aboutsummaryrefslogtreecommitdiff
path: root/files/pt-pt/web/mathml/examples/mathml_pythagorean_theorem
diff options
context:
space:
mode:
authorFlorian Merz <me@fiji-flo.de>2021-02-11 14:50:24 +0100
committerFlorian Merz <me@fiji-flo.de>2021-02-11 14:50:24 +0100
commit2c2df5ea01eb5cd8b9ea226b2869337e59c5fe3e (patch)
tree86ab4534d10092b293d4b7ab169fe1a8a2421bfa /files/pt-pt/web/mathml/examples/mathml_pythagorean_theorem
parent8260a606c143e6b55a467edf017a56bdcd6cba7e (diff)
downloadtranslated-content-2c2df5ea01eb5cd8b9ea226b2869337e59c5fe3e.tar.gz
translated-content-2c2df5ea01eb5cd8b9ea226b2869337e59c5fe3e.tar.bz2
translated-content-2c2df5ea01eb5cd8b9ea226b2869337e59c5fe3e.zip
unslug pt-pt: move
Diffstat (limited to 'files/pt-pt/web/mathml/examples/mathml_pythagorean_theorem')
-rw-r--r--files/pt-pt/web/mathml/examples/mathml_pythagorean_theorem/index.html19
1 files changed, 19 insertions, 0 deletions
diff --git a/files/pt-pt/web/mathml/examples/mathml_pythagorean_theorem/index.html b/files/pt-pt/web/mathml/examples/mathml_pythagorean_theorem/index.html
new file mode 100644
index 0000000000..d4edbfc4dd
--- /dev/null
+++ b/files/pt-pt/web/mathml/examples/mathml_pythagorean_theorem/index.html
@@ -0,0 +1,19 @@
+---
+title: Provar o teorema de Pitágoras
+slug: Web/MathML/Examples/MathML_teorema_de_Pitagoras
+tags:
+ - Beginner
+ - Educação de matemática
+ - Exemplo
+ - Guía
+ - Matemática HTML5
+ - MathML
+translation_of: Web/MathML/Examples/MathML_Pythagorean_Theorem
+---
+<p>Iremos provar o teorema de Pitágoras:</p>
+
+<p><strong>Declaração:</strong> Num triângulo retângulo, o quadrado da hipotenusa é igual à soma dos quadrados dos outros dois lados.</p>
+
+<p>Isto é, se <strong>a</strong> e <strong>b</strong> são os catetos, e <strong>c</strong> é a hipotenusa então<math><mrow><msup><mi>  a </mi><mn>2</mn></msup> <mo> + </mo> <msup><mi> b </mi><mn>2</mn></msup> <mo> = </mo> <msup><mi> c </mi><mn>2</mn></msup> </mrow> </math>.</p>
+
+<p><strong>Prova:</strong> Podemos provar o teorema algebricamente mostrando que a área do quadrado grande é igual à área do quadrado interior (hipotenusa ao quadrado) mais a área dos quatro triângulos:<math style="display: block;"><mtable columnalign="right center left"><mtr><mtd><msup><mrow><mo>( </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msup><mi> c </mi><mn>2</mn></msup> <mo> + </mo> <mn> 4 </mn> <mo> ⋅ </mo> <mo>(</mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mi> a </mi><mi> b </mi> <mo>)</mo>                               </mtd> </mtr> <mtr> <mtd> <msup><mi> a </mi><mn>2</mn></msup> <mo> + </mo> <mn> 2 </mn><mi> a </mi><mi> b </mi> <mo> + </mo> <msup><mi> b </mi><mn>2</mn></msup> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msup><mi> c </mi><mn>2</mn></msup> <mo> + </mo> <mn> 2 </mn><mi> a </mi><mi> b</mi></mtd></mtr><mtr><mtd></mtd></mtr><mtr><mtd><msup><mi>a </mi><mn>2</mn></msup> <mo> + </mo> <msup><mi> b </mi><mn>2</mn></msup> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msup><mi> c </mi><mn>2</mn></msup> </mtd> </mtr> </mtable> </math></p>