aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/crypto/blowfish/block.go
blob: 9d80f19521b461af2a77b10e8eaf64936d8e223d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package blowfish

// getNextWord returns the next big-endian uint32 value from the byte slice
// at the given position in a circular manner, updating the position.
func getNextWord(b []byte, pos *int) uint32 {
	var w uint32
	j := *pos
	for i := 0; i < 4; i++ {
		w = w<<8 | uint32(b[j])
		j++
		if j >= len(b) {
			j = 0
		}
	}
	*pos = j
	return w
}

// ExpandKey performs a key expansion on the given *Cipher. Specifically, it
// performs the Blowfish algorithm's key schedule which sets up the *Cipher's
// pi and substitution tables for calls to Encrypt. This is used, primarily,
// by the bcrypt package to reuse the Blowfish key schedule during its
// set up. It's unlikely that you need to use this directly.
func ExpandKey(key []byte, c *Cipher) {
	j := 0
	for i := 0; i < 18; i++ {
		// Using inlined getNextWord for performance.
		var d uint32
		for k := 0; k < 4; k++ {
			d = d<<8 | uint32(key[j])
			j++
			if j >= len(key) {
				j = 0
			}
		}
		c.p[i] ^= d
	}

	var l, r uint32
	for i := 0; i < 18; i += 2 {
		l, r = encryptBlock(l, r, c)
		c.p[i], c.p[i+1] = l, r
	}

	for i := 0; i < 256; i += 2 {
		l, r = encryptBlock(l, r, c)
		c.s0[i], c.s0[i+1] = l, r
	}
	for i := 0; i < 256; i += 2 {
		l, r = encryptBlock(l, r, c)
		c.s1[i], c.s1[i+1] = l, r
	}
	for i := 0; i < 256; i += 2 {
		l, r = encryptBlock(l, r, c)
		c.s2[i], c.s2[i+1] = l, r
	}
	for i := 0; i < 256; i += 2 {
		l, r = encryptBlock(l, r, c)
		c.s3[i], c.s3[i+1] = l, r
	}
}

// This is similar to ExpandKey, but folds the salt during the key
// schedule. While ExpandKey is essentially expandKeyWithSalt with an all-zero
// salt passed in, reusing ExpandKey turns out to be a place of inefficiency
// and specializing it here is useful.
func expandKeyWithSalt(key []byte, salt []byte, c *Cipher) {
	j := 0
	for i := 0; i < 18; i++ {
		c.p[i] ^= getNextWord(key, &j)
	}

	j = 0
	var l, r uint32
	for i := 0; i < 18; i += 2 {
		l ^= getNextWord(salt, &j)
		r ^= getNextWord(salt, &j)
		l, r = encryptBlock(l, r, c)
		c.p[i], c.p[i+1] = l, r
	}

	for i := 0; i < 256; i += 2 {
		l ^= getNextWord(salt, &j)
		r ^= getNextWord(salt, &j)
		l, r = encryptBlock(l, r, c)
		c.s0[i], c.s0[i+1] = l, r
	}

	for i := 0; i < 256; i += 2 {
		l ^= getNextWord(salt, &j)
		r ^= getNextWord(salt, &j)
		l, r = encryptBlock(l, r, c)
		c.s1[i], c.s1[i+1] = l, r
	}

	for i := 0; i < 256; i += 2 {
		l ^= getNextWord(salt, &j)
		r ^= getNextWord(salt, &j)
		l, r = encryptBlock(l, r, c)
		c.s2[i], c.s2[i+1] = l, r
	}

	for i := 0; i < 256; i += 2 {
		l ^= getNextWord(salt, &j)
		r ^= getNextWord(salt, &j)
		l, r = encryptBlock(l, r, c)
		c.s3[i], c.s3[i+1] = l, r
	}
}

func encryptBlock(l, r uint32, c *Cipher) (uint32, uint32) {
	xl, xr := l, r
	xl ^= c.p[0]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[1]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[2]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[3]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[4]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[5]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[6]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[7]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[8]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[9]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[10]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[11]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[12]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[13]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[14]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[15]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[16]
	xr ^= c.p[17]
	return xr, xl
}

func decryptBlock(l, r uint32, c *Cipher) (uint32, uint32) {
	xl, xr := l, r
	xl ^= c.p[17]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[16]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[15]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[14]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[13]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[12]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[11]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[10]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[9]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[8]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[7]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[6]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[5]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[4]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[3]
	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[2]
	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[1]
	xr ^= c.p[0]
	return xr, xl
}