summaryrefslogtreecommitdiff
path: root/vendor/k8s.io/apimachinery/pkg/labels/selector.go
blob: 2f8e1e2b0c4fe596b2d389af4383b16febe74a7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
/*
Copyright 2014 The Kubernetes Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package labels

import (
	"bytes"
	"fmt"
	"sort"
	"strconv"
	"strings"

	"k8s.io/apimachinery/pkg/selection"
	"k8s.io/apimachinery/pkg/util/sets"
	"k8s.io/apimachinery/pkg/util/validation"
	"k8s.io/klog"
)

// Requirements is AND of all requirements.
type Requirements []Requirement

// Selector represents a label selector.
type Selector interface {
	// Matches returns true if this selector matches the given set of labels.
	Matches(Labels) bool

	// Empty returns true if this selector does not restrict the selection space.
	Empty() bool

	// String returns a human readable string that represents this selector.
	String() string

	// Add adds requirements to the Selector
	Add(r ...Requirement) Selector

	// Requirements converts this interface into Requirements to expose
	// more detailed selection information.
	// If there are querying parameters, it will return converted requirements and selectable=true.
	// If this selector doesn't want to select anything, it will return selectable=false.
	Requirements() (requirements Requirements, selectable bool)

	// Make a deep copy of the selector.
	DeepCopySelector() Selector

	// RequiresExactMatch allows a caller to introspect whether a given selector
	// requires a single specific label to be set, and if so returns the value it
	// requires.
	RequiresExactMatch(label string) (value string, found bool)
}

// Everything returns a selector that matches all labels.
func Everything() Selector {
	return internalSelector{}
}

type nothingSelector struct{}

func (n nothingSelector) Matches(_ Labels) bool                                      { return false }
func (n nothingSelector) Empty() bool                                                { return false }
func (n nothingSelector) String() string                                             { return "" }
func (n nothingSelector) Add(_ ...Requirement) Selector                              { return n }
func (n nothingSelector) Requirements() (Requirements, bool)                         { return nil, false }
func (n nothingSelector) DeepCopySelector() Selector                                 { return n }
func (n nothingSelector) RequiresExactMatch(label string) (value string, found bool) { return "", false }

// Nothing returns a selector that matches no labels
func Nothing() Selector {
	return nothingSelector{}
}

// NewSelector returns a nil selector
func NewSelector() Selector {
	return internalSelector(nil)
}

type internalSelector []Requirement

func (s internalSelector) DeepCopy() internalSelector {
	if s == nil {
		return nil
	}
	result := make([]Requirement, len(s))
	for i := range s {
		s[i].DeepCopyInto(&result[i])
	}
	return result
}

func (s internalSelector) DeepCopySelector() Selector {
	return s.DeepCopy()
}

// ByKey sorts requirements by key to obtain deterministic parser
type ByKey []Requirement

func (a ByKey) Len() int { return len(a) }

func (a ByKey) Swap(i, j int) { a[i], a[j] = a[j], a[i] }

func (a ByKey) Less(i, j int) bool { return a[i].key < a[j].key }

// Requirement contains values, a key, and an operator that relates the key and values.
// The zero value of Requirement is invalid.
// Requirement implements both set based match and exact match
// Requirement should be initialized via NewRequirement constructor for creating a valid Requirement.
// +k8s:deepcopy-gen=true
type Requirement struct {
	key      string
	operator selection.Operator
	// In huge majority of cases we have at most one value here.
	// It is generally faster to operate on a single-element slice
	// than on a single-element map, so we have a slice here.
	strValues []string
}

// NewRequirement is the constructor for a Requirement.
// If any of these rules is violated, an error is returned:
// (1) The operator can only be In, NotIn, Equals, DoubleEquals, NotEquals, Exists, or DoesNotExist.
// (2) If the operator is In or NotIn, the values set must be non-empty.
// (3) If the operator is Equals, DoubleEquals, or NotEquals, the values set must contain one value.
// (4) If the operator is Exists or DoesNotExist, the value set must be empty.
// (5) If the operator is Gt or Lt, the values set must contain only one value, which will be interpreted as an integer.
// (6) The key is invalid due to its length, or sequence
//     of characters. See validateLabelKey for more details.
//
// The empty string is a valid value in the input values set.
func NewRequirement(key string, op selection.Operator, vals []string) (*Requirement, error) {
	if err := validateLabelKey(key); err != nil {
		return nil, err
	}
	switch op {
	case selection.In, selection.NotIn:
		if len(vals) == 0 {
			return nil, fmt.Errorf("for 'in', 'notin' operators, values set can't be empty")
		}
	case selection.Equals, selection.DoubleEquals, selection.NotEquals:
		if len(vals) != 1 {
			return nil, fmt.Errorf("exact-match compatibility requires one single value")
		}
	case selection.Exists, selection.DoesNotExist:
		if len(vals) != 0 {
			return nil, fmt.Errorf("values set must be empty for exists and does not exist")
		}
	case selection.GreaterThan, selection.LessThan:
		if len(vals) != 1 {
			return nil, fmt.Errorf("for 'Gt', 'Lt' operators, exactly one value is required")
		}
		for i := range vals {
			if _, err := strconv.ParseInt(vals[i], 10, 64); err != nil {
				return nil, fmt.Errorf("for 'Gt', 'Lt' operators, the value must be an integer")
			}
		}
	default:
		return nil, fmt.Errorf("operator '%v' is not recognized", op)
	}

	for i := range vals {
		if err := validateLabelValue(key, vals[i]); err != nil {
			return nil, err
		}
	}
	return &Requirement{key: key, operator: op, strValues: vals}, nil
}

func (r *Requirement) hasValue(value string) bool {
	for i := range r.strValues {
		if r.strValues[i] == value {
			return true
		}
	}
	return false
}

// Matches returns true if the Requirement matches the input Labels.
// There is a match in the following cases:
// (1) The operator is Exists and Labels has the Requirement's key.
// (2) The operator is In, Labels has the Requirement's key and Labels'
//     value for that key is in Requirement's value set.
// (3) The operator is NotIn, Labels has the Requirement's key and
//     Labels' value for that key is not in Requirement's value set.
// (4) The operator is DoesNotExist or NotIn and Labels does not have the
//     Requirement's key.
// (5) The operator is GreaterThanOperator or LessThanOperator, and Labels has
//     the Requirement's key and the corresponding value satisfies mathematical inequality.
func (r *Requirement) Matches(ls Labels) bool {
	switch r.operator {
	case selection.In, selection.Equals, selection.DoubleEquals:
		if !ls.Has(r.key) {
			return false
		}
		return r.hasValue(ls.Get(r.key))
	case selection.NotIn, selection.NotEquals:
		if !ls.Has(r.key) {
			return true
		}
		return !r.hasValue(ls.Get(r.key))
	case selection.Exists:
		return ls.Has(r.key)
	case selection.DoesNotExist:
		return !ls.Has(r.key)
	case selection.GreaterThan, selection.LessThan:
		if !ls.Has(r.key) {
			return false
		}
		lsValue, err := strconv.ParseInt(ls.Get(r.key), 10, 64)
		if err != nil {
			klog.V(10).Infof("ParseInt failed for value %+v in label %+v, %+v", ls.Get(r.key), ls, err)
			return false
		}

		// There should be only one strValue in r.strValues, and can be converted to a integer.
		if len(r.strValues) != 1 {
			klog.V(10).Infof("Invalid values count %+v of requirement %#v, for 'Gt', 'Lt' operators, exactly one value is required", len(r.strValues), r)
			return false
		}

		var rValue int64
		for i := range r.strValues {
			rValue, err = strconv.ParseInt(r.strValues[i], 10, 64)
			if err != nil {
				klog.V(10).Infof("ParseInt failed for value %+v in requirement %#v, for 'Gt', 'Lt' operators, the value must be an integer", r.strValues[i], r)
				return false
			}
		}
		return (r.operator == selection.GreaterThan && lsValue > rValue) || (r.operator == selection.LessThan && lsValue < rValue)
	default:
		return false
	}
}

// Key returns requirement key
func (r *Requirement) Key() string {
	return r.key
}

// Operator returns requirement operator
func (r *Requirement) Operator() selection.Operator {
	return r.operator
}

// Values returns requirement values
func (r *Requirement) Values() sets.String {
	ret := sets.String{}
	for i := range r.strValues {
		ret.Insert(r.strValues[i])
	}
	return ret
}

// Empty returns true if the internalSelector doesn't restrict selection space
func (lsel internalSelector) Empty() bool {
	if lsel == nil {
		return true
	}
	return len(lsel) == 0
}

// String returns a human-readable string that represents this
// Requirement. If called on an invalid Requirement, an error is
// returned. See NewRequirement for creating a valid Requirement.
func (r *Requirement) String() string {
	var buffer bytes.Buffer
	if r.operator == selection.DoesNotExist {
		buffer.WriteString("!")
	}
	buffer.WriteString(r.key)

	switch r.operator {
	case selection.Equals:
		buffer.WriteString("=")
	case selection.DoubleEquals:
		buffer.WriteString("==")
	case selection.NotEquals:
		buffer.WriteString("!=")
	case selection.In:
		buffer.WriteString(" in ")
	case selection.NotIn:
		buffer.WriteString(" notin ")
	case selection.GreaterThan:
		buffer.WriteString(">")
	case selection.LessThan:
		buffer.WriteString("<")
	case selection.Exists, selection.DoesNotExist:
		return buffer.String()
	}

	switch r.operator {
	case selection.In, selection.NotIn:
		buffer.WriteString("(")
	}
	if len(r.strValues) == 1 {
		buffer.WriteString(r.strValues[0])
	} else { // only > 1 since == 0 prohibited by NewRequirement
		// normalizes value order on output, without mutating the in-memory selector representation
		// also avoids normalization when it is not required, and ensures we do not mutate shared data
		buffer.WriteString(strings.Join(safeSort(r.strValues), ","))
	}

	switch r.operator {
	case selection.In, selection.NotIn:
		buffer.WriteString(")")
	}
	return buffer.String()
}

// safeSort sort input strings without modification
func safeSort(in []string) []string {
	if sort.StringsAreSorted(in) {
		return in
	}
	out := make([]string, len(in))
	copy(out, in)
	sort.Strings(out)
	return out
}

// Add adds requirements to the selector. It copies the current selector returning a new one
func (lsel internalSelector) Add(reqs ...Requirement) Selector {
	var sel internalSelector
	for ix := range lsel {
		sel = append(sel, lsel[ix])
	}
	for _, r := range reqs {
		sel = append(sel, r)
	}
	sort.Sort(ByKey(sel))
	return sel
}

// Matches for a internalSelector returns true if all
// its Requirements match the input Labels. If any
// Requirement does not match, false is returned.
func (lsel internalSelector) Matches(l Labels) bool {
	for ix := range lsel {
		if matches := lsel[ix].Matches(l); !matches {
			return false
		}
	}
	return true
}

func (lsel internalSelector) Requirements() (Requirements, bool) { return Requirements(lsel), true }

// String returns a comma-separated string of all
// the internalSelector Requirements' human-readable strings.
func (lsel internalSelector) String() string {
	var reqs []string
	for ix := range lsel {
		reqs = append(reqs, lsel[ix].String())
	}
	return strings.Join(reqs, ",")
}

// RequiresExactMatch introspect whether a given selector requires a single specific field
// to be set, and if so returns the value it requires.
func (lsel internalSelector) RequiresExactMatch(label string) (value string, found bool) {
	for ix := range lsel {
		if lsel[ix].key == label {
			switch lsel[ix].operator {
			case selection.Equals, selection.DoubleEquals, selection.In:
				if len(lsel[ix].strValues) == 1 {
					return lsel[ix].strValues[0], true
				}
			}
			return "", false
		}
	}
	return "", false
}

// Token represents constant definition for lexer token
type Token int

const (
	// ErrorToken represents scan error
	ErrorToken Token = iota
	// EndOfStringToken represents end of string
	EndOfStringToken
	// ClosedParToken represents close parenthesis
	ClosedParToken
	// CommaToken represents the comma
	CommaToken
	// DoesNotExistToken represents logic not
	DoesNotExistToken
	// DoubleEqualsToken represents double equals
	DoubleEqualsToken
	// EqualsToken represents equal
	EqualsToken
	// GreaterThanToken represents greater than
	GreaterThanToken
	// IdentifierToken represents identifier, e.g. keys and values
	IdentifierToken
	// InToken represents in
	InToken
	// LessThanToken represents less than
	LessThanToken
	// NotEqualsToken represents not equal
	NotEqualsToken
	// NotInToken represents not in
	NotInToken
	// OpenParToken represents open parenthesis
	OpenParToken
)

// string2token contains the mapping between lexer Token and token literal
// (except IdentifierToken, EndOfStringToken and ErrorToken since it makes no sense)
var string2token = map[string]Token{
	")":     ClosedParToken,
	",":     CommaToken,
	"!":     DoesNotExistToken,
	"==":    DoubleEqualsToken,
	"=":     EqualsToken,
	">":     GreaterThanToken,
	"in":    InToken,
	"<":     LessThanToken,
	"!=":    NotEqualsToken,
	"notin": NotInToken,
	"(":     OpenParToken,
}

// ScannedItem contains the Token and the literal produced by the lexer.
type ScannedItem struct {
	tok     Token
	literal string
}

// isWhitespace returns true if the rune is a space, tab, or newline.
func isWhitespace(ch byte) bool {
	return ch == ' ' || ch == '\t' || ch == '\r' || ch == '\n'
}

// isSpecialSymbol detect if the character ch can be an operator
func isSpecialSymbol(ch byte) bool {
	switch ch {
	case '=', '!', '(', ')', ',', '>', '<':
		return true
	}
	return false
}

// Lexer represents the Lexer struct for label selector.
// It contains necessary informationt to tokenize the input string
type Lexer struct {
	// s stores the string to be tokenized
	s string
	// pos is the position currently tokenized
	pos int
}

// read return the character currently lexed
// increment the position and check the buffer overflow
func (l *Lexer) read() (b byte) {
	b = 0
	if l.pos < len(l.s) {
		b = l.s[l.pos]
		l.pos++
	}
	return b
}

// unread 'undoes' the last read character
func (l *Lexer) unread() {
	l.pos--
}

// scanIDOrKeyword scans string to recognize literal token (for example 'in') or an identifier.
func (l *Lexer) scanIDOrKeyword() (tok Token, lit string) {
	var buffer []byte
IdentifierLoop:
	for {
		switch ch := l.read(); {
		case ch == 0:
			break IdentifierLoop
		case isSpecialSymbol(ch) || isWhitespace(ch):
			l.unread()
			break IdentifierLoop
		default:
			buffer = append(buffer, ch)
		}
	}
	s := string(buffer)
	if val, ok := string2token[s]; ok { // is a literal token?
		return val, s
	}
	return IdentifierToken, s // otherwise is an identifier
}

// scanSpecialSymbol scans string starting with special symbol.
// special symbol identify non literal operators. "!=", "==", "="
func (l *Lexer) scanSpecialSymbol() (Token, string) {
	lastScannedItem := ScannedItem{}
	var buffer []byte
SpecialSymbolLoop:
	for {
		switch ch := l.read(); {
		case ch == 0:
			break SpecialSymbolLoop
		case isSpecialSymbol(ch):
			buffer = append(buffer, ch)
			if token, ok := string2token[string(buffer)]; ok {
				lastScannedItem = ScannedItem{tok: token, literal: string(buffer)}
			} else if lastScannedItem.tok != 0 {
				l.unread()
				break SpecialSymbolLoop
			}
		default:
			l.unread()
			break SpecialSymbolLoop
		}
	}
	if lastScannedItem.tok == 0 {
		return ErrorToken, fmt.Sprintf("error expected: keyword found '%s'", buffer)
	}
	return lastScannedItem.tok, lastScannedItem.literal
}

// skipWhiteSpaces consumes all blank characters
// returning the first non blank character
func (l *Lexer) skipWhiteSpaces(ch byte) byte {
	for {
		if !isWhitespace(ch) {
			return ch
		}
		ch = l.read()
	}
}

// Lex returns a pair of Token and the literal
// literal is meaningfull only for IdentifierToken token
func (l *Lexer) Lex() (tok Token, lit string) {
	switch ch := l.skipWhiteSpaces(l.read()); {
	case ch == 0:
		return EndOfStringToken, ""
	case isSpecialSymbol(ch):
		l.unread()
		return l.scanSpecialSymbol()
	default:
		l.unread()
		return l.scanIDOrKeyword()
	}
}

// Parser data structure contains the label selector parser data structure
type Parser struct {
	l            *Lexer
	scannedItems []ScannedItem
	position     int
}

// ParserContext represents context during parsing:
// some literal for example 'in' and 'notin' can be
// recognized as operator for example 'x in (a)' but
// it can be recognized as value for example 'value in (in)'
type ParserContext int

const (
	// KeyAndOperator represents key and operator
	KeyAndOperator ParserContext = iota
	// Values represents values
	Values
)

// lookahead func returns the current token and string. No increment of current position
func (p *Parser) lookahead(context ParserContext) (Token, string) {
	tok, lit := p.scannedItems[p.position].tok, p.scannedItems[p.position].literal
	if context == Values {
		switch tok {
		case InToken, NotInToken:
			tok = IdentifierToken
		}
	}
	return tok, lit
}

// consume returns current token and string. Increments the position
func (p *Parser) consume(context ParserContext) (Token, string) {
	p.position++
	tok, lit := p.scannedItems[p.position-1].tok, p.scannedItems[p.position-1].literal
	if context == Values {
		switch tok {
		case InToken, NotInToken:
			tok = IdentifierToken
		}
	}
	return tok, lit
}

// scan runs through the input string and stores the ScannedItem in an array
// Parser can now lookahead and consume the tokens
func (p *Parser) scan() {
	for {
		token, literal := p.l.Lex()
		p.scannedItems = append(p.scannedItems, ScannedItem{token, literal})
		if token == EndOfStringToken {
			break
		}
	}
}

// parse runs the left recursive descending algorithm
// on input string. It returns a list of Requirement objects.
func (p *Parser) parse() (internalSelector, error) {
	p.scan() // init scannedItems

	var requirements internalSelector
	for {
		tok, lit := p.lookahead(Values)
		switch tok {
		case IdentifierToken, DoesNotExistToken:
			r, err := p.parseRequirement()
			if err != nil {
				return nil, fmt.Errorf("unable to parse requirement: %v", err)
			}
			requirements = append(requirements, *r)
			t, l := p.consume(Values)
			switch t {
			case EndOfStringToken:
				return requirements, nil
			case CommaToken:
				t2, l2 := p.lookahead(Values)
				if t2 != IdentifierToken && t2 != DoesNotExistToken {
					return nil, fmt.Errorf("found '%s', expected: identifier after ','", l2)
				}
			default:
				return nil, fmt.Errorf("found '%s', expected: ',' or 'end of string'", l)
			}
		case EndOfStringToken:
			return requirements, nil
		default:
			return nil, fmt.Errorf("found '%s', expected: !, identifier, or 'end of string'", lit)
		}
	}
}

func (p *Parser) parseRequirement() (*Requirement, error) {
	key, operator, err := p.parseKeyAndInferOperator()
	if err != nil {
		return nil, err
	}
	if operator == selection.Exists || operator == selection.DoesNotExist { // operator found lookahead set checked
		return NewRequirement(key, operator, []string{})
	}
	operator, err = p.parseOperator()
	if err != nil {
		return nil, err
	}
	var values sets.String
	switch operator {
	case selection.In, selection.NotIn:
		values, err = p.parseValues()
	case selection.Equals, selection.DoubleEquals, selection.NotEquals, selection.GreaterThan, selection.LessThan:
		values, err = p.parseExactValue()
	}
	if err != nil {
		return nil, err
	}
	return NewRequirement(key, operator, values.List())

}

// parseKeyAndInferOperator parse literals.
// in case of no operator '!, in, notin, ==, =, !=' are found
// the 'exists' operator is inferred
func (p *Parser) parseKeyAndInferOperator() (string, selection.Operator, error) {
	var operator selection.Operator
	tok, literal := p.consume(Values)
	if tok == DoesNotExistToken {
		operator = selection.DoesNotExist
		tok, literal = p.consume(Values)
	}
	if tok != IdentifierToken {
		err := fmt.Errorf("found '%s', expected: identifier", literal)
		return "", "", err
	}
	if err := validateLabelKey(literal); err != nil {
		return "", "", err
	}
	if t, _ := p.lookahead(Values); t == EndOfStringToken || t == CommaToken {
		if operator != selection.DoesNotExist {
			operator = selection.Exists
		}
	}
	return literal, operator, nil
}

// parseOperator return operator and eventually matchType
// matchType can be exact
func (p *Parser) parseOperator() (op selection.Operator, err error) {
	tok, lit := p.consume(KeyAndOperator)
	switch tok {
	// DoesNotExistToken shouldn't be here because it's a unary operator, not a binary operator
	case InToken:
		op = selection.In
	case EqualsToken:
		op = selection.Equals
	case DoubleEqualsToken:
		op = selection.DoubleEquals
	case GreaterThanToken:
		op = selection.GreaterThan
	case LessThanToken:
		op = selection.LessThan
	case NotInToken:
		op = selection.NotIn
	case NotEqualsToken:
		op = selection.NotEquals
	default:
		return "", fmt.Errorf("found '%s', expected: '=', '!=', '==', 'in', notin'", lit)
	}
	return op, nil
}

// parseValues parses the values for set based matching (x,y,z)
func (p *Parser) parseValues() (sets.String, error) {
	tok, lit := p.consume(Values)
	if tok != OpenParToken {
		return nil, fmt.Errorf("found '%s' expected: '('", lit)
	}
	tok, lit = p.lookahead(Values)
	switch tok {
	case IdentifierToken, CommaToken:
		s, err := p.parseIdentifiersList() // handles general cases
		if err != nil {
			return s, err
		}
		if tok, _ = p.consume(Values); tok != ClosedParToken {
			return nil, fmt.Errorf("found '%s', expected: ')'", lit)
		}
		return s, nil
	case ClosedParToken: // handles "()"
		p.consume(Values)
		return sets.NewString(""), nil
	default:
		return nil, fmt.Errorf("found '%s', expected: ',', ')' or identifier", lit)
	}
}

// parseIdentifiersList parses a (possibly empty) list of
// of comma separated (possibly empty) identifiers
func (p *Parser) parseIdentifiersList() (sets.String, error) {
	s := sets.NewString()
	for {
		tok, lit := p.consume(Values)
		switch tok {
		case IdentifierToken:
			s.Insert(lit)
			tok2, lit2 := p.lookahead(Values)
			switch tok2 {
			case CommaToken:
				continue
			case ClosedParToken:
				return s, nil
			default:
				return nil, fmt.Errorf("found '%s', expected: ',' or ')'", lit2)
			}
		case CommaToken: // handled here since we can have "(,"
			if s.Len() == 0 {
				s.Insert("") // to handle (,
			}
			tok2, _ := p.lookahead(Values)
			if tok2 == ClosedParToken {
				s.Insert("") // to handle ,)  Double "" removed by StringSet
				return s, nil
			}
			if tok2 == CommaToken {
				p.consume(Values)
				s.Insert("") // to handle ,, Double "" removed by StringSet
			}
		default: // it can be operator
			return s, fmt.Errorf("found '%s', expected: ',', or identifier", lit)
		}
	}
}

// parseExactValue parses the only value for exact match style
func (p *Parser) parseExactValue() (sets.String, error) {
	s := sets.NewString()
	tok, lit := p.lookahead(Values)
	if tok == EndOfStringToken || tok == CommaToken {
		s.Insert("")
		return s, nil
	}
	tok, lit = p.consume(Values)
	if tok == IdentifierToken {
		s.Insert(lit)
		return s, nil
	}
	return nil, fmt.Errorf("found '%s', expected: identifier", lit)
}

// Parse takes a string representing a selector and returns a selector
// object, or an error. This parsing function differs from ParseSelector
// as they parse different selectors with different syntaxes.
// The input will cause an error if it does not follow this form:
//
//  <selector-syntax>         ::= <requirement> | <requirement> "," <selector-syntax>
//  <requirement>             ::= [!] KEY [ <set-based-restriction> | <exact-match-restriction> ]
//  <set-based-restriction>   ::= "" | <inclusion-exclusion> <value-set>
//  <inclusion-exclusion>     ::= <inclusion> | <exclusion>
//  <exclusion>               ::= "notin"
//  <inclusion>               ::= "in"
//  <value-set>               ::= "(" <values> ")"
//  <values>                  ::= VALUE | VALUE "," <values>
//  <exact-match-restriction> ::= ["="|"=="|"!="] VALUE
//
// KEY is a sequence of one or more characters following [ DNS_SUBDOMAIN "/" ] DNS_LABEL. Max length is 63 characters.
// VALUE is a sequence of zero or more characters "([A-Za-z0-9_-\.])". Max length is 63 characters.
// Delimiter is white space: (' ', '\t')
// Example of valid syntax:
//  "x in (foo,,baz),y,z notin ()"
//
// Note:
//  (1) Inclusion - " in " - denotes that the KEY exists and is equal to any of the
//      VALUEs in its requirement
//  (2) Exclusion - " notin " - denotes that the KEY is not equal to any
//      of the VALUEs in its requirement or does not exist
//  (3) The empty string is a valid VALUE
//  (4) A requirement with just a KEY - as in "y" above - denotes that
//      the KEY exists and can be any VALUE.
//  (5) A requirement with just !KEY requires that the KEY not exist.
//
func Parse(selector string) (Selector, error) {
	parsedSelector, err := parse(selector)
	if err == nil {
		return parsedSelector, nil
	}
	return nil, err
}

// parse parses the string representation of the selector and returns the internalSelector struct.
// The callers of this method can then decide how to return the internalSelector struct to their
// callers. This function has two callers now, one returns a Selector interface and the other
// returns a list of requirements.
func parse(selector string) (internalSelector, error) {
	p := &Parser{l: &Lexer{s: selector, pos: 0}}
	items, err := p.parse()
	if err != nil {
		return nil, err
	}
	sort.Sort(ByKey(items)) // sort to grant determistic parsing
	return internalSelector(items), err
}

func validateLabelKey(k string) error {
	if errs := validation.IsQualifiedName(k); len(errs) != 0 {
		return fmt.Errorf("invalid label key %q: %s", k, strings.Join(errs, "; "))
	}
	return nil
}

func validateLabelValue(k, v string) error {
	if errs := validation.IsValidLabelValue(v); len(errs) != 0 {
		return fmt.Errorf("invalid label value: %q: at key: %q: %s", v, k, strings.Join(errs, "; "))
	}
	return nil
}

// SelectorFromSet returns a Selector which will match exactly the given Set. A
// nil and empty Sets are considered equivalent to Everything().
func SelectorFromSet(ls Set) Selector {
	if ls == nil || len(ls) == 0 {
		return internalSelector{}
	}
	requirements := make([]Requirement, 0, len(ls))
	for label, value := range ls {
		r, err := NewRequirement(label, selection.Equals, []string{value})
		if err == nil {
			requirements = append(requirements, *r)
		} else {
			//TODO: double check errors when input comes from serialization?
			return internalSelector{}
		}
	}
	// sort to have deterministic string representation
	sort.Sort(ByKey(requirements))
	return internalSelector(requirements)
}

// SelectorFromValidatedSet returns a Selector which will match exactly the given Set.
// A nil and empty Sets are considered equivalent to Everything().
// It assumes that Set is already validated and doesn't do any validation.
func SelectorFromValidatedSet(ls Set) Selector {
	if ls == nil || len(ls) == 0 {
		return internalSelector{}
	}
	requirements := make([]Requirement, 0, len(ls))
	for label, value := range ls {
		requirements = append(requirements, Requirement{key: label, operator: selection.Equals, strValues: []string{value}})
	}
	// sort to have deterministic string representation
	sort.Sort(ByKey(requirements))
	return internalSelector(requirements)
}

// ParseToRequirements takes a string representing a selector and returns a list of
// requirements. This function is suitable for those callers that perform additional
// processing on selector requirements.
// See the documentation for Parse() function for more details.
// TODO: Consider exporting the internalSelector type instead.
func ParseToRequirements(selector string) ([]Requirement, error) {
	return parse(selector)
}