
	return e

}

func (p *TCompactProtocol) WriteMessageEnd(ctx context.Context) error { return nil }

// Write a struct begin. This doesn't actually put anything on the wire. We
// use it as an opportunity to put special placeholder markers on the field
// stack so we can get the field id deltas correct.
func (p *TCompactProtocol) WriteStructBegin(ctx context.Context, name string) error {
	p.lastField = append(p.lastField, p.lastFieldId)
	p.lastFieldId = 0
	return nil
}

// Write a struct end. This doesn't actually put anything on the wire. We use
// this as an opportunity to pop the last field from the current struct off
// of the field stack.
func (p *TCompactProtocol) WriteStructEnd(ctx context.Context) error {
	if len(p.lastField) <= 0 {
		return NewTProtocolExceptionWithType(INVALID_DATA, errors.New("WriteStructEnd called without matching WriteStructBegin call before"))
	}
	p.lastFieldId = p.lastField[len(p.lastField)-1]
	p.lastField = p.lastField[:len(p.lastField)-1]
	return nil
}

func (p *TCompactProtocol) WriteFieldBegin(ctx context.Context, name string, typeId TType, id int16) error {
	if typeId == BOOL {
		// we want to possibly include the value, so we'll wait.
		p.booleanFieldName, p.booleanFieldId, p.booleanFieldPending = name, id, true
		return nil
	}
	_, err := p.writeFieldBeginInternal(ctx, name, typeId, id, 0xFF)
	return NewTProtocolException(err)
}

// The workhorse of writeFieldBegin. It has the option of doing a
// 'type override' of the type header. This is used specifically in the
// boolean field case.
func (p *TCompactProtocol) writeFieldBeginInternal(ctx context.Context, name string, typeId TType, id int16, typeOverride byte) (int, error) {
	// short lastField = lastField_.pop();

	// if there's a type override, use that.
	var typeToWrite byte
	if typeOverride == 0xFF {
		typeToWrite = byte(p.getCompactType(typeId))
	} else {
		typeToWrite = typeOverride
	}
	// check if we can use delta encoding for the field id
	fieldId := int(id)
	written := 0
	if fieldId > p.lastFieldId && fieldId-p.lastFieldId <= 15 {
		// write them together
		err := p.writeByteDirect(byte((fieldId-p.lastFieldId)<<4) | typeToWrite)
		if err != nil {
			return 0, err
		}
	} else {
		// write them separate
		err := p.writeByteDirect(typeToWrite)
		if err != nil {
			return 0, err
		}
		err = p.WriteI16(ctx, id)
		written = 1 + 2
		if err != nil {
			return 0, err
		}
	}

	p.lastFieldId = fieldId
	return written, nil
}

func (p *TCompactProtocol) WriteFieldEnd(ctx context.Context) error { return nil }

func (p *TCompactProtocol) WriteFieldStop(ctx context.Context) error {
	err := p.writeByteDirect(STOP)
	return NewTProtocolException(err)
}

func (p *TCompactProtocol) WriteMapBegin(ctx context.Context, keyType TType, valueType TType, size int) error {
	if size == 0 {
		err := p.writeByteDirect(0)
		return NewTProtocolException(err)
	}
	_, err := p.writeVarint32(int32(size))
	if err != nil {
		return NewTProtocolException(err)
	}
	err = p.writeByteDirect(byte(p.getCompactType(keyType))<<4 | byte(p.getCompactType(valueType)))
	return NewTProtocolException(err)
}

func (p *TCompactProtocol) WriteMapEnd(ctx context.Context) error { return nil }

// Write a list header.
func (p *TCompactProtocol) WriteListBegin(ctx context.Context, elemType TType, size int) error {
	_, err := p.writeCollectionBegin(elemType, size)
	return NewTProtocolException(err)
}

func (p *TCompactProtocol) WriteListEnd(ctx context.Context) error { return nil }

// Write a set header.
func (p *TCompactProtocol) WriteSetBegin(ctx context.Context, elemType TType, size int) error {
	_, err := p.writeCollectionBegin(elemType, size)
	return NewTProtocolException(err)
}

func (p *TCompactProtocol) WriteSetEnd(ctx context.Context) error { return nil }

func (p *TCompactProtocol) WriteBool(ctx context.Context, value bool) error {
	v := byte(COMPACT_BOOLEAN_FALSE)
	if value {
		v = byte(COMPACT_BOOLEAN_TRUE)
	}
	if p.booleanFieldPending {
		// we haven't written the field header yet
		_, err := p.writeFieldBeginInternal(ctx, p.booleanFieldName, BOOL, p.booleanFieldId, v)
		p.booleanFieldPending = false
		return NewTProtocolException(err)
	}
	// we're not part of a field, so just write the value.
	err := p.writeByteDirect(v)
	return NewTProtocolException(err)
}

// Write a byte. Nothing to see here!
func (p *TCompactProtocol) WriteByte(ctx context.Context, value int8) error {
	err := p.writeByteDirect(byte(value))
	return NewTProtocolException(err)
}

// Write an I16 as a zigzag varint.
func (p *TCompactProtocol) WriteI16(ctx context.Context, value int16) error {
	_, err := p.writeVarint32(p.int32ToZigzag(int32(value)))
	return NewTProtocolException(err)
}

// Write an i32 as a zigzag varint.
func (p *TCompactProtocol) WriteI32(ctx context.Context, value int32) error {
	_, err := p.writeVarint32(p.int32ToZigzag(value))
	return NewTProtocolException(err)
}

// Write an i64 as a zigzag varint.
func (p *TCompactProtocol) WriteI64(ctx context.Context, value int64) error {
	_, err := p.writeVarint64(p.int64ToZigzag(value))
	return NewTProtocolException(err)
}

// Write a double to the wire as 8 bytes.
func (p *TCompactProtocol) WriteDouble(ctx context.Context, value float64) error {
	buf := p.buffer[0:8]
	binary.LittleEndian.PutUint64(buf, math.Float64bits(value))
	_, err := p.trans.Write(buf)
	return NewTProtocolException(err)
}

// Write a string to the wire with a varint size preceding.
func (p *TCompactProtocol) WriteString(ctx context.Context, value string) error {
	_, e := p.writeVarint32(int32(len(value)))
	if e != nil {
		return NewTProtocolException(e)
	}
	if len(value) > 0 {
	}
	_, e = p.trans.WriteString(value)
	return e
}

// Write a byte array, using a varint for the size.
func (p *TCompactProtocol) WriteBinary(ctx context.Context, bin []byte) error {
	_, e := p.writeVarint32(int32(len(bin)))
	if e != nil {
		return NewTProtocolException(e)
	}
	if len(bin) > 0 {
		_, e = p.trans.Write(bin)
		return NewTProtocolException(e)
	}
	return nil
}

//
// Reading methods.
//

// Read a message header.
func (p *TCompactProtocol) ReadMessageBegin(ctx context.Context) (name string, typeId TMessageType, seqId int32, err error) {
	var protocolId byte

	_, deadlineSet := ctx.Deadline()
	for {
		protocolId, err = p.readByteDirect()
		if deadlineSet && isTimeoutError(err) && ctx.Err() == nil {
			// keep retrying I/O timeout errors since we still have
			// time left
			continue
		}
		// For anything else, don't retry
		break
	}
	if err != nil {
		return
	}

	if protocolId != COMPACT_PROTOCOL_ID {
		e := fmt.Errorf("Expected protocol id %02x but got %02x", COMPACT_PROTOCOL_ID, protocolId)
		return "", typeId, seqId, NewTProtocolExceptionWithType(BAD_VERSION, e)
	}

	versionAndType, err := p.readByteDirect()
	if err != nil {
		return
	}

	version := versionAndType & COMPACT_VERSION_MASK
	typeId = TMessageType((versionAndType >> COMPACT_TYPE_SHIFT_AMOUNT) & COMPACT_TYPE_BITS)
	if version != COMPACT_VERSION {
		e := fmt.Errorf("Expected version %02x but got %02x", COMPACT_VERSION, version)
		err = NewTProtocolExceptionWithType(BAD_VERSION, e)
		return
	}
	seqId, e := p.readVarint32()
	if e != nil {
		err = NewTProtocolException(e)
		return
	}
	name, err = p.ReadString(ctx)
	return
}

func (p *TCompactProtocol) ReadMessageEnd(ctx context.Context) error { return nil }

// Read a struct begin. There's nothing on the wire for this, but it is our
// opportunity to push a new struct begin marker onto the field stack.
func (p *TCompactProtocol) ReadStructBegin(ctx context.Context) (name string, err error) {
	p.lastField = append(p.lastField, p.lastFieldId)
	p.lastFieldId = 0
	return
}

// Doesn't actually consume any wire data, just removes the last field for
// this struct from the field stack.
func (p *TCompactProtocol) ReadStructEnd(ctx context.Context) error {
	// consume the last field we read off the wire.
	if len(p.lastField) <= 0 {
		return NewTProtocolExceptionWithType(INVALID_DATA, errors.New("ReadStructEnd called without matching ReadStructBegin call before"))
	}
	p.lastFieldId = p.lastField[len(p.lastField)-1]
	p.lastField = p.lastField[:len(p.lastField)-1]
	return nil
}

// Read a field header off the wire.
func (p *TCompactProtocol) ReadFieldBegin(ctx context.Context) (name string, typeId TType, id int16, err error) {
	t, err := p.readByteDirect()
	if err != nil {
		return
	}

	// if it's a stop, then we can return immediately, as the struct is over.
	if (t & 0x0f) == STOP {
		return "", STOP, 0, nil
	}

	// mask off the 4 MSB of the type header. it could contain a field id delta.
	modifier := int16((t & 0xf0) >> 4)
	if modifier == 0 {
		// not a delta. look ahead for the zigzag varint field id.
		id, err = p.ReadI16(ctx)
		if err != nil {
			return
		}
	} else {
		// has a delta. add the delta to the last read field id.
		id = int16(p.lastFieldId) + modifier
	}
	typeId, e := p.getTType(tCompactType(t & 0x0f))
	if e != nil {
		err = NewTProtocolException(e)
		return
	}

	// if this happens to be a boolean field, the value is encoded in the type
	if p.isBoolType(t) {
		// save the boolean value in a special instance variable.
		p.boolValue = (byte(t)&0x0f == COMPACT_BOOLEAN_TRUE)
		p.boolValueIsNotNull = true
	}

	// push the new field onto the field stack so we can keep the deltas going.
	p.lastFieldId = int(id)
	return
}

func (p *TCompactProtocol) ReadFieldEnd(ctx context.Context) error { return nil }

// Read a map header off the wire. If the size is zero, skip reading the key
// and value type. This means that 0-length maps will yield TMaps without the
// "correct" types.
func (p *TCompactProtocol) ReadMapBegin(ctx context.Context) (keyType TType, valueType TType, size int, err error) {
	size32, e := p.readVarint32()
	if e != nil {
		err = NewTProtocolException(e)
		return
	}
	if size32 < 0 {
		err = invalidDataLength
		return
	}
	size = int(size32)

	keyAndValueType := byte(STOP)
	if size != 0 {
		keyAndValueType, err = p.readByteDirect()
		if err != nil {
			return
		}
	}
	keyType, _ = p.getTType(tCompactType(keyAndValueType >> 4))
	valueType, _ = p.getTType(tCompactType(keyAndValueType & 0xf))
	return
}

func (p *TCompactProtocol) ReadMapEnd(ctx context.Context) error { return nil }

// Read a list header off the wire. If the list size is 0-14, the size will
// be packed into the element type header. If it's a longer list, the 4 MSB
// of the element type header will be 0xF, and a varint will follow with the
// true size.
func (p *TCompactProtocol) ReadListBegin(ctx context.Context) (elemType TType, size int, err error) {
	size_and_type, err := p.readByteDirect()
	if err != nil {
		return
	}
	size = int((size_and_type >> 4) & 0x0f)
	if size == 15 {
		size2, e := p.readVarint32()
		if e != nil {
			err = NewTProtocolException(e)
			return
		}
		if size2 < 0 {
			err = invalidDataLength
			return
		}
		size = int(size2)
	}
	elemType, e := p.getTType(tCompactType(size_and_type))
	if e != nil {
		err = NewTProtocolException(e)
		return
	}
	return
}

func (p *TCompactProtocol) ReadListEnd(ctx context.Context) error { return nil }

// Read a set header off the wire. If the set size is 0-14, the size will
// be packed into the element type header. If it's a longer set, the 4 MSB
// of the element type header will be 0xF, and a varint will follow with the
// true size.
func (p *TCompactProtocol) ReadSetBegin(ctx context.Context) (elemType TType, size int, err error) {
	return p.ReadListBegin(ctx)
}

func (p *TCompactProtocol) ReadSetEnd(ctx context.Context) error { return nil }

// Read a boolean off the wire. If this is a boolean field, the value should
// already have been read during readFieldBegin, so we'll just consume the
// pre-stored value. Otherwise, read a byte.
func (p *TCompactProtocol) ReadBool(ctx context.Context) (value bool, err error) {
	if p.boolValueIsNotNull {
		p.boolValueIsNotNull = false
		return p.boolValue, nil
	}
	v, err := p.readByteDirect()
	return v == COMPACT_BOOLEAN_TRUE, err
}

// Read a single byte off the wire. Nothing interesting here.
func (p *TCompactProtocol) ReadByte(ctx context.Context) (int8, error) {
	v, err := p.readByteDirect()
	if err != nil {
		return 0, NewTProtocolException(err)
	}
	return int8(v), err
}

// Read an i16 from the wire as a zigzag varint.
func (p *TCompactProtocol) ReadI16(ctx context.Context) (value int16, err error) {
	v, err := p.ReadI32(ctx)
	return int16(v), err
}

// Read an i32 from the wire as a zigzag varint.
func (p *TCompactProtocol) ReadI32(ctx context.Context) (value int32, err error) {
	v, e := p.readVarint32()
	if e != nil {
		return 0, NewTProtocolException(e)
	}
	value = p.zigzagToInt32(v)
	return value, nil
}

// Read an i64 from the wire as a zigzag varint.
func (p *TCompactProtocol) ReadI64(ctx context.Context) (value int64, err error) {
	v, e := p.readVarint64()
	if e != nil {
		return 0, NewTProtocolException(e)
	}
	value = p.zigzagToInt64(v)
	return value, nil
}

// No magic here - just read a double off the wire.
func (p *TCompactProtocol) ReadDouble(ctx context.Context) (value float64, err error) {
	longBits := p.buffer[0:8]
	_, e := io.ReadFull(p.trans, longBits)
	if e != nil {
		return 0.0, NewTProtocolException(e)
	}
	return math.Float64frombits(p.bytesToUint64(longBits)), nil
}

// Reads a []byte (via readBinary), and then UTF-8 decodes it.
func (p *TCompactProtocol) ReadString(ctx context.Context) (value string, err error) {
	length, e := p.readVarint32()
	if e != nil {
		return "", NewTProtocolException(e)
	}
	err = checkSizeForProtocol(length, p.cfg)
	if err != nil {
		return
	}
	if length == 0 {
		return "", nil
	}
	if length < int32(len(p.buffer)) {
		// Avoid allocation on small reads
		buf := p.buffer[:length]
		read, e := io.ReadFull(p.trans, buf)
		return string(buf[:read]), NewTProtocolException(e)
	}

	buf, e := safeReadBytes(length, p.trans)
	return string(buf), NewTProtocolException(e)
}

// Read a []byte from the wire.
func (p *TCompactProtocol) ReadBinary(ctx context.Context) (value []byte, err error) {
	length, e := p.readVarint32()
	if e != nil {
		return nil, NewTProtocolException(e)
	}
	err = checkSizeForProtocol(length, p.cfg)
	if err != nil {
		return
	}
	if length == 0 {
		return []byte{}, nil
	}

	buf, e := safeReadBytes(length, p.trans)
	return buf, NewTProtocolException(e)
}

func (p *TCompactProtocol) Flush(ctx context.Context) (err error) {
	return NewTProtocolException(p.trans.Flush(ctx))
}

func (p *TCompactProtocol) Skip(ctx context.Context, fieldType TType) (err error) {
	return SkipDefaultDepth(ctx, p, fieldType)
}

func (p *TCompactProtocol) Transport() TTransport {
	return p.origTransport
}

//
// Internal writing methods
//

// Abstract method for writing the start of lists and sets. List and sets on
// the wire differ only by the type indicator.
func (p *TCompactProtocol) writeCollectionBegin(elemType TType, size int) (int, error) {
	if size <= 14 {
		return 1, p.writeByteDirect(byte(int32(size<<4) | int32(p.getCompactType(elemType))))
	}
	err := p.writeByteDirect(0xf0 | byte(p.getCompactType(elemType)))
	if err != nil {
		return 0, err
	}
	m, err := p.writeVarint32(int32(size))
	return 1 + m, err
}

// Write an i32 as a varint. Results in 1-5 bytes on the wire.
// TODO(pomack): make a permanent buffer like writeVarint64?
func (p *TCompactProtocol) writeVarint32(n int32) (int, error) {
	i32buf := p.buffer[0:5]
	idx := 0
	for {
		if (n & ^0x7F) == 0 {
			i32buf[idx] = byte(n)
			idx++
			// p.writeByteDirect(byte(n));
			break
			// return;
		} else {
			i32buf[idx] = byte((n & 0x7F) | 0x80)
			idx++
			// p.writeByteDirect(byte(((n & 0x7F) | 0x80)));
			u := uint32(n)
			n = int32(u >> 7)
		}
	}
	return p.trans.Write(i32buf[0:idx])
}

// Write an i64 as a varint. Results in 1-10 bytes on the wire.
func (p *TCompactProtocol) writeVarint64(n int64) (int, error) {
	varint64out := p.buffer[0:10]
	idx := 0
	for {
		if (n & ^0x7F) == 0 {
			varint64out[idx] = byte(n)
			idx++
			break
		} else {
			varint64out[idx] = byte((n & 0x7F) | 0x80)
			idx++
			u := uint64(n)
			n = int64(u >> 7)
		}
	}
	return p.trans.Write(varint64out[0:idx])
}

// Convert l into a zigzag long. This allows negative numbers to be
// represented compactly as a varint.
func (p *TCompactProtocol) int64ToZigzag(l int64) int64 {
	return (l << 1) ^ (l >> 63)
}

// Convert l into a zigzag long. This allows negative numbers to be
// represented compactly as a varint.
func (p *TCompactProtocol) int32ToZigzag(n int32) int32 {
	return (n << 1) ^ (n >> 31)
}

func (p *TCompactProtocol) fixedUint64ToBytes(n uint64, buf []byte) {
	binary.LittleEndian.PutUint64(buf, n)
}

func (p *TCompactProtocol) fixedInt64ToBytes(n int64, buf []byte) {
	binary.LittleEndian.PutUint64(buf, uint64(n))
}

// Writes a byte without any possibility of all that field header nonsense.
// Used internally by other writing methods that know they need to write a byte.
func (p *TCompactProtocol) writeByteDirect(b byte) error {
	return p.trans.WriteByte(b)
}

// Writes a byte without any possibility of all that field header nonsense.
func (p *TCompactProtocol) writeIntAsByteDirect(n int) (int, error) {
	return 1, p.writeByteDirect(byte(n))
}

//
// Internal reading methods
//

// Read an i32 from the wire as a varint. The MSB of each byte is set
// if there is another byte to follow. This can read up to 5 bytes.
func (p *TCompactProtocol) readVarint32() (int32, error) {
	// if the wire contains the right stuff, this will just truncate the i64 we
	// read and get us the right sign.
	v, err := p.readVarint64()
	return int32(v), err
}

// Read an i64 from the wire as a proper varint. The MSB of each byte is set
// if there is another byte to follow. This can read up to 10 bytes.
func (p *TCompactProtocol) readVarint64() (int64, error) {
	shift := uint(0)
	result := int64(0)
	for {
		b, err := p.readByteDirect()
		if err != nil {
			return 0, err
		}
		result |= int64(b&0x7f) << shift
		if (b & 0x80) != 0x80 {
			break
		}
		shift += 7
	}
	return result, nil
}

// Read a byte, unlike ReadByte that reads Thrift-byte that is i8.
func (p *TCompactProtocol) readByteDirect() (byte, error) {
	return p.trans.ReadByte()
}

//
// encoding helpers
//

// Convert from zigzag int to int.
func (p *TCompactProtocol) zigzagToInt32(n int32) int32 {
	u := uint32(n)
	return int32(u>>1) ^ -(n & 1)
}

// Convert from zigzag long to long.
func (p *TCompactProtocol) zigzagToInt64(n int64) int64 {
	u := uint64(n)
	return int64(u>>1) ^ -(n & 1)
}

// Note that it's important that the mask bytes are long literals,
// otherwise they'll default to ints, and when you shift an int left 56 bits,
// you just get a messed up int.
func (p *TCompactProtocol) bytesToInt64(b []byte) int64 {
	return int64(binary.LittleEndian.Uint64(b))
}

// Note that it's important that the mask bytes are long literals,
// otherwise they'll default to ints, and when you shift an int left 56 bits,
// you just get a messed up int.
func (p *TCompactProtocol) bytesToUint64(b []byte) uint64 {
	return binary.LittleEndian.Uint64(b)
}

//
// type testing and converting
//

func (p *TCompactProtocol) isBoolType(b byte) bool {
	return (b&0x0f) == COMPACT_BOOLEAN_TRUE || (b&0x0f) == COMPACT_BOOLEAN_FALSE
}

// Given a tCompactType constant, convert it to its corresponding
// TType value.
func (p *TCompactProtocol) getTType(t tCompactType) (TType, error) {
	switch byte(t) & 0x0f {
	case STOP:
		return STOP, nil
	case COMPACT_BOOLEAN_FALSE, COMPACT_BOOLEAN_TRUE:
		return BOOL, nil
	case COMPACT_BYTE:
		return BYTE, nil
	case COMPACT_I16:
		return I16, nil
	case COMPACT_I32:
		return I32, nil
	case COMPACT_I64:
		return I64, nil
	case COMPACT_DOUBLE:
		return DOUBLE, nil
	case COMPACT_BINARY:
		return STRING, nil
	case COMPACT_LIST:
		return LIST, nil
	case COMPACT_SET:
		return SET, nil
	case COMPACT_MAP:
		return MAP, nil
	case COMPACT_STRUCT:
		return STRUCT, nil
	}
	return STOP, NewTProtocolException(fmt.Errorf("don't know what type: %v", t&0x0f))
}

// Given a TType value, find the appropriate TCompactProtocol.Types constant.
func (p *TCompactProtocol) getCompactType(t TType) tCompactType {
	return ttypeToCompactType[t]
}

func (p *TCompactProtocol) SetTConfiguration(conf *TConfiguration) {
	PropagateTConfiguration(p.trans, conf)
	PropagateTConfiguration(p.origTransport, conf)
	p.cfg = conf
}

var (
	_ TConfigurationSetter = (*TCompactProtocolFactory)(nil)
	_ TConfigurationSetter = (*TCompactProtocol)(nil)
)