1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssh
import (
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/rc4"
"crypto/subtle"
"encoding/binary"
"errors"
"fmt"
"hash"
"io"
"io/ioutil"
"golang.org/x/crypto/chacha20"
"golang.org/x/crypto/internal/poly1305"
)
const (
packetSizeMultiple = 16 // TODO(huin) this should be determined by the cipher.
// RFC 4253 section 6.1 defines a minimum packet size of 32768 that implementations
// MUST be able to process (plus a few more kilobytes for padding and mac). The RFC
// indicates implementations SHOULD be able to handle larger packet sizes, but then
// waffles on about reasonable limits.
//
// OpenSSH caps their maxPacket at 256kB so we choose to do
// the same. maxPacket is also used to ensure that uint32
// length fields do not overflow, so it should remain well
// below 4G.
maxPacket = 256 * 1024
)
// noneCipher implements cipher.Stream and provides no encryption. It is used
// by the transport before the first key-exchange.
type noneCipher struct{}
func (c noneCipher) XORKeyStream(dst, src []byte) {
copy(dst, src)
}
func newAESCTR(key, iv []byte) (cipher.Stream, error) {
c, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
return cipher.NewCTR(c, iv), nil
}
func newRC4(key, iv []byte) (cipher.Stream, error) {
return rc4.NewCipher(key)
}
type cipherMode struct {
keySize int
ivSize int
create func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error)
}
func streamCipherMode(skip int, createFunc func(key, iv []byte) (cipher.Stream, error)) func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
return func(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
stream, err := createFunc(key, iv)
if err != nil {
return nil, err
}
var streamDump []byte
if skip > 0 {
streamDump = make([]byte, 512)
}
for remainingToDump := skip; remainingToDump > 0; {
dumpThisTime := remainingToDump
if dumpThisTime > len(streamDump) {
dumpThisTime = len(streamDump)
}
stream.XORKeyStream(streamDump[:dumpThisTime], streamDump[:dumpThisTime])
remainingToDump -= dumpThisTime
}
mac := macModes[algs.MAC].new(macKey)
return &streamPacketCipher{
mac: mac,
etm: macModes[algs.MAC].etm,
macResult: make([]byte, mac.Size()),
cipher: stream,
}, nil
}
}
// cipherModes documents properties of supported ciphers. Ciphers not included
// are not supported and will not be negotiated, even if explicitly requested in
// ClientConfig.Crypto.Ciphers.
var cipherModes = map[string]*cipherMode{
// Ciphers from RFC4344, which introduced many CTR-based ciphers. Algorithms
// are defined in the order specified in the RFC.
"aes128-ctr": {16, aes.BlockSize, streamCipherMode(0, newAESCTR)},
"aes192-ctr": {24, aes.BlockSize, streamCipherMode(0, newAESCTR)},
"aes256-ctr": {32, aes.BlockSize, streamCipherMode(0, newAESCTR)},
// Ciphers from RFC4345, which introduces security-improved arcfour ciphers.
// They are defined in the order specified in the RFC.
"arcfour128": {16, 0, streamCipherMode(1536, newRC4)},
"arcfour256": {32, 0, streamCipherMode(1536, newRC4)},
// Cipher defined in RFC 4253, which describes SSH Transport Layer Protocol.
// Note that this cipher is not safe, as stated in RFC 4253: "Arcfour (and
// RC4) has problems with weak keys, and should be used with caution."
// RFC4345 introduces improved versions of Arcfour.
"arcfour": {16, 0, streamCipherMode(0, newRC4)},
// AEAD ciphers
gcmCipherID: {16, 12, newGCMCipher},
chacha20Poly1305ID: {64, 0, newChaCha20Cipher},
// CBC mode is insecure and so is not included in the default config.
// (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely
// needed, it's possible to specify a custom Config to enable it.
// You should expect that an active attacker can recover plaintext if
// you do.
aes128cbcID: {16, aes.BlockSize, newAESCBCCipher},
// 3des-cbc is insecure and is not included in the default
// config.
tripledescbcID: {24, des.BlockSize, newTripleDESCBCCipher},
}
// prefixLen is the length of the packet prefix that contains the packet length
// and number of padding bytes.
const prefixLen = 5
// streamPacketCipher is a packetCipher using a stream cipher.
type streamPacketCipher struct {
mac hash.Hash
cipher cipher.Stream
etm bool
// The following members are to avoid per-packet allocations.
prefix [prefixLen]byte
seqNumBytes [4]byte
padding [2 * packetSizeMultiple]byte
packetData []byte
macResult []byte
}
// readCipherPacket reads and decrypt a single packet from the reader argument.
func (s *streamPacketCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
if _, err := io.ReadFull(r, s.prefix[:]); err != nil {
return nil, err
}
var encryptedPaddingLength [1]byte
if s.mac != nil && s.etm {
copy(encryptedPaddingLength[:], s.prefix[4:5])
s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5])
} else {
s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
}
length := binary.BigEndian.Uint32(s.prefix[0:4])
paddingLength := uint32(s.prefix[4])
var macSize uint32
if s.mac != nil {
s.mac.Reset()
binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum)
s.mac.Write(s.seqNumBytes[:])
if s.etm {
s.mac.Write(s.prefix[:4])
s.mac.Write(encryptedPaddingLength[:])
} else {
s.mac.Write(s.prefix[:])
}
macSize = uint32(s.mac.Size())
}
if length <= paddingLength+1 {
return nil, errors.New("ssh: invalid packet length, packet too small")
}
if length > maxPacket {
return nil, errors.New("ssh: invalid packet length, packet too large")
}
// the maxPacket check above ensures that length-1+macSize
// does not overflow.
if uint32(cap(s.packetData)) < length-1+macSize {
s.packetData = make([]byte, length-1+macSize)
} else {
s.packetData = s.packetData[:length-1+macSize]
}
if _, err := io.ReadFull(r, s.packetData); err != nil {
return nil, err
}
mac := s.packetData[length-1:]
data := s.packetData[:length-1]
if s.mac != nil && s.etm {
s.mac.Write(data)
}
s.cipher.XORKeyStream(data, data)
if s.mac != nil {
if !s.etm {
s.mac.Write(data)
}
s.macResult = s.mac.Sum(s.macResult[:0])
if subtle.ConstantTimeCompare(s.macResult, mac) != 1 {
return nil, errors.New("ssh: MAC failure")
}
}
return s.packetData[:length-paddingLength-1], nil
}
// writeCipherPacket encrypts and sends a packet of data to the writer argument
func (s *streamPacketCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
if len(packet) > maxPacket {
return errors.New("ssh: packet too large")
}
aadlen := 0
if s.mac != nil && s.etm {
// packet length is not encrypted for EtM modes
aadlen = 4
}
paddingLength := packetSizeMultiple - (prefixLen+len(packet)-aadlen)%packetSizeMultiple
if paddingLength < 4 {
paddingLength += packetSizeMultiple
}
length := len(packet) + 1 + paddingLength
binary.BigEndian.PutUint32(s.prefix[:], uint32(length))
s.prefix[4] = byte(paddingLength)
padding := s.padding[:paddingLength]
if _, err := io.ReadFull(rand, padding); err != nil {
return err
}
if s.mac != nil {
s.mac.Reset()
binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum)
s.mac.Write(s.seqNumBytes[:])
if s.etm {
// For EtM algorithms, the packet length must stay unencrypted,
// but the following data (padding length) must be encrypted
s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5])
}
s.mac.Write(s.prefix[:])
if !s.etm {
// For non-EtM algorithms, the algorithm is applied on unencrypted data
s.mac.Write(packet)
s.mac.Write(padding)
}
}
if !(s.mac != nil && s.etm) {
// For EtM algorithms, the padding length has already been encrypted
// and the packet length must remain unencrypted
s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
}
s.cipher.XORKeyStream(packet, packet)
s.cipher.XORKeyStream(padding, padding)
if s.mac != nil && s.etm {
// For EtM algorithms, packet and padding must be encrypted
s.mac.Write(packet)
s.mac.Write(padding)
}
if _, err := w.Write(s.prefix[:]); err != nil {
return err
}
if _, err := w.Write(packet); err != nil {
return err
}
if _, err := w.Write(padding); err != nil {
return err
}
if s.mac != nil {
s.macResult = s.mac.Sum(s.macResult[:0])
if _, err := w.Write(s.macResult); err != nil {
return err
}
}
return nil
}
type gcmCipher struct {
aead cipher.AEAD
prefix [4]byte
iv []byte
buf []byte
}
func newGCMCipher(key, iv, unusedMacKey []byte, unusedAlgs directionAlgorithms) (packetCipher, error) {
c, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
aead, err := cipher.NewGCM(c)
if err != nil {
return nil, err
}
return &gcmCipher{
aead: aead,
iv: iv,
}, nil
}
const gcmTagSize = 16
func (c *gcmCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
// Pad out to multiple of 16 bytes. This is different from the
// stream cipher because that encrypts the length too.
padding := byte(packetSizeMultiple - (1+len(packet))%packetSizeMultiple)
if padding < 4 {
padding += packetSizeMultiple
}
length := uint32(len(packet) + int(padding) + 1)
binary.BigEndian.PutUint32(c.prefix[:], length)
if _, err := w.Write(c.prefix[:]); err != nil {
return err
}
if cap(c.buf) < int(length) {
c.buf = make([]byte, length)
} else {
c.buf = c.buf[:length]
}
c.buf[0] = padding
copy(c.buf[1:], packet)
if _, err := io.ReadFull(rand, c.buf[1+len(packet):]); err != nil {
return err
}
c.buf = c.aead.Seal(c.buf[:0], c.iv, c.buf, c.prefix[:])
if _, err := w.Write(c.buf); err != nil {
return err
}
c.incIV()
return nil
}
func (c *gcmCipher) incIV() {
for i := 4 + 7; i >= 4; i-- {
c.iv[i]++
if c.iv[i] != 0 {
break
}
}
}
func (c *gcmCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
if _, err := io.ReadFull(r, c.prefix[:]); err != nil {
return nil, err
}
length := binary.BigEndian.Uint32(c.prefix[:])
if length > maxPacket {
return nil, errors.New("ssh: max packet length exceeded")
}
if cap(c.buf) < int(length+gcmTagSize) {
c.buf = make([]byte, length+gcmTagSize)
} else {
c.buf = c.buf[:length+gcmTagSize]
}
if _, err := io.ReadFull(r, c.buf); err != nil {
return nil, err
}
plain, err := c.aead.Open(c.buf[:0], c.iv, c.buf, c.prefix[:])
if err != nil {
return nil, err
}
c.incIV()
if len(plain) == 0 {
return nil, errors.New("ssh: empty packet")
}
padding := plain[0]
if padding < 4 {
// padding is a byte, so it automatically satisfies
// the maximum size, which is 255.
return nil, fmt.Errorf("ssh: illegal padding %d", padding)
}
if int(padding+1) >= len(plain) {
return nil, fmt.Errorf("ssh: padding %d too large", padding)
}
plain = plain[1 : length-uint32(padding)]
return plain, nil
}
// cbcCipher implements aes128-cbc cipher defined in RFC 4253 section 6.1
type cbcCipher struct {
mac hash.Hash
macSize uint32
decrypter cipher.BlockMode
encrypter cipher.BlockMode
// The following members are to avoid per-packet allocations.
seqNumBytes [4]byte
packetData []byte
macResult []byte
// Amount of data we should still read to hide which
// verification error triggered.
oracleCamouflage uint32
}
func newCBCCipher(c cipher.Block, key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
cbc := &cbcCipher{
mac: macModes[algs.MAC].new(macKey),
decrypter: cipher.NewCBCDecrypter(c, iv),
encrypter: cipher.NewCBCEncrypter(c, iv),
packetData: make([]byte, 1024),
}
if cbc.mac != nil {
cbc.macSize = uint32(cbc.mac.Size())
}
return cbc, nil
}
func newAESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
c, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
cbc, err := newCBCCipher(c, key, iv, macKey, algs)
if err != nil {
return nil, err
}
return cbc, nil
}
func newTripleDESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
c, err := des.NewTripleDESCipher(key)
if err != nil {
return nil, err
}
cbc, err := newCBCCipher(c, key, iv, macKey, algs)
if err != nil {
return nil, err
}
return cbc, nil
}
func maxUInt32(a, b int) uint32 {
if a > b {
return uint32(a)
}
return uint32(b)
}
const (
cbcMinPacketSizeMultiple = 8
cbcMinPacketSize = 16
cbcMinPaddingSize = 4
)
// cbcError represents a verification error that may leak information.
type cbcError string
func (e cbcError) Error() string { return string(e) }
func (c *cbcCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
p, err := c.readCipherPacketLeaky(seqNum, r)
if err != nil {
if _, ok := err.(cbcError); ok {
// Verification error: read a fixed amount of
// data, to make distinguishing between
// failing MAC and failing length check more
// difficult.
io.CopyN(ioutil.Discard, r, int64(c.oracleCamouflage))
}
}
return p, err
}
func (c *cbcCipher) readCipherPacketLeaky(seqNum uint32, r io.Reader) ([]byte, error) {
blockSize := c.decrypter.BlockSize()
// Read the header, which will include some of the subsequent data in the
// case of block ciphers - this is copied back to the payload later.
// How many bytes of payload/padding will be read with this first read.
firstBlockLength := uint32((prefixLen + blockSize - 1) / blockSize * blockSize)
firstBlock := c.packetData[:firstBlockLength]
if _, err := io.ReadFull(r, firstBlock); err != nil {
return nil, err
}
c.oracleCamouflage = maxPacket + 4 + c.macSize - firstBlockLength
c.decrypter.CryptBlocks(firstBlock, firstBlock)
length := binary.BigEndian.Uint32(firstBlock[:4])
if length > maxPacket {
return nil, cbcError("ssh: packet too large")
}
if length+4 < maxUInt32(cbcMinPacketSize, blockSize) {
// The minimum size of a packet is 16 (or the cipher block size, whichever
// is larger) bytes.
return nil, cbcError("ssh: packet too small")
}
// The length of the packet (including the length field but not the MAC) must
// be a multiple of the block size or 8, whichever is larger.
if (length+4)%maxUInt32(cbcMinPacketSizeMultiple, blockSize) != 0 {
return nil, cbcError("ssh: invalid packet length multiple")
}
paddingLength := uint32(firstBlock[4])
if paddingLength < cbcMinPaddingSize || length <= paddingLength+1 {
return nil, cbcError("ssh: invalid packet length")
}
// Positions within the c.packetData buffer:
macStart := 4 + length
paddingStart := macStart - paddingLength
// Entire packet size, starting before length, ending at end of mac.
entirePacketSize := macStart + c.macSize
// Ensure c.packetData is large enough for the entire packet data.
if uint32(cap(c.packetData)) < entirePacketSize {
// Still need to upsize and copy, but this should be rare at runtime, only
// on upsizing the packetData buffer.
c.packetData = make([]byte, entirePacketSize)
copy(c.packetData, firstBlock)
} else {
c.packetData = c.packetData[:entirePacketSize]
}
n, err := io.ReadFull(r, c.packetData[firstBlockLength:])
if err != nil {
return nil, err
}
c.oracleCamouflage -= uint32(n)
remainingCrypted := c.packetData[firstBlockLength:macStart]
c.decrypter.CryptBlocks(remainingCrypted, remainingCrypted)
mac := c.packetData[macStart:]
if c.mac != nil {
c.mac.Reset()
binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum)
c.mac.Write(c.seqNumBytes[:])
c.mac.Write(c.packetData[:macStart])
c.macResult = c.mac.Sum(c.macResult[:0])
if subtle.ConstantTimeCompare(c.macResult, mac) != 1 {
return nil, cbcError("ssh: MAC failure")
}
}
return c.packetData[prefixLen:paddingStart], nil
}
func (c *cbcCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
effectiveBlockSize := maxUInt32(cbcMinPacketSizeMultiple, c.encrypter.BlockSize())
// Length of encrypted portion of the packet (header, payload, padding).
// Enforce minimum padding and packet size.
encLength := maxUInt32(prefixLen+len(packet)+cbcMinPaddingSize, cbcMinPaddingSize)
// Enforce block size.
encLength = (encLength + effectiveBlockSize - 1) / effectiveBlockSize * effectiveBlockSize
length := encLength - 4
paddingLength := int(length) - (1 + len(packet))
// Overall buffer contains: header, payload, padding, mac.
// Space for the MAC is reserved in the capacity but not the slice length.
bufferSize := encLength + c.macSize
if uint32(cap(c.packetData)) < bufferSize {
c.packetData = make([]byte, encLength, bufferSize)
} else {
c.packetData = c.packetData[:encLength]
}
p := c.packetData
// Packet header.
binary.BigEndian.PutUint32(p, length)
p = p[4:]
p[0] = byte(paddingLength)
// Payload.
p = p[1:]
copy(p, packet)
// Padding.
p = p[len(packet):]
if _, err := io.ReadFull(rand, p); err != nil {
return err
}
if c.mac != nil {
c.mac.Reset()
binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum)
c.mac.Write(c.seqNumBytes[:])
c.mac.Write(c.packetData)
// The MAC is now appended into the capacity reserved for it earlier.
c.packetData = c.mac.Sum(c.packetData)
}
c.encrypter.CryptBlocks(c.packetData[:encLength], c.packetData[:encLength])
if _, err := w.Write(c.packetData); err != nil {
return err
}
return nil
}
const chacha20Poly1305ID = "chacha20-poly1305@openssh.com"
// chacha20Poly1305Cipher implements the chacha20-poly1305@openssh.com
// AEAD, which is described here:
//
// https://tools.ietf.org/html/draft-josefsson-ssh-chacha20-poly1305-openssh-00
//
// the methods here also implement padding, which RFC4253 Section 6
// also requires of stream ciphers.
type chacha20Poly1305Cipher struct {
lengthKey [32]byte
contentKey [32]byte
buf []byte
}
func newChaCha20Cipher(key, unusedIV, unusedMACKey []byte, unusedAlgs directionAlgorithms) (packetCipher, error) {
if len(key) != 64 {
panic(len(key))
}
c := &chacha20Poly1305Cipher{
buf: make([]byte, 256),
}
copy(c.contentKey[:], key[:32])
copy(c.lengthKey[:], key[32:])
return c, nil
}
func (c *chacha20Poly1305Cipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
nonce := make([]byte, 12)
binary.BigEndian.PutUint32(nonce[8:], seqNum)
s, err := chacha20.NewUnauthenticatedCipher(c.contentKey[:], nonce)
if err != nil {
return nil, err
}
var polyKey, discardBuf [32]byte
s.XORKeyStream(polyKey[:], polyKey[:])
s.XORKeyStream(discardBuf[:], discardBuf[:]) // skip the next 32 bytes
encryptedLength := c.buf[:4]
if _, err := io.ReadFull(r, encryptedLength); err != nil {
return nil, err
}
var lenBytes [4]byte
ls, err := chacha20.NewUnauthenticatedCipher(c.lengthKey[:], nonce)
if err != nil {
return nil, err
}
ls.XORKeyStream(lenBytes[:], encryptedLength)
length := binary.BigEndian.Uint32(lenBytes[:])
if length > maxPacket {
return nil, errors.New("ssh: invalid packet length, packet too large")
}
contentEnd := 4 + length
packetEnd := contentEnd + poly1305.TagSize
if uint32(cap(c.buf)) < packetEnd {
c.buf = make([]byte, packetEnd)
copy(c.buf[:], encryptedLength)
} else {
c.buf = c.buf[:packetEnd]
}
if _, err := io.ReadFull(r, c.buf[4:packetEnd]); err != nil {
return nil, err
}
var mac [poly1305.TagSize]byte
copy(mac[:], c.buf[contentEnd:packetEnd])
if !poly1305.Verify(&mac, c.buf[:contentEnd], &polyKey) {
return nil, errors.New("ssh: MAC failure")
}
plain := c.buf[4:contentEnd]
s.XORKeyStream(plain, plain)
if len(plain) == 0 {
return nil, errors.New("ssh: empty packet")
}
padding := plain[0]
if padding < 4 {
// padding is a byte, so it automatically satisfies
// the maximum size, which is 255.
return nil, fmt.Errorf("ssh: illegal padding %d", padding)
}
if int(padding)+1 >= len(plain) {
return nil, fmt.Errorf("ssh: padding %d too large", padding)
}
plain = plain[1 : len(plain)-int(padding)]
return plain, nil
}
func (c *chacha20Poly1305Cipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, payload []byte) error {
nonce := make([]byte, 12)
binary.BigEndian.PutUint32(nonce[8:], seqNum)
s, err := chacha20.NewUnauthenticatedCipher(c.contentKey[:], nonce)
if err != nil {
return err
}
var polyKey, discardBuf [32]byte
s.XORKeyStream(polyKey[:], polyKey[:])
s.XORKeyStream(discardBuf[:], discardBuf[:]) // skip the next 32 bytes
// There is no blocksize, so fall back to multiple of 8 byte
// padding, as described in RFC 4253, Sec 6.
const packetSizeMultiple = 8
padding := packetSizeMultiple - (1+len(payload))%packetSizeMultiple
if padding < 4 {
padding += packetSizeMultiple
}
// size (4 bytes), padding (1), payload, padding, tag.
totalLength := 4 + 1 + len(payload) + padding + poly1305.TagSize
if cap(c.buf) < totalLength {
c.buf = make([]byte, totalLength)
} else {
c.buf = c.buf[:totalLength]
}
binary.BigEndian.PutUint32(c.buf, uint32(1+len(payload)+padding))
ls, err := chacha20.NewUnauthenticatedCipher(c.lengthKey[:], nonce)
if err != nil {
return err
}
ls.XORKeyStream(c.buf, c.buf[:4])
c.buf[4] = byte(padding)
copy(c.buf[5:], payload)
packetEnd := 5 + len(payload) + padding
if _, err := io.ReadFull(rand, c.buf[5+len(payload):packetEnd]); err != nil {
return err
}
s.XORKeyStream(c.buf[4:], c.buf[4:packetEnd])
var mac [poly1305.TagSize]byte
poly1305.Sum(&mac, c.buf[:packetEnd], &polyKey)
copy(c.buf[packetEnd:], mac[:])
if _, err := w.Write(c.buf); err != nil {
return err
}
return nil
}
|