aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/crypto/chacha20/chacha_generic.go
blob: a2ecf5c325b9118d4edc4c93a52e462dd3fb1069 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package chacha20 implements the ChaCha20 and XChaCha20 encryption algorithms
// as specified in RFC 8439 and draft-irtf-cfrg-xchacha-01.
package chacha20

import (
	"crypto/cipher"
	"encoding/binary"
	"errors"
	"math/bits"

	"golang.org/x/crypto/internal/subtle"
)

const (
	// KeySize is the size of the key used by this cipher, in bytes.
	KeySize = 32

	// NonceSize is the size of the nonce used with the standard variant of this
	// cipher, in bytes.
	//
	// Note that this is too short to be safely generated at random if the same
	// key is reused more than 2³² times.
	NonceSize = 12

	// NonceSizeX is the size of the nonce used with the XChaCha20 variant of
	// this cipher, in bytes.
	NonceSizeX = 24
)

// Cipher is a stateful instance of ChaCha20 or XChaCha20 using a particular key
// and nonce. A *Cipher implements the cipher.Stream interface.
type Cipher struct {
	// The ChaCha20 state is 16 words: 4 constant, 8 of key, 1 of counter
	// (incremented after each block), and 3 of nonce.
	key     [8]uint32
	counter uint32
	nonce   [3]uint32

	// The last len bytes of buf are leftover key stream bytes from the previous
	// XORKeyStream invocation. The size of buf depends on how many blocks are
	// computed at a time by xorKeyStreamBlocks.
	buf [bufSize]byte
	len int

	// overflow is set when the counter overflowed, no more blocks can be
	// generated, and the next XORKeyStream call should panic.
	overflow bool

	// The counter-independent results of the first round are cached after they
	// are computed the first time.
	precompDone      bool
	p1, p5, p9, p13  uint32
	p2, p6, p10, p14 uint32
	p3, p7, p11, p15 uint32
}

var _ cipher.Stream = (*Cipher)(nil)

// NewUnauthenticatedCipher creates a new ChaCha20 stream cipher with the given
// 32 bytes key and a 12 or 24 bytes nonce. If a nonce of 24 bytes is provided,
// the XChaCha20 construction will be used. It returns an error if key or nonce
// have any other length.
//
// Note that ChaCha20, like all stream ciphers, is not authenticated and allows
// attackers to silently tamper with the plaintext. For this reason, it is more
// appropriate as a building block than as a standalone encryption mechanism.
// Instead, consider using package golang.org/x/crypto/chacha20poly1305.
func NewUnauthenticatedCipher(key, nonce []byte) (*Cipher, error) {
	// This function is split into a wrapper so that the Cipher allocation will
	// be inlined, and depending on how the caller uses the return value, won't
	// escape to the heap.
	c := &Cipher{}
	return newUnauthenticatedCipher(c, key, nonce)
}

func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) {
	if len(key) != KeySize {
		return nil, errors.New("chacha20: wrong key size")
	}
	if len(nonce) == NonceSizeX {
		// XChaCha20 uses the ChaCha20 core to mix 16 bytes of the nonce into a
		// derived key, allowing it to operate on a nonce of 24 bytes. See
		// draft-irtf-cfrg-xchacha-01, Section 2.3.
		key, _ = HChaCha20(key, nonce[0:16])
		cNonce := make([]byte, NonceSize)
		copy(cNonce[4:12], nonce[16:24])
		nonce = cNonce
	} else if len(nonce) != NonceSize {
		return nil, errors.New("chacha20: wrong nonce size")
	}

	key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint
	c.key = [8]uint32{
		binary.LittleEndian.Uint32(key[0:4]),
		binary.LittleEndian.Uint32(key[4:8]),
		binary.LittleEndian.Uint32(key[8:12]),
		binary.LittleEndian.Uint32(key[12:16]),
		binary.LittleEndian.Uint32(key[16:20]),
		binary.LittleEndian.Uint32(key[20:24]),
		binary.LittleEndian.Uint32(key[24:28]),
		binary.LittleEndian.Uint32(key[28:32]),
	}
	c.nonce = [3]uint32{
		binary.LittleEndian.Uint32(nonce[0:4]),
		binary.LittleEndian.Uint32(nonce[4:8]),
		binary.LittleEndian.Uint32(nonce[8:12]),
	}
	return c, nil
}

// The constant first 4 words of the ChaCha20 state.
const (
	j0 uint32 = 0x61707865 // expa
	j1 uint32 = 0x3320646e // nd 3
	j2 uint32 = 0x79622d32 // 2-by
	j3 uint32 = 0x6b206574 // te k
)

const blockSize = 64

// quarterRound is the core of ChaCha20. It shuffles the bits of 4 state words.
// It's executed 4 times for each of the 20 ChaCha20 rounds, operating on all 16
// words each round, in columnar or diagonal groups of 4 at a time.
func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
	a += b
	d ^= a
	d = bits.RotateLeft32(d, 16)
	c += d
	b ^= c
	b = bits.RotateLeft32(b, 12)
	a += b
	d ^= a
	d = bits.RotateLeft32(d, 8)
	c += d
	b ^= c
	b = bits.RotateLeft32(b, 7)
	return a, b, c, d
}

// SetCounter sets the Cipher counter. The next invocation of XORKeyStream will
// behave as if (64 * counter) bytes had been encrypted so far.
//
// To prevent accidental counter reuse, SetCounter panics if counter is less
// than the current value.
//
// Note that the execution time of XORKeyStream is not independent of the
// counter value.
func (s *Cipher) SetCounter(counter uint32) {
	// Internally, s may buffer multiple blocks, which complicates this
	// implementation slightly. When checking whether the counter has rolled
	// back, we must use both s.counter and s.len to determine how many blocks
	// we have already output.
	outputCounter := s.counter - uint32(s.len)/blockSize
	if s.overflow || counter < outputCounter {
		panic("chacha20: SetCounter attempted to rollback counter")
	}

	// In the general case, we set the new counter value and reset s.len to 0,
	// causing the next call to XORKeyStream to refill the buffer. However, if
	// we're advancing within the existing buffer, we can save work by simply
	// setting s.len.
	if counter < s.counter {
		s.len = int(s.counter-counter) * blockSize
	} else {
		s.counter = counter
		s.len = 0
	}
}

// XORKeyStream XORs each byte in the given slice with a byte from the
// cipher's key stream. Dst and src must overlap entirely or not at all.
//
// If len(dst) < len(src), XORKeyStream will panic. It is acceptable
// to pass a dst bigger than src, and in that case, XORKeyStream will
// only update dst[:len(src)] and will not touch the rest of dst.
//
// Multiple calls to XORKeyStream behave as if the concatenation of
// the src buffers was passed in a single run. That is, Cipher
// maintains state and does not reset at each XORKeyStream call.
func (s *Cipher) XORKeyStream(dst, src []byte) {
	if len(src) == 0 {
		return
	}
	if len(dst) < len(src) {
		panic("chacha20: output smaller than input")
	}
	dst = dst[:len(src)]
	if subtle.InexactOverlap(dst, src) {
		panic("chacha20: invalid buffer overlap")
	}

	// First, drain any remaining key stream from a previous XORKeyStream.
	if s.len != 0 {
		keyStream := s.buf[bufSize-s.len:]
		if len(src) < len(keyStream) {
			keyStream = keyStream[:len(src)]
		}
		_ = src[len(keyStream)-1] // bounds check elimination hint
		for i, b := range keyStream {
			dst[i] = src[i] ^ b
		}
		s.len -= len(keyStream)
		dst, src = dst[len(keyStream):], src[len(keyStream):]
	}
	if len(src) == 0 {
		return
	}

	// If we'd need to let the counter overflow and keep generating output,
	// panic immediately. If instead we'd only reach the last block, remember
	// not to generate any more output after the buffer is drained.
	numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize
	if s.overflow || uint64(s.counter)+numBlocks > 1<<32 {
		panic("chacha20: counter overflow")
	} else if uint64(s.counter)+numBlocks == 1<<32 {
		s.overflow = true
	}

	// xorKeyStreamBlocks implementations expect input lengths that are a
	// multiple of bufSize. Platform-specific ones process multiple blocks at a
	// time, so have bufSizes that are a multiple of blockSize.

	full := len(src) - len(src)%bufSize
	if full > 0 {
		s.xorKeyStreamBlocks(dst[:full], src[:full])
	}
	dst, src = dst[full:], src[full:]

	// If using a multi-block xorKeyStreamBlocks would overflow, use the generic
	// one that does one block at a time.
	const blocksPerBuf = bufSize / blockSize
	if uint64(s.counter)+blocksPerBuf > 1<<32 {
		s.buf = [bufSize]byte{}
		numBlocks := (len(src) + blockSize - 1) / blockSize
		buf := s.buf[bufSize-numBlocks*blockSize:]
		copy(buf, src)
		s.xorKeyStreamBlocksGeneric(buf, buf)
		s.len = len(buf) - copy(dst, buf)
		return
	}

	// If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and
	// keep the leftover keystream for the next XORKeyStream invocation.
	if len(src) > 0 {
		s.buf = [bufSize]byte{}
		copy(s.buf[:], src)
		s.xorKeyStreamBlocks(s.buf[:], s.buf[:])
		s.len = bufSize - copy(dst, s.buf[:])
	}
}

func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) {
	if len(dst) != len(src) || len(dst)%blockSize != 0 {
		panic("chacha20: internal error: wrong dst and/or src length")
	}

	// To generate each block of key stream, the initial cipher state
	// (represented below) is passed through 20 rounds of shuffling,
	// alternatively applying quarterRounds by columns (like 1, 5, 9, 13)
	// or by diagonals (like 1, 6, 11, 12).
	//
	//      0:cccccccc   1:cccccccc   2:cccccccc   3:cccccccc
	//      4:kkkkkkkk   5:kkkkkkkk   6:kkkkkkkk   7:kkkkkkkk
	//      8:kkkkkkkk   9:kkkkkkkk  10:kkkkkkkk  11:kkkkkkkk
	//     12:bbbbbbbb  13:nnnnnnnn  14:nnnnnnnn  15:nnnnnnnn
	//
	//            c=constant k=key b=blockcount n=nonce
	var (
		c0, c1, c2, c3   = j0, j1, j2, j3
		c4, c5, c6, c7   = s.key[0], s.key[1], s.key[2], s.key[3]
		c8, c9, c10, c11 = s.key[4], s.key[5], s.key[6], s.key[7]
		_, c13, c14, c15 = s.counter, s.nonce[0], s.nonce[1], s.nonce[2]
	)

	// Three quarters of the first round don't depend on the counter, so we can
	// calculate them here, and reuse them for multiple blocks in the loop, and
	// for future XORKeyStream invocations.
	if !s.precompDone {
		s.p1, s.p5, s.p9, s.p13 = quarterRound(c1, c5, c9, c13)
		s.p2, s.p6, s.p10, s.p14 = quarterRound(c2, c6, c10, c14)
		s.p3, s.p7, s.p11, s.p15 = quarterRound(c3, c7, c11, c15)
		s.precompDone = true
	}

	// A condition of len(src) > 0 would be sufficient, but this also
	// acts as a bounds check elimination hint.
	for len(src) >= 64 && len(dst) >= 64 {
		// The remainder of the first column round.
		fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter)

		// The second diagonal round.
		x0, x5, x10, x15 := quarterRound(fcr0, s.p5, s.p10, s.p15)
		x1, x6, x11, x12 := quarterRound(s.p1, s.p6, s.p11, fcr12)
		x2, x7, x8, x13 := quarterRound(s.p2, s.p7, fcr8, s.p13)
		x3, x4, x9, x14 := quarterRound(s.p3, fcr4, s.p9, s.p14)

		// The remaining 18 rounds.
		for i := 0; i < 9; i++ {
			// Column round.
			x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
			x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
			x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
			x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)

			// Diagonal round.
			x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
			x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
			x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
			x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
		}

		// Add back the initial state to generate the key stream, then
		// XOR the key stream with the source and write out the result.
		addXor(dst[0:4], src[0:4], x0, c0)
		addXor(dst[4:8], src[4:8], x1, c1)
		addXor(dst[8:12], src[8:12], x2, c2)
		addXor(dst[12:16], src[12:16], x3, c3)
		addXor(dst[16:20], src[16:20], x4, c4)
		addXor(dst[20:24], src[20:24], x5, c5)
		addXor(dst[24:28], src[24:28], x6, c6)
		addXor(dst[28:32], src[28:32], x7, c7)
		addXor(dst[32:36], src[32:36], x8, c8)
		addXor(dst[36:40], src[36:40], x9, c9)
		addXor(dst[40:44], src[40:44], x10, c10)
		addXor(dst[44:48], src[44:48], x11, c11)
		addXor(dst[48:52], src[48:52], x12, s.counter)
		addXor(dst[52:56], src[52:56], x13, c13)
		addXor(dst[56:60], src[56:60], x14, c14)
		addXor(dst[60:64], src[60:64], x15, c15)

		s.counter += 1

		src, dst = src[blockSize:], dst[blockSize:]
	}
}

// HChaCha20 uses the ChaCha20 core to generate a derived key from a 32 bytes
// key and a 16 bytes nonce. It returns an error if key or nonce have any other
// length. It is used as part of the XChaCha20 construction.
func HChaCha20(key, nonce []byte) ([]byte, error) {
	// This function is split into a wrapper so that the slice allocation will
	// be inlined, and depending on how the caller uses the return value, won't
	// escape to the heap.
	out := make([]byte, 32)
	return hChaCha20(out, key, nonce)
}

func hChaCha20(out, key, nonce []byte) ([]byte, error) {
	if len(key) != KeySize {
		return nil, errors.New("chacha20: wrong HChaCha20 key size")
	}
	if len(nonce) != 16 {
		return nil, errors.New("chacha20: wrong HChaCha20 nonce size")
	}

	x0, x1, x2, x3 := j0, j1, j2, j3
	x4 := binary.LittleEndian.Uint32(key[0:4])
	x5 := binary.LittleEndian.Uint32(key[4:8])
	x6 := binary.LittleEndian.Uint32(key[8:12])
	x7 := binary.LittleEndian.Uint32(key[12:16])
	x8 := binary.LittleEndian.Uint32(key[16:20])
	x9 := binary.LittleEndian.Uint32(key[20:24])
	x10 := binary.LittleEndian.Uint32(key[24:28])
	x11 := binary.LittleEndian.Uint32(key[28:32])
	x12 := binary.LittleEndian.Uint32(nonce[0:4])
	x13 := binary.LittleEndian.Uint32(nonce[4:8])
	x14 := binary.LittleEndian.Uint32(nonce[8:12])
	x15 := binary.LittleEndian.Uint32(nonce[12:16])

	for i := 0; i < 10; i++ {
		// Diagonal round.
		x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
		x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
		x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
		x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)

		// Column round.
		x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
		x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
		x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
		x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
	}

	_ = out[31] // bounds check elimination hint
	binary.LittleEndian.PutUint32(out[0:4], x0)
	binary.LittleEndian.PutUint32(out[4:8], x1)
	binary.LittleEndian.PutUint32(out[8:12], x2)
	binary.LittleEndian.PutUint32(out[12:16], x3)
	binary.LittleEndian.PutUint32(out[16:20], x12)
	binary.LittleEndian.PutUint32(out[20:24], x13)
	binary.LittleEndian.PutUint32(out[24:28], x14)
	binary.LittleEndian.PutUint32(out[28:32], x15)
	return out, nil
}