aboutsummaryrefslogtreecommitdiff
path: root/files/ru/web/javascript/reference/global_objects/math/acosh
diff options
context:
space:
mode:
authorAlexey Pyltsyn <lex61rus@gmail.com>2021-03-14 18:26:20 +0300
committerAlexey Pyltsyn <lex61rus@gmail.com>2021-03-15 11:41:42 +0300
commit08dc1a1e60063705ccefc1eb4ef0a17d1ddf196b (patch)
tree034e9bd9b9f9484b499acd21edd1b5cdc5090035 /files/ru/web/javascript/reference/global_objects/math/acosh
parentecd81e5f73adf6fef6fc0067f50d088a51c32f6a (diff)
downloadtranslated-content-08dc1a1e60063705ccefc1eb4ef0a17d1ddf196b.tar.gz
translated-content-08dc1a1e60063705ccefc1eb4ef0a17d1ddf196b.tar.bz2
translated-content-08dc1a1e60063705ccefc1eb4ef0a17d1ddf196b.zip
Fix typos
Diffstat (limited to 'files/ru/web/javascript/reference/global_objects/math/acosh')
-rw-r--r--files/ru/web/javascript/reference/global_objects/math/acosh/index.html2
1 files changed, 1 insertions, 1 deletions
diff --git a/files/ru/web/javascript/reference/global_objects/math/acosh/index.html b/files/ru/web/javascript/reference/global_objects/math/acosh/index.html
index 7dc0900c24..7b253c64e5 100644
--- a/files/ru/web/javascript/reference/global_objects/math/acosh/index.html
+++ b/files/ru/web/javascript/reference/global_objects/math/acosh/index.html
@@ -47,7 +47,7 @@ Math.acosh(2); // 1.3169578969248166
<p>Для значений, меньших 1, метод <code>Math.acosh()</code> возвращает {{jsxref("NaN")}}.</p>
-<h2 id="Polyfill" name="Polyfill">Полифилл</h2>
+<h2 id="Polyfill" name="Polyfill">Полифил</h2>
<p>Для всех <math><semantics><mrow><mi>x</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding="TeX">x \geq 1</annotation></semantics></math>, мы имеем <math><semantics><mrow><mo lspace="0em" rspace="thinmathspace">arcosh</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="0em">ln</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><msqrt><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></msqrt></mrow><mo>)</mo></mrow></mrow><annotation encoding="TeX">\operatorname {arcosh} (x) = \ln \left(x + \sqrt{x^{2} - 1} \right)</annotation></semantics></math>, так что этот метод может эмулироваться следующим образом:</p>